首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transfer and integration of tRNA genes from organellar genomes to the nuclear genome and between organellar genomes occur extensively in flowering plants. The routes of the genetic materials flowing from one genome to another are biased, limited largely by compatibility of DNA replication and repair systems differing among the organelles and nucleus. After thoroughly surveying the tRNA gene transfer among organellar genomes and the nuclear genome of a domesticated rice (Oryza sativa L. ssp. indica), we found that (i) 15 mitochondrial tRNA genes originate from the plastid; (ii) 43 and 80 nuclear tRNA genes are mitochondrion-like and plastid-like, respectively; and (iii) 32 nuclear tRNA genes have both mitochondrial and plastid counterparts. Besides the native (or genuine) tRNA gene sets, the nuclear genome contains organelle-like tRNA genes that make up a complete set of tRNA species capable of transferring all amino acids. More than 97% of these organelle-like nuclear tRNA genes flank organelle-like sequences over 20 bp. Nearly 40% of them colocalize with two or more other organelle-like tRNA genes. Twelve of the 15 plastid-like mitochondrial tRNA genes possess 5′- and 3′-flanking sequences over 20 bp, and they are highly similar to their plastid counterparts. Phylogenetic analyses of the migrated tRNA genes and their original copies suggest that intergenomic tRNA gene transfer is an ongoing process with noticeable discriminatory routes among genomes in flowering plants. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. David Guttman  相似文献   

2.
Papaya (Carica papaya L.) is a major tree fruit crop of tropical and subtropical regions with an estimated genome size of 372 Mbp. We present the analysis of 4.7% of the papaya genome based on BAC end sequences (BESs) representing 17 million high-quality bases. Microsatellites discovered in 5,452 BESs and flanking primer sequences are available to papaya breeding programs at . Sixteen percent of BESs contain plant repeat elements, the vast majority (83.3%) of which are class I retrotransposons. Several novel papaya-specific repeats were identified. Approximately 19.1% of the BESs have homology to Arabidopsis cDNA. Increasing numbers of completely sequenced plant genomes and BES projects enable novel approaches to comparative plant genomics. Paired BESs of Carica, Arabidopsis, Populus, Brassica and Lycopersicon were mapped onto the completed genomes of Arabidopsis and Populus. In general the level of microsynteny was highest between closely related organisms. However, papaya revealed a higher degree of apparent synteny with the more distantly related poplar than with the more closely related Arabidopsis. This, as well as significant colinearity observed between peach and poplar genome sequences, support recent observations of frequent genome rearrangements in the Arabidopsis lineage and suggest that the poplar genome sequence may be more useful for elucidating the papaya and other rosid genomes. These insights will play a critical role in selecting species and sequencing strategies that will optimally represent crop genomes in sequence databases.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Chun Wan J. Lai and Qingyi Yu have contributed equally to this work.  相似文献   

3.
With a long-term goal of constructing a linkage map of Rhododendron enriched with gene-specific markers, we utilized Rhododendron catawbiense ESTs for the development of high-efficiency (in terms of generating polymorphism frequency) PCR-based markers. Using the gene-sequence alignment between Rhododendron ESTs and the genomic sequences of Arabidopsis homologs, we developed ‘intron-flanking‘ EST–PCR-based primers that would anneal in conserved exon regions and amplify across the more highly diverged introns. These primers resulted in increased efficiency (61% vs. 13%; 4.7-fold) of polymorphism-detection compared with conventional EST–PCR methods, supporting the assumption that intron regions are more diverged than exons. Significantly, this study demonstrates that Arabidopsis genome database can be useful in developing gene-specific PCR-based markers for other non-model plant species for which the EST data are available but genomic sequences are not. The comparative analysis of intron sizes between Rhododendron and Arabidopsis (made possible in this study by aligning of Rhododendron ESTs with Arabidopsis genomic sequences and the sequencing of Rhododendron genomic PCR products) provides the first insight into the gene structure of Rhododendron. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
Arachis hypogaea is a widely cultivated crop both as an oilseed and protein source. The genomic analysis of Arachis species hitherto has been limited to the construction of genetic maps; the most comprehensive one contains 370 loci over 2,210 cM in length. However, no attempt has been made to analyze the physical structure of the peanut genome. To investigate the practicality of physical mapping in peanut, we applied a total of 117 oligonucleotide-based probes (overgos) derived from genetically mapped RFLP probes onto peanut BAC filters containing 182,784 peanut large-insert DNA clones in a multiplex experimental design; 91.5% of the overgos identified at least one BAC clone. In order to gain insights into the potential value of Arabidopsis genome sequence for studies in divergent species with complex genomes such as peanut, we employed 576 Arabidopsis-derived overgos selected on the basis of maximum homology to orthologous sequences in other plant taxa to screen the peanut BAC library. A total of 353 (61.3%) overgos detected at least one peanut BAC clone. This experiment represents the first steps toward the creation of a physical map in peanut and illustrates the potential value of leveraging information from distantly related species such as Arabidopsis for both practical applications such as comparative map-based cloning and shedding light on evolutionary relationships. We also evaluated the possible correlation between functional categories of Arabidopsis overgos and their success rates in hybridization to the peanut BAC library.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

