首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ezrin, a member of the ezrin/radixin/moesin (ERM) family, localizes to microvilli of epithelia in vivo, where it bridges actin filaments and plasma membrane proteins. Here, we demonstrate two specific morphogenetic roles of ezrin in the retinal pigment epithelium (RPE), i.e., the formation of very long apical microvilli and of elaborate basal infoldings typical of these cells, and characterize the role of ezrin in these processes using antisense and transfection approaches. In the adult rat RPE, only ezrin (no moesin or radixin) was detected at high levels by immunofluorescence and immunoelectron microscopy at microvilli and basal infoldings. At the time when these morphological differentiations develop, in the first two weeks after birth, ezrin levels increased fourfold to adult levels. Addition of ezrin antisense oligonucleotides to primary cultures of rat RPE drastically decreased both apical microvilli and basal infoldings. Transfection of ezrin cDNA into the RPE-J cell line, which has only trace amounts of ezrin and moesin, sparse and stubby apical microvilli, and no basal infoldings, induced maturation of microvilli and the formation of basal infoldings without changing moesin expression levels. Taken together, the results indicate that ezrin is a major determinant in the maturation of surface differentiations of RPE independently of other ERM family members.  相似文献   

2.
Liver regeneration and cholestasis are associated with adaptive changes in expression of gap and tight junctions through signal transduction. The roles of stress responsitive MAP-kinase, p38 MAP-kinase, in the signaling pathway for gap junction protein, Cx32, and tight junction protein, claudin-1, were examined in rat liver in vivo and in vitro, including regeneration following partial hepatectomy and cholestasis after common bile duct ligation. Changes in the expression and function of Cx32 and claudin-1 in hepatocytes in vivo were studied using the p38 MAP-kinase inhibitor SB203580. Following partial hepatectomy and common bile duct ligation, down-regulation of Cx32 protein was inhibited by SB203580 treatment. Up-regulation of claudin-1 protein was enhanced by SB203580 treatment after partial hepatectomy but not common bile duct ligation. However, no change of the Ki-67 labeling index (which is a marker for cell proliferation) in the livers treated with SB203580, was observed compared to that without SB203580 treatment. In primary cultures of rat hepatocytes, however, treatment with a p38 MAP-kinase activator, anisomycin, decreased Cx32 and claudin-1 protein levels. p38 MAP-kinase may be an important signaling pathway for regulation of gap and tight junctions in hepatocytes. Changes of gap and tight junctions during liver regeneration and cholestasis are shown to be in part controlled via the p38 MAP-kinase signaling pathway and are independent of cell growth.  相似文献   

3.
《The Journal of cell biology》1994,125(6):1371-1384
To examine the functions of ERM family members (ezrin, radixin, and moesin), mouse epithelial cells (MTD-1A cells) and thymoma cells (L5178Y), which coexpress all of them, were cultured in the presence of antisense phosphorothioate oligonucleotides (PONs) complementary to ERM sequences. Immunoblotting revealed that the antisense PONs selectively suppressed the expression of each member. Immunofluorescence microscopy of these ezrin, radixin, or moesin "single-suppressed" MTD-1A cells revealed that the ERM family members are colocalized at cell-cell adhesion sites, microvilli, and cleavage furrows, where actin filaments are densely associated with plasma membranes. The ezrin/radixin/moesin antisense PONs mixture induced the destruction of both cell-cell and cell-substrate adhesion, as well as the disappearance of microvilli. Ezrin or radixin antisense PONs individually affected the initial step of the formation of both cell-cell and cell-substrate adhesion, but did not affect the microvilli structures. In sharp contrast, moesin antisense PONs did not singly affect cell-cell and cell-substrate adhesion, whereas it partly affected the microvilli structures. These data indicate that ezrin and radixin can be functionally substituted, that moesin has some synergetic functional interaction with ezrin and radixin, and that these ERM family members are involved in cell-cell and cell-substrate adhesion, as well as microvilli formation.  相似文献   

