首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data on gene expression in the development of the root in Arabidopsis thaliana were used to test for expression profile differences among multi-gene families and to examine the extent to which expression differences accompanied coding sequences divergence within families. Significant differences among families were observed on two principal axes, accounting for over 80% of the variance in the expression data. The number of synonymous nucleotide substitutions per synonymous site (dS) and the number of nonsynonymous nucleotide substitutions per nonsynonymous site (dN) were estimated between the members of two-member families (N=428) and between phylogenetically independent sister pairs (N=190) of sequences within larger families. Ribosomal proteins and a few other proteins were exceptional in showing highly divergent expression patterns in spite of very low levels of amino acid sequence divergence, as indicated by the low dN relative to dS. However, the majority of gene duplicates showed relatively high levels of amino acid sequence divergence without appreciable change in expression pattern in the cell types analyzed. Reviewing Editor:Dr. Manyuan Long  相似文献   

2.
Arabidopsis thaliana is an important model system for the study of plant biology. We have analyzed the complete genome sequences of Arabidopsis by using a newly developed windowless method for the GC content computation, the cumulative GC profile. It is shown that the Arabidopsis genome is organized into a mosaic structure of isochores. All the centromeric regions are located in GC-rich isochores, called centromere-isochores, which are characterized by a high GC content but low gene and T-DNA insertion densities. This characteristic distinguishes centromere-isochores from the other class of GC-rich isochores, called GC-isochores, which have high gene and T-DNA insertion densities. Consequently, 15 isochores have been identified, i.e., 7 AT-isochores, 3 GC-isochores, and 5 centromere-isochores. The genes in centromere-isochores, which have the highest GC content, have much shorter intron lengths and lower intron numbers, compared to those of the other two types. There is also considerable difference in the numbers and lengths of transposable elements (TEs) between AT and GC-isochores, i.e., the TE number (length) of AT-isochores is 6.3 (7.3) times that of GC-isochores. It is generally believed that TEs are accumulated in the regions surrounding the centromeres. However, within these TE-rich regions, there are regions of extremely low TE numbers (TE deserts), which correspond to the positions of centromere-isochores. In addition, a heterochromatic knob is located at the boundary of an AT-isochore. Furthermore, we show that the differences in GC content among isochores are mainly due to the GC content variation of introns, the third codon positions and intergenic regions.[Reviewing Editor: Martin Kreitman]  相似文献   

3.
To facilitate future investigations of glyphosate-resistance mechanisms, three approaches were taken to obtain Arabidopsis thaliana variants that differed in glyphosate response. Recurrent selection by spraying with sub-lethal glyphosate concentrations was performed with Columbia-0 seedlings. After seven cycles of treatment, no resistance was found. A population of 800,000 ethylmethanesulfonate-mutagenized M(2) seedlings was screened on agar containing 0.2mM glyphosate, a lower concentration than that previously used in other studies, and no resistant mutants were recovered. Seventy-two Arabidopsis ecotypes were screened with glyphosate and a range of responses was observed. In a follow-up experiment on a subset of these ecotypes, reduction of seed yield by 11.5 g/ha glyphosate (about 1% the typical field use rate) ranged among ecotypes from 0% to >90%, relative to untreated controls. However, even the least sensitive ecotypes were severely injured by relatively low glyphosate rates. Overall, attempts to select Arabidopsis seedlings that were significantly glyphosate-resistant were unsuccessful and consistent with previous reports. Arabidopsis ecotypes identified with differential glyphosate responses could be used for further studies though the inherently high sensitivity of Arabidopsis to glyphosate could limit their utility in studying glyphosate-resistance mechanisms.  相似文献   

4.
5.
Summary. In this work, we analyzed the developmental anatomy of cotyledons and leaves in the has mutant of Arabidopsis thaliana. It is a recessive T-DNA insertion mutation that causes changes in the size, shape, and tissue organization of the cotyledons and leaves of has plants. Analysis of has cotyledons revealed a prominent decrease in the cell number and an increase in the area of cotyledon cells and intercellular spaces of has plants. At early stages of development, has leaves are fingerlike structures, but later they develop small, lobed blades with rare trichomes. An important characteristic of the mutant leaf anatomy is the absence of mesophyll tissue differentiation. In addition, both cotyledons and leaves display a disrupted pattern of vascular bundles. Furthermore, mutant plants are defective in root and shoot morphology, indicating that the has mutation affects a number of aspects in plant development. Correspondence and reprints: Institute of Botany and “Jevremovac” Botanical Garden, Faculty of Biology, Belgrade University, Takovska 43, 11 000 Belgrade, Serbia.  相似文献   

