首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacteriophage Mu is a double-stranded DNA phage that consists of an icosahedral head, a contractile tail with baseplate and six tail fibers, similar to the well-studied T-even phages. The baseplate of bacteriophage Mu, which recognizes and attaches to a host cell during infection, consists of at least eight different proteins. The baseplate protein, gp44, is essential for bacteriophage Mu assembly and the generation of viable phages. To investigate the role of gp44 in baseplate assembly and infection, the crystal structure of gp44 was determined at 2.1A resolution by the multiple isomorphous replacement method. The overall structure of the gp44 trimer is similar to that of the T4 phage gp27 trimer, which forms the central hub of the T4 baseplate, although these proteins share very little primary sequence homology. Based on these data, we confirm that gp44 exists as a trimer exhibiting a hub-like structure with an inner diameter of 25A through which DNA can presumably pass during infection. The molecular surface of the gp44 trimer that abuts the host cell membrane is positively charged, and it is likely that Mu phage interacts with the membrane through electrostatic interactions mediated by gp44.  相似文献   

2.
BACKGROUND: The T4 bacteriophage consists of a head, filled with double-stranded DNA, and a complex contractile tail required for the ejection of the viral genome into the Escherichia coli host. The tail has a baseplate to wh?ch are attached six long and six short tail fibers. These fibers are the sensing devices for recognizing the host. When activated by attachment to cell receptors, the fibers cause a conformational transition in the baseplate and subsequently in the tail sheath, which initiates DNA ejection. The baseplate is a multisubunit complex of proteins encoded by 15 genes. Gene product 9 (gp9) is the protein that connects the long tail fibers to the baseplate and triggers the tail contraction after virus attachment to a host cell. RESULTS: The crystal structure of recombinant gp9, determined to 2.3 A resolution, shows that the protein of 288 amino acid residues assembles as a homotrimer. The monomer consists of three domains: the N-terminal domain generates a triple coiled coil; the middle domain is a mixed, seven-stranded beta sandwich with a topology not previously observed; and the C-terminal domain is an eight-stranded, antiparallel beta sandwich having some resemblance to 'jelly-roll' viral capsid protein structures. CONCLUSIONS: The biologically active form of gp9 is a trimer. The protein contains flexible interdomain hinges, which are presumably required to facilitate signal transmission between the long tail fibers and the baseplate. Structural and genetic analyses show that the C-terminal domain is bound to the baseplate, and the N-terminal coiled-coil domain is associated with the long tail fibers.  相似文献   

3.
The success of tailed bacteriophages to infect cells far exceeds that of most other viruses on account of their specialized tail and associated baseplate structures. The baseplate protein gene product (gp) 10 of bacteriophage T4, whose structure was determined to 1.2 A resolution, was fitted into the cryo-electron microscopy structures of the pre and post-infection conformations of the virus. gp10 functions as a molecular lever that rotates and extends the hinged short tail fibers to facilitate cell attachment. The central folding motif of the gp10 trimer is similar to that of the baseplate protein gp11 and to the receptor-binding domain of the short tail fiber, gp12. The three proteins comprise the periphery of the baseplate and interact with each other. The structural and functional similarities of gp10, gp11, and gp12 and their sequential order in the T4 genome suggest that they evolved separately, subsequent to gene triplication from a common ancestor. Such events are usual in the evolution of complex organelles from a common primordial molecule.  相似文献   

4.
The tail of bacteriophage T4 undergoes large structural changes upon infection while delivering the phage genome into the host cell. The baseplate is located at the distal end of the contractile tail and plays a central role in transmitting the signal to the tail sheath that the tailfibers have been adsorbed by a host bacterium. This then triggers the sheath contraction. In order to understand the mechanism of assembly and conformational changes of the baseplate upon infection, we have determined the structure of an in vitro assembled baseplate through the three-dimensional reconstruction of cryo-electron microscopy images to a resolution of 3.8 Å from electron micrographs. The atomic structure was fitted to the baseplate structure before and after sheath contraction in order to elucidate the conformational changes that occur after bacteriophage T4 has attached itself to a cell surface. The structure was also used to investigate the protease digestion of the assembly intermediates and the mutation sites of the tail genes, resulting in a number of phenotypes.  相似文献   