4.
Liver regeneration and cholestasis are associated with adaptive changes in expression of gap and tight junctions through signal transduction. The roles of stress responsitive MAP-kinase, p38 MAP-kinase, in the signaling pathway for gap junction protein, Cx32, and tight junction protein, claudin-1, were examined in rat liver in vivoand in vitro, including regeneration following partial hepatectomy and cholestasis after common bile duct ligation. Changes in the expression and function of Cx32 and claudin-1 in hepatocytes in vivowere studied using the p38 MAP-kinase inhibitor SB203580. Following partial hepatectomy and common bile duct ligation, down-regulation of Cx32 protein was inhibited by SB203580 treatment. Up-regulation of claudin-1 protein was enhanced by SB203580 treatment after partial hepatectomy but not common bile duct ligation. However, no change of the Ki-67 labeling index (which is a marker for cell proliferation) in the livers treated with SB203580, was observed compared to that without SB203580 treatment. In primary cultures of rat hepatocytes, however, treatment with a p38 MAP-kinase activator, anisomycin, decreased Cx32 and claudin-1 protein levels. p38 MAP-kinase may be an important signaling pathway for regulation of gap and tight junctions in hepatocytes. Changes of gap and tight junctions during liver regeneration and cholestasis are shown to be in part controlled via the p38 MAP-kinase signaling pathway and are independent of cell growth.  相似文献   

5.
Ou-Yang M  Liu HR  Zhang Y  Zhu X  Yang Q 《Biochimie》2011,93(5):954-961
Three closely related proteins, ezrin, radixin, and moesin (ERM), which primarily act as a linker between the plasma membrane and the cytoskeleton, are involved in many cellular functions, including regulation of actin cytoskeleton, control of cell shape, adhesion and motility, and modulation of signaling pathways. Although, ezrin is now recognized as a key component in tumor metastasis, the functional role of the radixin and moesin in tumor metastasis has not been established. In the present study, we chose highly metastatic human gastric carcinoma SGC-7901 cells, which express all of the ERM proteins as a model to examine the functional roles of these proteins in tumor metastasis. Ezrin, radixin or moesin stable knockdown SGC-7901 cell lines were established using siRNA methodology. In vitro cell migration and invasion studies showed that either ezrin, radixin or moesin specific deficiency in the cells caused the substantial reduction of the cell migration and invasion. Western blotting and immunofluorescence analysis showed that the expression of E-cadherin was also significantly increased when any member of ERM proteins was downregulated. Our results indicated that these three ERM proteins play similar roles in the SGC-7901 cell metastatic potential and their roles of upregulating the expression of E-cadherin may be important in tumor progression.  相似文献   

6.
The ERM proteins (ezrin, radixin, and moesin) are a group of band 4.1-related proteins that are proposed to function as membrane/cytoskeletal linkers. Previous biochemical studies have implicated RhoA in regulating the association of ERM proteins with their membrane targets. However, the specific effect and mechanism of action of this regulation is unclear. We show that lysophosphatidic acid stimulation of serum-starved NIH3T3 cells resulted in relocalization of radixin into apical membrane/actin protrusions, which was blocked by inactivation of Rho by C3 transferase. An activated allele of RhoA, but not Rac or CDC42Hs, was sufficient to induce apical membrane/actin protrusions and localize radixin or moesin into these structures in both Rat1 and NIH3T3 cells. Lysophosphatidic acid treatment led to phosphorylation of radixin preceding its redistribution into apical protrusions. Significantly, cotransfection of RhoAV14 or C3 transferase with radixin and moesin revealed that RhoA activity is necessary and sufficient for their phosphorylation. These findings reveal a novel function of RhoA in reorganizing the apical actin cytoskeleton and suggest that this function may be mediated through phosphorylation of ERM proteins.  相似文献   