5.
The radish Rfo gene restores male fertility in radish or rapeseed plants carrying Ogura cytoplasmic male-sterility. This system was first discovered in radish and was transferred to rapeseed for the production of F1 hybrid seeds. We aimed to identify the region of the Arabidopsis genome syntenic to the Rfo locus and to characterize the radish introgression in restored rapeseed. We used two methods: amplified consensus genetic markers (ACGMs) in restored rapeseed plants and construction of a precise genetic map around the Rfo gene in a segregating radish population. The use of ACGMs made it possible to detect radish orthologs of Arabidopsis genes in the restored rapeseed genome. We identified radish genes, linked to Rfo in rapeseed and whose orthologs in Arabidopsis are carried by chromosomes 1, 4 and 5. This indicates several breaks in colinearity between radish and Arabidopsis genomes in this region. We determined the positions of markers relative to each other and to the Rfo gene, using the progeny of a rapeseed plant with unstable meiotic transmission of the radish introgression. This enabled us to produce a schematic diagram of the radish introgression in rapeseed. Markers which could be mapped both on radish and restored rapeseed indicate that at least 50 cM of the radish genome is integrated in restored rapeseed. Using markers closely linked to the Rfo gene in rapeseed and radish, we identified a contig spanning six bacterial artificial chromosome (BAC) clones on Arabidopsis chromosome 1, which is likely to carry the orthologous Rfo gene.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by H. C. BeckerS. Giancola and S. Marhadour contributed equally to this work  相似文献   

6.
We have newly identified five Terminal-repeat retrotransposon in miniature (TRIM) families, four from Brassica and one from Arabidopsis. A total of 146 elements, including three Arabidopsis families reported before, are extracted from genomics data of Brassica and Arabidopsis, and these are grouped into eight distinct lineages, Br1 to Br4 derived from Brassica and At1 to At4 derived from Arabidopsis. Based on the occurrence of TRIM elements in 434 Mb of B. oleracea shotgun sequences and 96 Mb of B. rapa BAC end sequences, total number of TRIM members of Br1, Br2, Br3, and Br4 families are roughly estimated to be present in 660 and 530 copies in B. oleracea and B. rapa genomes, respectively. Studies on insertion site polymorphisms of four elements across taxa in the tribe Brassiceae infer the taxonomic lineage and dating of the insertion time. Active roles of the TRIM elements for evolution of the duplicated genes are inferred in the highly replicated Brassica genome. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Tae-Jin Yang and Soo-Jin Kwon have equally contributed to this work.  相似文献   

7.
A gene encoding a protein with extensive homology to the largest subunit of the multicatalytic proteinase complex (proteasome) has been identified in Arabidopsis thaliana. This gene, referred to as AtPSM30, is entirely encompassed within a previously characterized radiation-induced deletion, which may thus provide the first example of a proteasome null mutation in a higher eukaryote. However, the growth rate and fertility of Arabidopsis plants do not appear to be significantly affected by this mutation, even though disruption experiments in yeast have shown that most proteasome subunits are essential. Analysis of mRNA levels in developing seedlings and mature plants indicates that expression of AtPSM30 is differentially regulated during development and is slightly induced in response to stress, as has been observed for proteasome genes in yeast, Drosophila, and mammals. Southern blot analysis indicates that the Arabidopsis genome contains numerous sequences closely related to AtPSM30, consistent with recent reports of at least two other proteasome genes in Arabidopsis. A comparison of the deduced amino acid sequences for all proteasome genes reported to date suggests that multiple proteasome subunits evolved in eukaryotes prior to the divergence of plants and animals.GenBank accession number: M98495  相似文献   