5.
The contractile tail of bacteriophage T4 undergoes major structural transitions when the virus attaches to the host cell surface. The baseplate at the distal end of the tail changes from a hexagonal to a star shape. This causes the sheath around the tail tube to contract and the tail tube to protrude from the baseplate and pierce the outer cell membrane and the cell wall before reaching the inner cell membrane for subsequent viral DNA injection. Analogously, the T4 tail can be contracted by treatment with 3 M urea. The structure of the T4 contracted tail, including the head-tail joining region, has been determined by cryo-electron microscopy to 17 A resolution. This 1200 A-long, 20 MDa structure has been interpreted in terms of multiple copies of its approximately 20 component proteins. A comparison with the metastable hexagonal baseplate of the mature virus shows that the baseplate proteins move as rigid bodies relative to each other during the structural change.  相似文献   

6.
The baseplate of bacteriophage T4 is a multiprotein molecular machine that controls host cell recognition, attachment, tail sheath contraction and viral DNA ejection. We report here the three-dimensional structure of the baseplate-tail tube complex determined to a resolution of 12 A by cryoelectron microscopy. The baseplate has a six-fold symmetric, dome-like structure approximately 520 A in diameter and approximately 270 A long, assembled around a central hub. A 940 A-long and 96 A-diameter tail tube, coaxial with the hub, is connected to the top of the baseplate. At the center of the dome is a needle-like structure that was previously identified as a cell puncturing device. We have identified the locations of six proteins with known atomic structures, and established the position and shape of several other baseplate proteins. The baseplate structure suggests a mechanism of baseplate triggering and structural transition during the initial stages of T4 infection.  相似文献   

7.
A variety of bacterial pathogenicity determinants, including the type VI secretion system and the virulence cassettes from Photorhabdus and Serratia, share an evolutionary origin with contractile-tailed myophages. The well-characterized Escherichia coli phage P2 provides an excellent system for studies related to these systems, as its protein composition appears to represent the “minimal” myophage tail. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of gpX, a 68-residue tail baseplate protein. Although the sequence and structure of gpX are similar to those of LysM domains, which are a large family associated with peptidoglycan binding, we did not detect a peptidoglycan-binding activity for gpX. However, bioinformatic analysis revealed that half of all myophages, including all that possess phage T4-like baseplates, encode a tail protein with a LysM-like domain, emphasizing a widespread role for this domain in baseplate function. While phage P2 gpX comprises only a single LysM domain, many myophages display LysM domain fusions with other tail proteins, such as the DNA circulation protein found in Mu-like phages and gp53 of T4-like phages. Electron microscopy of P2 phage particles with an incorporated gpX-maltose binding protein fusion revealed that gpX is located at the top of the baseplate, near the junction of the baseplate and tail tube. gpW, the orthologue of phage T4 gp25, was also found to localize to this region. A general colocalization of LysM-like domains and gpW homologues in diverse phages is supported by our bioinformatic analysis.  相似文献   

8.
Bacteriophage T4 late gene product 11 (gp11), the three-dimensional structure of which has been solved by us to 2.0 A resolution, is a part of the virus' baseplate. The gp11 polypeptide chain consists of 219 amino acid residues and the functionally active protein is a three-domain homotrimer. In this work, we have studied the role of gp11 N-terminal domain in the formation of a functionally active trimer. Deletion variants of gp11 and monoclonal antibodies recognizing the native conformation of gp11 trimer have been selected. Long deletions up to a complete removal of the N-terminal domain, containing 64 residues, do not affect the gp11 trimerization, but considerably change the protein structure and lead to the loss of its ability to incorporate into the baseplate. However, the deletion of the first 17 N-terminal residues results in functionally active protein that can complete the 11(-)-defective phage particles in in vitro complementation assay. This region of the polypeptide chain is probably essential for gp11-gp10 stable complex formation at the early stages of phage baseplate assembly in vivo. A study of the gp10 deletion variants suggests that the central domain of gp10 trimer is responsible for the interaction with gp11.  相似文献   