7.
The mechanisms underlying functional interactions between ERM (ezrin, radixin, moesin) proteins and Rho GTPases are not well understood. Here we characterized the interaction between ezrin and a novel Rho guanine nucleotide exchange factor, PLEKHG6. We show that ezrin recruits PLEKHG6 to the apical pole of epithelial cells where PLEKHG6 induces the formation of microvilli and membrane ruffles. These morphological changes are inhibited by dominant negative forms of RhoG. Indeed, we found that PLEKHG6 activates RhoG and to a much lesser extent Rac1. In addition we show that ezrin forms a complex with PLEKHG6 and RhoG. Furthermore, we detected a ternary complex between ezrin, PLEKHG6, and the RhoG effector ELMO. We demonstrate that PLEKHG6 and ezrin are both required in macropinocytosis. After down-regulation of either PLEKHG6 or ezrin expression, we observed an inhibition of dextran uptake in EGF-stimulated A431 cells. Altogether, our data indicate that ezrin allows the local activation of RhoG at the apical pole of epithelial cells by recruiting upstream and downstream regulators of RhoG and that both PLEKHG6 and ezrin are required for efficient macropinocytosis.  相似文献   

8.
Human endometrial epithelial cells (EECs) are nonadhesive for embryos throughout most of the menstrual cycle. During the so-called implantation window, the apical plasma membrane of EECs acquire adhesive properties by undergoing a series of morphological and biochemical changes. The human endometrial-derived epithelial cell line, RL95-2, serves as an in vitro model for receptive uterine epithelium because of its high adhesiveness for trophoblast-derived cells. In contrast, the HEC-1-A cell line, which displays poor adhesive properties for trophoblast cells, is considered to be less receptive. The ezrin, radixin, and moesin protein family members, which are present underneath the apical plasma membrane, potentially act to link the cytoskeleton and membrane proteins. In the present study, we have further investigated the adhesive features in these two unrelated endometrial-derived cell lines using an established in vitro model for embryonic adhesion. We have also analyzed the protein pattern and mRNA expression of ezrin and moesin in RL95-2 cells versus HEC-1-A cells. The results demonstrate that RL95-2 cells were indeed more receptive (81% blastocyst adhesion) compared with HEC-1-A cells (46% blastocyst adhesion). An intermediate adhesion rate was found in primary EECs cultured on extracellular matrix gel, thus allowing a partial polarization of these cells (67% blastocyst adhesion). Furthermore, we found that moesin was absent from RL95-2 cells. In contrast, ezrin is expressed in both cell lines, yet it is reduced in adherent RL95-2 cells. Data are in agreement with the hypothesis that uterine receptivity requires down-regulation or absence of moesin, which is a less-polarized actin cytoskeleton.  相似文献   

9.
SB203580 is a well-known inhibitor of p38 mitogen-activated protein kinase (MAPK). However, it can suppress cell proliferation in a p38 MAPK independent manner. The inhibitory mechanism remains unknown. Here, we showed that SB203580 induced autophagy in human hepatocellular carcinoma (HCC) cells. SB203580 increased GFP-LC3-positive cells with GFP-LC3 dots, induced accumulation of autophagosomes, and elevated the levels of microtubule-associated protein light chain 3 and Beclin 1. It stimulated the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and p53, but inhibited the phosphorylation of death-associated protein kinase (DAPK). Inhibition of AMPK, p53, or DAPK attenuated SB203580-induced autophagy. AMPK activation appeared to predate the DAPK signal. The activation of both AMPK and DAPK prompted the phosphorylation of p53 and enhanced Beclin 1 expression. Neither the downregulation of p38 MAPK by its siRNA or chemical inhibitor nor the upregulation of p38 MAPK by p38 MAPK DNA transfection affected B203580-induced autophagy. Collectively, the findings demonstrate a novel function of SB203580 to induce autophagy via activating AMPK and DAPK but independent of p38 MAPK. The induction of autophagy can thus account for the antiproliferative effect of SB203580 in HCC cells.  相似文献   