6.
The pattern of spontaneous mutation can be inferred from the pattern of substitution in pseudogenes, which are known to be under very weak or no selective constraint. We modified an existing method (Gojobori T, et al., J Mol Evol 18:360, 1982) to infer the pattern of mutation in bacteria by using 569 pseudogenes from Mycobacterium leprae. In Gojobori et al.’s method, the pattern is inferred by using comparisons involving a pseudogene, a conspecific functional paralog, and an outgroup functional ortholog. Because pseudogenes in M. leprae are unitary, we replaced the missing paralogs by functional orthologs from M. tuberculosis. Functional orthologs from Streptomyces coelicolor served as outgroups. We compiled a database consisting of 69,378 inferred mutations. Transitional mutations were found to constitute more than 56% of all mutations. The transitional bias was mainly due to C→T and G→A, which were also the most frequent mutations on the leading strand and the only ones that were significantly more frequent than the random expectation. The least frequent mutations on the leading strand were A→T and T→A, each with a relative frequency of less than 3%. The mutation pattern was found to differ between the leading and the lagging strands. This asymmetry is thought to be the cause for the typical chirochoric structure of bacterial genomes. The physical distance of the pseudogene from the origin of replication (ori) was found to have almost no effect on the pattern of mutation. A surprising similarity was found between the mutation pattern in M. leprae and previously inferred patterns for such distant taxa as human and Drosophila. The mutation pattern on the leading strand of M. leprae was also found to share some common features with the pattern inferred for the heavy strand of the human mitochondrial genome. These findings indicate that taxon-specific factors may only play secondary roles in determining patterns of mutation. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor:Dr. Dmitri Petrov]  相似文献   

7.
8.
In vivo visualization of filamentous actin in all cells of Arabidopsis thaliana seedlings is essential for understanding the numerous roles of the actin cytoskeleton in diverse processes of cell differentiation. A previously introduced reporter construct based on the actin-binding domain of mouse talin proved to be useful for unravelling some of these aspects in cell layers close to the organ surface. However, cells more deeply embedded, especially stelar cells active in polar transport of auxin, show either diffuse or no fluorescence at all due to the lack of expression of the fusion protein. The same problem is encountered in the root meristem. Recently introduced actin reporters based on fusions between A. thaliana fimbrin 1 and GFP gave brilliant results in organs from the root differentiation zone upwards to the leaves, however failed to depict the filamentous actin cytoskeleton in the transition zone of the root, in the apical meristem and the root cap. To overcome these problems, we have prepared new transgenic lines for the visualization of F-actin in vivo. We report here that a construct consisting of GFP fused to the C-terminal half of A. thaliana fimbrin 1 reveals dynamic arrays of F-actin in all cells of stably transformed A. thaliana seedlings.  相似文献   

9.
10.
Summary The gene family encoding the Arabidopsis thaliana translation elongation factor (EF-1) was analysed. This family contains four genes (A1-A4) organized in a similar manner in different varieties of Arabidopsis. Based upon both their physical separation and a comparison of their sequences, it is suggested that the A4 gene and the A1, A2, and A3 genes constitute two distinct subfamilies within the genome. By introducing chimaeric gene constructs into Arabidopsis cells, we showed that the Al gene promoter mediates a transient expression about twofold higher than that obtained using the CaMV 35 S promoter. This expression depends on a 348 by DNA fragment extending from –982 to –634 by upstream of the initiation codon. This element contains a characteristic telomeric sequence (AACCCTAA) which is also found in the promoters of the A2 and A4 genes as well as in the promoters of the Drosophila EF-1 F1 gene and of several highly expressed plant genes.  相似文献   

11.
A male-sterile mutant of Arabidopsis thaliana was isolated by T-DNA tagging screening. Using transmission electron microscopy analysis, we revealed that the microspores of this mutant did not have normal thick primexine on the microspore at the tetrad stage. Instead, a moderately electron-dense layer formed around the microspores. Although microspores without normal primexine failed to form a proper reticulate exine pattern at later stages, sporopollenin was deposited and an exine-like hackly structure was observed on the microspores during the microspore stage. Thus, this mutant was named hackly microspore (hkm). It is speculated that the moderately electron-dense layer was primexine, which partially played its role in sporopollenin deposition onto the microspore. Cytological analysis revealed that the tapetum of the hkm mutant was significantly vacuolated, and that vacuolated tapetal cells crushed the microspores, resulting in the absence of pollen grains within the anther at anthesis. Single nucleotide polymorphism analysis demonstrated that the hkm mutation exists within the MS1 gene, which has been reportedly expressed within the tapetum. Our results suggest that the critical process of primexine formation is under sporophytic control .  相似文献   