9.
The length of the T4 tail is precisely regulated in vivo at the time of polymerization of the tail core protein onto the baseplate. Since no mutations which alter tail length have been identified, a study of in vivo-assembled tail cores was begun to determine whether the structural properties of assembled cores would reveal the mechanism of length regulation. An assembly intermediate consisting of a core attached to a baseplate (core-baseplate) was purified from cells infected with a T4 mutant in gene 15. When core-base plates were treated with guanidine hydrochloride, cores were released from baseplates. The released cores had the same mean length as cores attached to baseplates. Electron micrographs of these cores showed partial penetration of negative stain into one end, and, at the opposite end, a modified tip which often appeared as a short fiber projecting from the core. When cores were purified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two minor proteins and the major core protein were detected. One minor protein, the product of gene 48 (gp48), was present in at least 72% of the amount found in core-baseplates, relative to the amount of the major core protein. These findings suggest that cores contain a fibrous structure, possibly composed of gp48, which may form a "ruler" that specifies the length of the T4 tail.  相似文献   

10.
Gene product 8 (gp8, 344 amino acids per monomer) of bacteriophage T4 is one of the baseplate structural proteins. We constructed an expression vector of gp8 and developed a method for purification of recombinant protein. CD spectroscopy showed that gp8 is an / type structural protein. Its polypeptide chain consists of nearly 40% -structure and 15% -helix. These data agree with results of prediction of secondary structure based on the amino acid sequence of the protein. The sedimentation coefficient under standard conditions (S20,w) is 4.6S. Analytical ultracentrifugation results demonstrated that gp8 in solution has two types of oligomers—dimer and tetramer. The tetramer of gp8 may be included in the wedge (1/6 of the baseplate), and the dimer may be an intermediate product of association.  相似文献   

11.
Protein interactions in the assembly of the baseplate have been investigated. The baseplate of the phage T4 tail consists of a hub and six wedges which surround the former. Both reversible and irreversible interactions were found. Reversible association includes gp5 and gp27 (gp: gene product) which form a complex in a pH-dependent manner and gp18 polymerization, i.e. the tail sheath formation depends on the ionic strength. These reversible interactions were followed by irreversible or tight binding which pulls the whole association reaction to complete the assembly. The wedge assembly is strictly ordered which means that if one of the seven wedge proteins is missing, the assembly proceeds to that point and the remaining molecules stay non-associated. The strictly sequential assembly pathway is suggested to be materialized by successive conformational change upon binding, which can be shown by proteolytic probe.  相似文献   

12.
Contractile tail bacteriophages, or myobacteriophages, use a sophisticated biomolecular structure to inject their genome into the bacterial host cell. This structure consists of a contractile sheath enveloping a rigid tube that is sharpened by a spike‐shaped protein complex at its tip. The spike complex forms the centerpiece of a baseplate complex that terminates the sheath and the tube. The baseplate anchors the tail to the target cell membrane with the help of fibrous proteins emanating from it and triggers contraction of the sheath. The contracting sheath drives the tube with its spiky tip through the target cell membrane. Subsequently, the bacteriophage genome is injected through the tube. The structural transformation of the bacteriophage T4 baseplate upon binding to the host cell has been recently described in near‐atomic detail. In this review we discuss structural elements and features of this mechanism that are likely to be conserved in all contractile injection systems (systems evolutionary and structurally related to contractile bacteriophage tails). These include the type VI secretion system (T6SS), which is used by bacteria to transfer effectors into other bacteria and into eukaryotic cells, and tailocins, a large family of contractile bacteriophage tail‐like compounds that includes the P. aeruginosa R‐type pyocins.  相似文献   