10.
The sodium hydrogen exchanger isoform 3 (NHE3) mediates absorption of sodium, bicarbonate and water from renal and intestinal lumina. This activity is fundamental to the maintenance of a physiological plasma pH and blood pressure. To perform this function NHE3 must be present in the apical membrane of renal tubular and intestinal epithelia. The molecular determinants of this localization have not been conclusively determined, although linkage to the apical actin cytoskeleton through ezrin has been proposed. We set out to evaluate this hypothesis. Functional studies of NHE3 activity were performed on ezrin knockdown mice (Vil2kd/kd) and NHE3 activity similar to wild-type animals detected. Interpretation of this finding was difficult as other ERM (ezrin/radixin/moesin) proteins were present. We therefore generated an epithelial cell culture model where ezrin was the only detectable ERM. After knockdown of ezrin expression with siRNA, radixin and moesin expression remained undetectable. Consistent with the animal ultrastructural data, cells lacking ezrin retained an epithelial phenotype but had shortened and thicker microvilli. NHE3 localization was identical to cells transfected with non-targeting siRNA. The attachment of NHE3 to the apical cytoskeleton was unaltered as assessed by fluorescent recovery after photobleaching (FRAP) and the solubility of NHE3 in Triton X-100. Baseline NHE3 activity was unaltered, however, cAMP-dependent inhibition of NHE3 was largely lost even though NHE3 was phosphorylated at serines 552 and 605. Thus, ezrin is not necessary for the apical localization, attachment to the cytoskeleton, baseline activity or cAMP induced phosphrylation of NHE3, but instead is required for cAMP mediated inhibition.  相似文献   

11.
Kalmes A  Deou J  Clowes AW  Daum G 《FEBS letters》1999,444(1):71-74
SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imi dazole) is widely used as a specific inhibitor of p38 mitogen-activated protein kinase (MAPK). Here, we report that SB203580 activates the serine/threonine kinase Raf-1 in quiescent smooth muscle cells in a dose-dependent fashion. The concentrations of SB203580 required lie above those necessary to inhibit p38 MAPK and we were unable to detect basal levels of active p38 MAPK. SB203580 does not directly activate Raf-1 in vitro, and fails to activate Ras, MEK, and ERK in intact cells. In vitro, however, SB203580-stimulated Raf-1 activates MEK1 in a coupled assay. We conclude that activation of Raf-1 by SB203580 is not mediated by an inhibition of p38 MAPK, is Ras-independent, and is uncoupled from MEK/ERK signaling.  相似文献   

12.
Ezrin, radixin, and moesin (ERM) regulate cortical morphogenesis and cell adhesion by connecting membrane adhesion receptors to the actin-based cytoskeleton. We have studied the interaction of moesin and ezrin with the vascular cell adhesion molecule (VCAM)-1 during leukocyte adhesion and transendothelial migration (TEM). VCAM-1 interacted directly with moesin and ezrin in vitro, and all of these molecules colocalized at the apical surface of endothelium. Dynamic assessment of this interaction in living cells showed that both VCAM-1 and moesin were involved in lymphoblast adhesion and spreading on the endothelium, whereas only moesin participated in TEM, following the same distribution pattern as ICAM-1. During leukocyte adhesion in static or under flow conditions, VCAM-1, ICAM-1, and activated moesin and ezrin clustered in an endothelial actin-rich docking structure that anchored and partially embraced the leukocyte containing other cytoskeletal components such as alpha-actinin, vinculin, and VASP. Phosphoinositides and the Rho/p160 ROCK pathway, which participate in the activation of ERM proteins, were involved in the generation and maintenance of the anchoring structure. These results provide the first characterization of an endothelial docking structure that plays a key role in the firm adhesion of leukocytes to the endothelium during inflammation.  相似文献   