12.
The time of flowering is regulated by various environmental cues, and in some plant species, it is known to be affected by abiotic stresses. We investigated the effect of nutrient stress caused by an abrupt reduction of mineral nutrition on flowering of Arabidopsis thaliana. We used a hydroponic culture system that enabled us to precisely control nutrient levels. When plants were grown in full-strength nutrient solution for several weeks and then transferred to a diluted medium, the time from sowing to bud appearance was significantly shortened. This acceleration of flowering was more pronounced in short days than in long days, and stronger in the ecotype Landsberg erecta than in Columbia and San Feliu-2. The response was also affected by the age of plants at the beginning of nutrient stress and by the concentration of the diluted medium: earlier treatment and more diluted solutions strengthened the effect. Flowering was affected by nutrient stress, not by a change in the osmotic potential of the medium: addition of mannitol to a 1000-fold diluted solution had no effect on the promotion of flowering. When 3-week-old Landsberg erecta plants were exposed to 1000-fold diluted nutrient solution in an 8-h day length, flower bud appearance was strongly and reproducibly advanced by 10.8–12.8 d compared with control plants (which developed buds 41.1–46.2 d after sowing). This treatment can serve as an optimized protocol for future studies concerning physiological, molecular and ecological aspects of flower induction by nutrient stress in A. thaliana.  相似文献   

13.
14.
Phosphoinositide-specific phospholipase Cs (PI-PLCs) are important enzymes in eukaryotes, which catalyze the hydrolysis of phosphatidylinositol 4,5-bisphosphate into the two second messengers inositol 1,4,5-trisphosphate and diacylglycerol. The Arabidopsis genome contains nine putative PI-PLC genes. AtPLC4, an abiotic stress induced gene, has been reported to encode an active PI-PLC isoform. However, the exact roles of putative AtPLC4 in plant remain to be elicited. The first 108 amino acid residues of the N-terminal of AtPLC4, referred to as AtPLC4 N, was expressed as a recombinant protein in Escherichia coli and used as antigen in generating antibody. Purified recombinant proteins including AtPLC1 to AtPLC5, AtPLC8, AtPLC9 and AtPLC4 N were transferred onto the same blot to test specificity of the prepared antibody. Western blot result shows that only AtPLC4 and AtPLC4 N can be recognized by the antibody. The antibody recognized a protein of approximately 68kDa in the plasma membrane fraction and cytosolic fractions prepared from Arabidopsis thaliana plants. This corresponds very well with the calculated molecular weight of AtPLC4. The results suggest that AtPLC4 may encode a plasma membrane-associated protein.  相似文献   

15.
Gene targeting in Arabidopsis thaliana.   总被引:8,自引:0,他引:8  
Summary Gene targeting of a chromosomally integrated transgene in Arabidopsis thaliana is reported. A chimeric gene consisting of the promoter of the 35S RNA of CaMV, the polyadenylation signal of the octopine synthase gene and the coding region of the bacterial hygromycin phosphotransferase gene (hpt), which was rendered non-functional by deletion of 19 bp, was introduced into the genome of A. thaliana using Agrobacterium-mediated gene transfer. A total of 3.46 x 108 protoplasts isolated from 17 independent transgenic Arabidopsis lines harbouring the defective chimeric hpt gene were transformed via direct gene transfer using various DNA forms containing only the intact coding region of the hpt gene. Out of 150 hygromycin-resistant colonies appearing in the course of these experiments, four were the result of targeted recombination of the incoming DNA with the defective chromosomal locus as revealed by PCR and Southern blot analysis. Comparison with the number of transformants obtained when an hpt gene controlled by a promoter and terminator from the nopaline synthase gene was employed results in a maximal ratio of homologous to non-homologous transformation in A. thaliana of 1 x 10–4.  相似文献   

16.
The major outer membrane protein (MOMP) of Chlamydia trachomatis is a highly antigenic and hydrophobic transmembrane protein. Our attempts to express the full-length protein in a soluble form in Escherichia coli and in transgenic plants failed. A chimeric gene construct of C. trachomatis serovar E MOMP was designed in order to increase solubility of the MOMP protein but with retained antigenicity. The designed construct was successfully expressed in E. coli, in Arabidopsis thaliana, and in Daucus carota. The chimeric MOMP expressed in and purified from E. coli was used as antigen for production of antibodies in rabbits. The anti-chimeric MOMP antibodies recognized the corresponding protein in both E. coli and in transgenic plants, as well as in inactivated C. trachomatis elementary bodies. Transgenic Arabidopsis and carrots were characterized for the number of MOMP chimeric genetic inserts and for protein expression. Stable integration of the transgene and the corresponding protein expression were demonstrated in Arabidopsis plants over at least six generations. Transgenic carrots showed a high level of expression of the chimeric MOMP – up to 3% of TSP.  相似文献   