8.
Gray-Mitsumune M  Matton DP 《Planta》2006,223(3):618-625
The maize ZmEA1 protein was recently postulated to be involved in short-range pollen tube guidance from the embryo sac. To date, EA1-like sequences had only been identified in monocot species. Using a more conserved C-terminal motif found in the monocot species, numerous ZmEA1-like sequences were retrieved in EST databases from dicot species, as well as from unannotated genomic sequences of Arabidopsis thaliana. RT-PCR analyses were produced for these unannotated genes and showed that these were indeed expressed genes. Further structural and phylogenetic analyses revealed that all members of the EA1-like (EAL) gene family shared a conserved 27–29 amino acid motif, termed the EA box near the C-terminal end, and appear to be secretory proteins. Therefore, the EA box proteins defines a new class of small secretory proteins, some of which being possibly involved in pollen tube guidance. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

9.
Full-genome analysis of resistance gene homologues in rice   总被引:18,自引:0,他引:18  
The availability of the rice genome sequence enabled the global characterization of nucleotide-binding site (NBS)–leucine-rich repeat (LRR) genes, the largest class of plant disease resistance genes. The rice genome carries approximately 500 NBS–LRR genes that are very similar to the non-Toll/interleukin-1 receptor homology region (TIR) class (class 2) genes of Arabidopsis but none that are homologous to the TIR class genes. Over 100 of these genes were predicted to be pseudogenes in the rice cultivar Nipponbare, but some of these are functional in other rice lines. Over 80 other NBS-encoding genes were identified that belonged to four different classes, only two of which are present in dicotyledonous plant sequences present in databases. Map positions of the identified genes show that these genes occur in clusters, many of which included members from distantly related groups. Members of phylogenetic subgroups of the class 2 NBS–LRR genes mapped to as many as ten different chromosomes. The patterns of duplication of the NBS–LRR genes indicate that they were duplicated by many independent genetic events that have occurred continuously through the expansion of the NBS–LRR superfamily and the evolution of the modern rice genome. Genetic events, such as inversions, that inhibit the ability of recently duplicated genes to recombine promote the divergence of their sequences by inhibiting concerted evolution.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

10.
Plant acyl-CoA dependent acyltransferases constitute a large specific protein superfamily, named BAHD. Using the conserved sequence motifs of BAHD members, we searched the genome sequences of Populus and Arabidopsis, and identified, respectively, 94- and 61-putative genes. Subsequently, we analyzed the phylogeny, gene structure, and chromosomal distribution of BAHD members of both species; then, we profiled expression patterns of BAHD genes by “in silico” northern- and microarray-analyses based on public databases, and by RT-PCR. While our genomic- and bioinformatic- analyses provided full sets of BAHD superfamily genes, and cleaned up a few existing annotation errors, importantly it led to our recognizing several unique Arabidopsis BAHD genes that inversely overlapped with their neighboring genes on the genome, and disclosing a potential natural anti-sense regulation for gene expressions. Systemic gene-expression profiling of BAHD members revealed distinct tissue-specific/preferential expression patterns, indicating their diverse biological functions. Our study affords a strong knowledge base for understanding BAHD members’ evolutionary relationships and gene functions implicated in plant growth, development and metabolism. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
Multiple 2′-5′ oligoadenylate (2-5A) synthetases are important components of innate immunity in mammals. Gene families encoding these proteins have previously been studied mainly in humans and mice. To reconstruct the evolution of this gene family in mammals, a search for additional 2-5A synthetase genes was performed in rat, cattle, pig, and dog. Twelve 2′-5′ oligoadenylate synthetase (Oas) genes were identified in the rat genome, including eight Oas1 genes, two Oas1 pseudogenes, single copies of Oas2 and Oas3, and two Oas-like genes, Oasl1 and Oasl2. Four OAS genes were detected in the pig genome and five OAS genes were found in both the cattle and dog genomes. An OAS3 gene was not found in either the cattle or the pig genome. While two tandemly duplicated OAS-like (OASL) genes were identified in the dog genome, only a single OASL orthologue was found in both the cattle and the pig genomes. The bovine and porcine OASL genes contain premature stop codons and encode truncated proteins, which lack the typical C-terminal double ubiquitin domains. The cDNA sequences of the rat, cattle, pig, and dog OAS genes were amplified, sequenced and compared with each other and with those in the human, mouse, horse, and chicken genomes. Evidence of concerted evolution of paralogous 2′-5′ oligoadenylate synthetase 1 genes was obtained in rodents (Rodentia) and even-toed ungulates (Artiodactyla). Calculations using the nonparametric Kolmogorov-Smirnov test suggested that the homogenization of paralogous OAS1 sequences was due to gene conversion rather than stabilizing selection. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. Martin Kreitman  相似文献   