13.
The ezrin/radixin/moesin (ERM) proteins are involved in actin filament/plasma membrane interaction that is regulated by Rho. We examined whether ERM proteins are directly phosphorylated by Rho- associated kinase (Rho-kinase), a direct target of Rho. Recombinant full-length and COOH-terminal half radixin were incubated with constitutively active catalytic domain of Rho-kinase, and ~30 and ~100% of these molecules, respectively, were phosphorylated mainly at the COOH-terminal threonine (T564). Next, to detect Rho-kinase–dependent phosphorylation of ERM proteins in vivo, we raised a mAb that recognized the T564-phosphorylated radixin as well as ezrin and moesin phosphorylated at the corresponding threonine residue (T567 and T558, respectively). Immunoblotting of serum-starved Swiss 3T3 cells with this mAb revealed that after LPA stimulation ERM proteins were rapidly phosphorylated at T567 (ezrin), T564 (radixin), and T558 (moesin) in a Rho-dependent manner and then dephosphorylated within 2 min. Furthermore, the T564 phosphorylation of recombinant COOH-terminal half radixin did not affect its ability to bind to actin filaments in vitro but significantly suppressed its direct interaction with the NH2-terminal half of radixin. These observations indicate that the Rho-kinase–dependent phosphorylation interferes with the intramolecular and/ or intermolecular head-to-tail association of ERM proteins, which is an important mechanism of regulation of their activity as actin filament/plasma membrane cross-linkers.  相似文献   

14.
The preimplantation development of the mouse embryo leads to the divergence of the first two cell lineages, the inner cell mass and the trophectoderm. The formation of a microvillus pole during compaction at the eight-cell stage and its asymmetric inheritance during mitosis are key events in the emergence of these two cell populations. Ezrin, a member of the ERM protein family, seems to be involved in the formation and stabilization of this apical microvillus pole. To further characterize its function in early development, we mutated the key residue T567, which was reported to be essential for regulation of ezrin function through phosphorylation. Here, we show that expression of ezrin mutants in which the COOH-terminal threonine T567 was replaced by an aspartate (to mimic a phosphorylated residue; T567D) or by an alanine (to avoid phosphorylation; T567A) interferes with E-cadherin function and disrupts the first morphogenetic events of development: compaction and cavitation. The active mutant ezrin-T567D induces the formation of numerous and abnormally long microvilli at the surface of blastomeres. Moreover, it localizes all around the cell cortex and inhibits cell-cell adhesion and cell polarization at the eight-cell stage. During the following stages, only half of the embryos are able to compact and finally to cavitate. In those embryos, the amount of ezrin-T567D decreases in the basolateral areas, while the proportion of adherens junctions increases. The reverse inactive mutant ezrin-T567A is mainly cytoplasmic and does not perturb compaction at the eight-cell stage. However, at the 16-cell stage, it relocalizes at the basolateral cortex, leading to a strong decrease in the surface of adherens junctions, and finally, embryos abort development. Our results show that ezrin is directly involved in the formation of microvilli in the early mouse embryo. Moreover, they indicate that maintenance of ezrin in basolateral areas prevents microvilli breakdown and inhibits the formation of normal cell-cell contacts mediated by E-cadherin, thereby impairing blastomeres polarization and morphogenesis of the blastocyst.  相似文献   

15.
Ezrin/radixin/moesin (ERM) family members provide a regulated link between the cortical actin cytoskeleton and the plasma membrane to govern membrane structure and organization. Here, we report the crystal structure of intact insect moesin, revealing that its essential yet previously uncharacterized alpha-helical domain forms extensive interactions with conserved surfaces of the band four-point-one/ezrin/radixin/moesin (FERM) domain. These interdomain contacts provide a functional explanation for how PIP(2) binding and tyrosine phosphorylation of ezrin lead to activation, and provide an understanding of previously enigmatic loss-of-function missense mutations in the tumor suppressor merlin. Sequence conservation and biochemical results indicate that this structure represents a complete model for the closed state of all ERM-merlin proteins, wherein the central alpha-helical domain is an active participant in an extensive set of inhibitory interactions that can be unmasked, in a rheostat-like manner, by coincident regulatory factors that help determine cell polarity and membrane structure.  相似文献   