17.
18.
Seed is a developmental stage that is highly protective against external stresses in the plant life cycle. In this study, we analyzed toxicity of essential (Cu2+ and Zn2+) and non-essential heavy metals (Hg2+, Pb2+ and Cd2+) on seed germination and seedling growth in the model species Arabidopsis. Our results show that seedling growth is more sensitive to heavy metals (Hg2+, Pb2+, Cu2+ and Zn2+) in comparison to seed germination, while Cd2+ is the exception that inhibited both of these processes at similar concentrations. To examine if toxicity of heavy metals is altered developmentally during germination, we incubated seeds with Hg2+ or Cd2+ only for a restricted period during germination. Hg2+ displayed relatively strong toxicity at period II (12–24 h after imbibition), while Cd2+ was more effective to inhibit germination at period I (0–12 h after imbibition) rather than at period II. The observed differences are likely to be due in part to selective uptake of different ions by the intact seed, because isolated embryos (without seed coat and endosperm) are more sensitive to both Hg2+ and Cd2+ at period I. We assessed interactive toxicity between heavy metals and non-toxic cations, and found that Ca2+ was able to partially restore the inhibition of seedling growth by Pb2+ and Zn2+.  相似文献   

19.
Summary. In leaf mesophyll cells of transgenic Arabidopsis thaliana plants expressing GFP in the chloroplast, stromules (stroma-filled tubules) with a length of up to 20 μm and a diameter of about 400–600 nm are observed in cells with spaces between the chloroplasts. They appear extremely dynamic, occasionally branched or polymorphic. In order to investigate the effect of temperature on chloroplasts, we have constructed a special temperature-controlled chamber for usage with a light microscope (LM-TCC). This LM-TCC enables presetting of the temperature for investigation directly at the microscope stage with an accuracy of ±0.1 °C in a temperature range of 0 °C to +60 °C. With the LM-TCC a temperature-dependent appearance of chloroplast protrusions has been found. These structures have a considerably smaller length-to-diameter ratio than typical stromules and reach a length of 3–5 μm. At 5–15 °C (low temperatures), almost no chloroplast protrusions are observed, but they appear with increasing temperatures. At 35–45 °C (high temperatures), numerous chloroplast protrusions with a beaklike appearance extend from a single chloroplast. Interaction of stromules with other organelles has also been investigated by transmission electron microscopy. At 20 °C, transverse sections of stromules are frequently observed with a diameter of about 450 nm. A close membrane-to-membrane contact of stromules with the nucleus and mitochondria has been visualised. Golgi stacks and microbodies are found in the spatial vicinity of stromules. At 5 °C, virtually no chloroplast protrusions or stromules are observed. At 35 °C, chloroplast protrusions are present as broader thylakoid-free stroma-filled areas, resulting in an irregular chloroplast appearance. Correspondence and reprints: Department of Physiology and Cell Physiology of Alpine Plants, Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria.  相似文献   

20.
Germ-line transformation of Arabidopsis lasiocarpa   总被引:5,自引:0,他引:5  
In planta transformation methods have opened up the possibility of transforming plant species for which no regeneration protocols currently exist. In this study, the suitability of the germ-line transformation method developed for Arabidopsis thaliana was examined for four taxa in the Brassicaceae that have not been previously transformed: Arabidopsis griffithiana, Arabidopsis lasiocarpa, Arabidopsis petraea and Capsella bursa-pastoris. Numerous transformants were obtained for A. lasiocarpa. Transformation of A. lasiocarpa was confirmed at the phenotypic and molecular levels for stably transformed lines and for backcrossed lines segregating the T-DNA insert. Parameters affecting transformation efficiency of A. lasiocarpa were also explored. As with A. thaliana, sucrose and surfactant in the inoculation medium are required for high levels of transformation, although the suitable concentrations of these are different for A. lasiocarpa. Other components present in earlier versions of the inoculation medium had little effect on transformation efficiency. Vacuum infiltration (rather than simple floral dipping) led to higher rates of transformation and did not seriously affect seed production in A. lasiocarpa. Identification of species susceptible to germ-line transformation will aid in determining the factors important for applying this technology to more recalcitrant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号