13.
Isopropylmalate synthase (IPMS) is a key enzyme in the biosynthesis of the essential amino acid leucine, and thus primary metabolism. In Arabidopsis, the functionally similar enzyme, methythiolalkylmalate synthase (MAM), is an important enzyme in the elongation of methionine prior to glucosinolate (GSL) biosynthesis, as part of secondary metabolism. We describe the cloning of an IPMS gene from Brassica, BatIMS, and its functional characterisation by heterologous expression in E. coli and Arabidopsis. Over expression of BatIMS in Arabidopsis resulted in plants with an aberrant phenotype, reminiscent of mutants in GSL biosynthesis. Metabolite analyses showed that these plants had both perturbed amino acid metabolism and enhanced levels of GSLs. Microarray profiling showed that BatIMS over expression caused up regulation of the genes for methionine-derived GSL biosynthesis, and down regulation of genes involved in leucine catabolism, in addition to perturbed expression of genes involved in auxin and ethylene metabolism. The results illustrate the cross talk that can occur between primary and secondary metabolism within transgenic plants. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
15.
In the sequences released by the Arabidopsis Genome Initiative (AGI), we discovered a new and unexpectedly large family of orphan genes (127 genes by 01.08.99), named AtPCMP. The distribution of the AtPCMP genes on the five chromosomes suggests that the genome of Arabidopsis thaliana contains more than 200 genes of this family (1% of the whole genome). The deduced AtPCMP proteins are characterized by a surprising combinatorial organization of sequence motifs. The amino-terminal domain is made of a succession of three conserved motifs which generate an important diversity. These proteins are classified into three subfamilies based on the length and nature of their carboxy-terminal domain constituted by 1–6 motifs. All the motifs characterized have an important level of conservation in both sequence and spacing. A specific signature of this large family is defined. The presence of ESTs in databases and the detection of clones in A. thaliana cDNA libraries indicate that most of the genes of this family are expressed. The absence of similar sequences outside the plant kingdom strongly suggests that this unusually large orphan family is unique to plants. Features, the genesis, the potential function and the evolution of this plant combinatorial and modular protein family are discussed.  相似文献   

16.
Here we present a screening method to evaluate the potential of genes to transfer aspects of apomixis into sexual crop plants. Based on the assumption that an apomictic progeny is an exact genetic replica of the mother plant we employed a set of single sequence length polymorphism (SSLP) markers to identify individuals displaying heterozygosity fixation in segregating sexual populations as an indication of rare apomictic events. Here we present the results of such a study using the Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 (AtSERK1) gene expressed under the control of the AtLTP1 promoter in sexual Arabidopsis plants. In one of the three tested F2 transgenic populations expressing the AtLTP1::AtSERK1 construct we observed two plants with heterozygosity maintenance for the full set of SSLP markers indicating a possible clonal inheritance. However, as their offspring revealed a close to binomial segregation for a number of heterozygous loci, it was concluded that these two putative apomictic plants either lost their clonal ability in the next generation or resulted from incidental recombination events displaying the genotype of the parent. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

17.
We determined the complete sequence of the mitochondrial DNA of the entomopathogenic nematode Steinernema carpocapsae and analyzed its structure and composition as well as the secondary structures predicted for its tRNAs and rRNAs. Almost the complete genome has been amplified in one fragment with long PCR and sequenced using a shotgun strategy. The 13,925-bp genome contains genes for 2 rRNAs, 22 tRNAs, and 12 proteins and lacks an ORF encoding ATPase subunit 8. Four initiation codons were inferred, TTT, TTA, ATA, and ATT, most of the genes ended with TAA or TAG, and only two had a T as an incomplete stop codon. All predicted tRNAs showed the nonconventional secondary structure typical of Secernentea. Although we were able to fold the sequences of trnN, trnD, and trnC into more conventional cloverleaf structures after adding adjacent nucleotides, northern blot experiments showed that the nonstandard tRNAs are actually expressed. Phylogenetic and comparative analyses showed that the mitochondrial genome of S. carpocapsae is more closely related to the genomes of A. suum and C. elegans than to that of Strongyloides stercoralis. This finding does not support the phylogeny based on nuclear small subunit ribosomal DNA sequences previously published. This discrepancy may result from differential reproductive strategies and/or differential selective pressure acting on nuclear and mitochondrial genes. The distinctive characteristics observed among mitochondrial genomes of Secernentea may have arisen to counteract the deleterious effects of Muller’s ratchet, which is probably enhanced by the reproductive strategies and selective pressures referred to above. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Rafael Zardoya]  相似文献   