16.
Neisseria gonorrhoeae (GC) establishes infection in women from the cervix, lined with heterogeneous epithelial cells from non-polarized stratified at the ectocervix to polarized columnar at the endocervix. We have previously shown that GC differentially colonize and transmigrate across the ecto and endocervical epithelia. However, whether and how GC invade into heterogeneous cervical epithelial cells is unknown. This study examined GC entry of epithelial cells with various properties, using human cervical tissue explant and non-polarized/polarized epithelial cell line models. While adhering to non-polarized and polarized epithelial cells at similar levels, GC invaded into non-polarized more efficiently than polarized epithelial cells. The enhanced GC invasion in non-polarized epithelial cells was associated with increased ezrin phosphorylation, F-actin and ezrin recruitment to GC adherent sites, and the elongation of GC-associated microvilli. Inhibition of ezrin phosphorylation inhibited F-actin and ezrin recruitment and microvilli elongation, leading to a reduction in GC invasion. The reduced GC invasion in polarized epithelial cells was associated with non-muscle myosin II-mediated F-actin disassembly and microvilli denudation at GC adherence sites. Surprisingly, intraepithelial GC were only detected inside epithelial cells shedding from the cervix by immunofluorescence microscopy, but not significantly in the ectocervical and the endocervical regions. We observed similar ezrin and F-actin recruitment in exfoliated cervical epithelial cells but not in those that remained in the ectocervical epithelium, as the luminal layer of ectocervical epithelial cells expressed ten-fold lower levels of ezrin than those beneath. However, GC inoculation induced F-actin reduction and myosin recruitment in the endocervix, similar to what was seen in polarized epithelial cells. Collectively, our results suggest that while GC invade non-polarized epithelial cells through ezrin-driven microvilli elongation, the apical polarization of ezrin and F-actin inhibits GC entry into polarized epithelial cells.  相似文献   

17.
Endothelial cell (EC) barrier dysfunction induced by inflammatory agonists is a frequent pathophysiologic event in multiple diseases. The platelet-derived phospholipid sphingosine-1 phosphate (S1P) reverses this dysfunction by potently enhancing the EC barrier through a process involving Rac GTPase-dependent cortical actin rearrangement as an integral step. In this study we explored the role of the ezrin, radixin, and moesin (ERM) family of actin-binding linker protein in modulating S1P-induced human pulmonary EC barrier enhancement. S1P induces ERM translocation to the EC periphery and promotes ERM phosphorylation on a critical threonine residue (Ezrin-567, Radixin-564, Moesin-558). This phosphorylation is dependent on activation of PKC isoforms and Rac1. The majority of ERM phosphorylation on these critical threonine residues after S1P occurs in moesin and ezrin. Baseline radixin phosphorylation is higher than in the other two ERM proteins but does not increase after S1P. S1P-induced moesin and ezrin threonine phosphorylation is not mediated by the barrier enhancing receptor S1PR1 because siRNA downregulation of S1PR1 fails to inhibit these phosphorylation events, while stimulation of EC with the S1PR1-specific agonist SEW2871 fails to induce these phosphorylation events. Silencing of either all ERM proteins or radixin alone (but not moesin alone) reduced S1P-induced Rac1 activation and phosphorylation of the downstream Rac1 effector PAK1. Radixin siRNA alone, or combined siRNA for all three ERM proteins, dramatically attenuates S1P-induced EC barrier enhancement (measured by transendothelial electrical resistance (TER), peripheral accumulation of di-phospho-MLC, and cortical cytoskeletal rearrangement. In contrast, moesin depletion has the opposite effects on these parameters. Ezrin silencing partially attenuates S1P-induced EC barrier enhancement and cytoskeletal changes. Thus, despite structural similarities and reported functional redundancy, the ERM proteins differentially modulate S1P-induced alterations in lung EC cytoskeleton and permeability. These results suggest that ERM activation is an important regulatory event in EC barrier responses to S1P.  相似文献   

18.
We previously reported that expression of CD43/leukosialin induces cell rounding and microvillus formation via inhibition of cell adhesion. Here, we found that CD34, a cell surface sialomucin and marker for hematopoietic progenitor cells, also inhibited cell adhesion and induced cell rounding and microvillus formation. Forced expression of CD34-induced cell rounding, microvillus formation, and phosphorylation of ezrin/radixin/moesin (ERM) proteins in HEK293T cells, while inhibiting integrin-mediated cell re-attachment. Furthermore, CD34+ blood cells and KG-1 cells, which express endogenous CD34 on their surface, were spherical in shape, surrounded by microvilli, and non-adherent to substrata. In addition, cleavage of O-sialomucin augmented integrin-mediated cell adhesion of KG-1 cells. These results suggest the involvement of CD34 in the inhibition of integrin-mediated cell adhesion and formation of the cell surface structure. The inhibitory function of CD34 in cell adhesion may affect cell shape organization via phosphorylation of ERM proteins. Cellular structures such as the spherical shape and microvilli of CD34+ cells may also contribute to regulation of cell adhesion.  相似文献   

19.
ERM (ezrin, radixin, moesin) proteins act as linkers between the plasma membrane and the actin cytoskeleton. An interaction between their NH(2)- and COOH-terminal domains occurs intramolecularly in closed monomers and intermolecularly in head-to-tail oligomers. In vitro, phosphorylation of a conserved threonine residue (T567 in ezrin) in the COOH-terminal domain of ERM proteins disrupts this interaction. Here, we have analyzed the role of this phosphorylation event in vivo, by deriving stable clones producing wild-type, T567A, and T567D ezrin from LLC-PK1 epithelial cells. We found that T567A ezrin was poorly associated with the cytoskeleton, but was able to form oligomers. In contrast, T567D ezrin was associated with the cytoskeleton, but its distribution was shifted from oligomers to monomers at the membrane. Moreover, production of T567D ezrin induced the formation of lamellipodia, membrane ruffles, and tufts of microvilli. Both T567A and T567D ezrin affected the development of multicellular epithelial structures. Collectively, these results suggest that phosphorylation of ERM proteins on this conserved threonine regulates the transition from membrane-bound oligomers to active monomers, which induce and are part of actin-rich membrane projections.  相似文献   

20.
The ERM (ezrin/radixin/moesin) proteins provide a regulated linkage between membrane proteins and the cortical cytoskeleton and also participate in signal transduction pathways. Ezrin is localized to the apical membrane of parietal cells and couples the protein kinase A activation cascade to regulated HCl secretion in gastric parietal cells. Here, we show that the integrity of ezrin is essential for parietal cell activation and provide the first evidence that ezrin interacts with PALS1, an evolutionarily conserved PDZ and SH3 domain-containing protein. Our biochemical study verifies that ezrin binds to PALS1 via its N terminus and is co-localized with PALS1 to the apical membrane of gastric parietal cells. Furthermore, our study shows that PALS1 is essential for the apical localization of ezrin, as either suppression of PALS1 protein accumulation or deletion of the PALS1-binding domain of ezrin eliminated the apical localization of ezrin. Finally, our study demonstrates the essential role of ezrin-PALS1 interaction in the apical membrane remodeling associated with parietal cell secretion. Taken together, these results define a novel molecular mechanism linking ezrin to the conserved apical polarity complexes and their roles in polarized epithelial secretion of gastric parietal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号