18.
Broad-scale differences in crossover rate across the genome have been characterized in most genomes studied. Fine-scale differences, however, have only been examined in a few taxa, such as Arabidopsis, yeast, humans, and mice. No prior studies have directly looked for fine-scale recombination rate heterogeneity in Drosophila. We produced 370 Drosophila pseudoobscura containing a crossover event within the 2-megabase (MB) region between the genes yellow and white. We then examined 19 intervals within this region and determined where the crossovers occurred. We found that recombination events occur nonrandomly on a small scale and that mild “hotspots“ of a few kilobases exist in Drosophila. Among the regions studied, recombination rates varied from 1.4 to 52 cM/MB. We also observed a trend toward high codon bias in regions of high recombination. Finally, we identified a significantly positive correlation between recombination rate and simple repeats, as well as the motif CACAC. These sequence features may contribute to broad-scale variation in crossover rate and, thus, shed light on features associated with crossover rate heterogeneity at a genome-wide scale. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Dmitri Petrov]  相似文献   

19.
Members of cytochrome P450 subfamily 1A (CYP1As) are involved in detoxification and bioactivation of common environmental pollutants. Understanding the functional evolution of these genes is essential to predicting and interpreting species differences in sensitivity to toxicity caused by such chemicals. The CYP1A gene subfamily comprises a single ancestral representative in most fish species and two paralogs in higher vertebrates, including birds and mammals. Phylogenetic analysis of complete coding sequences suggests that mammalian and bird paralog pairs (CYP1A1/2 and CYP1A4/5, respectively) are the result of independent gene duplication events. However, comparison of vertebrate genome sequences revealed that CYP1A genes lie within an extended region of conserved fine-scale synteny, suggesting that avian and mammalian CYP1A paralogs share a common genomic history. Algorithms designed to detect recombination between nucleotide sequences indicate that gene conversion has homogenized most of the length of the chicken CYP1A genes, as well as the 5′ end of mammalian CYP1As. Together, these data indicate that avian and mammalian CYP1A paralog pairs resulted from a single gene duplication event and that extensive gene conversion is responsible for the exceptionally high degree of sequence similarity between CYP1A4 and CYP1A5. Elevated nonsynonymous/synonymous substitution ratios within a putatively unconverted stretch of ∼250 bp suggests that positive selection may have reduced the effective rate of gene conversion in this region, which contains two substrate recognition sites. This work significantly alters our understanding of functional evolution in the CYP1A subfamily, suggesting that gene conversion and positive selection have been the dominant processes of sequence evolution. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

20.
piggyBac is a short inverted-repeat-type DNA transposable element originally isolated from the genome of the moth Trichoplusia ni. It is currently the gene vector of choice for the transformation of various insect species. A few sequences with similarity to piggyBac have previously been identified from organisms such as humans ( Looper), the pufferfish Takifugu rubripes (Pigibaku), Xenopus (Tx), Daphnia (Pokey), and the Oriental fruit fly Bactrocera dorsalis. We have now identified 50 piggyBac-like sequences from publicly available genome sequences and expressed sequence tags (ESTs). This survey allows the first comparative examination of the distinctive piggyBac transposase, suggesting that it might contain a highly divergent DDD domain, comparable to the widespread DDE domain found in many DNA transposases and retroviral integrases which consists of two absolutely conserved aspartic acids separated by about 70 amino acids with a highly conserved glutamic acid about 35 amino acids further away. Many piggyBac-like sequences were found in the genomes of a phylogenetically diverse range of organisms including fungi, plants, insects, crustaceans, urochordates, amphibians, fishes and mammals. Also, several instances of "domestication" of the piggyBac transposase sequence by the host genome for cellular functions were identified. Novel members of the piggyBac family may be useful in genetic engineering of many organisms.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号