13.
Remarkable progress has been made during the past ten years in elucidating the structure of the bacteriophage T4 tail by a combination of three-dimensional image reconstruction from electron micrographs and X-ray crystallography of the components. Partial and complete structures of nine out of twenty tail structural proteins have been determined by X-ray crystallography and have been fitted into the 3D-reconstituted structure of the "extended" tail. The 3D structure of the "contracted" tail was also determined and interpreted in terms of component proteins. Given the pseudo-atomic tail structures both before and after contraction, it is now possible to understand the gross conformational change of the baseplate in terms of the change in the relative positions of the subunit proteins. These studies have explained how the conformational change of the baseplate and contraction of the tail are related to the tail's host cell recognition and membrane penetration function. On the other hand, the baseplate assembly process has been recently reexamined in detail in a precise system involving recombinant proteins (unlike the earlier studies with phage mutants). These experiments showed that the sequential association of the subunits of the baseplate wedge is based on the induced-fit upon association of each subunit. It was also found that, upon association of gp53 (gene product 53), the penultimate subunit of the wedge, six of the wedge intermediates spontaneously associate to form a baseplate-like structure in the absence of the central hub. Structure determination of the rest of the subunits and intermediate complexes and the assembly of the hub still require further study.  相似文献   

14.
The tail lysozyme complex of bacteriophage T4   总被引:1,自引:0,他引:1  
The tail baseplate of bacteriophage T4 contains a structurally essential, three-domain protein encoded by gene 5 in which the middle domain possesses lysozyme activity. The gene 5 product (gp5) undergoes post-translational cleavage, allowing the resultant N-terminal domain (gp5*) to assemble into the baseplate as a trimer. The lysozyme activity of the undissociated cleaved gp5 is inhibited until infection has been initiated, when the C-terminal portion of the molecule is detached and the rest of the molecule dissociates into monomers. The 3D structure of the undissociated cleaved gp5, complexed with gp27 (another component of the baseplate), shows that it is a cell-puncturing device that functions to penetrate the outer cell membrane and to locally dissolve the periplasmic cell wall.  相似文献   

15.
To infect and replicate, bacteriophage P22 injects its 43 kbp genome across the cell wall of Salmonella enterica serovar Typhimurium. The attachment of phage P22 to the host cell as well as the injection of the viral DNA into the host is mediated by the virion's tail complex. This 2.8 MDa molecular machine is formed by five proteins, which include the portal protein gp1, the adhesion tailspike protein gp9, and three tail accessory factors: gp4, gp10, gp26. We have isolated the tail accessory factor gp4 and characterized its structure and binding interactions with portal protein. Interestingly, gp4 exists in solution as a monomer, which displays an exceedingly low structural stability (Tm 34 degrees C). Unfolded gp4 is prone to aggregation within a narrow range of temperatures both in vitro and in Salmonella extracts. In the virion the thermal unfolding of gp4 is prevented by the interaction with the dodecameric portal protein, which stabilizes the structure of gp4 and suppresses unfolded gp4 from irreversibly aggregating in the Salmonella milieu. The structural stabilization of gp4 is accompanied by the concomitant oligomerization of the protein to form a ring of 12 subunits bound to the lower end of the portal ring. The interaction of gp4 with portal protein is complex and likely involves the distinct binding of two non-equivalent sets of six gp4 proteins. Binding of the first set of six gp4 equivalents to dodecameric portal protein yields a gp(1)12:gp(4)6 assembly intermediate, which is stably populated at 30 degrees C and can be resolved by native gel electrophoresis. The final product of the assembly reaction is a bi-dodecameric gp(1)12:gp(4)12 complex, which appears hollow by electron microscopy, suggesting that gp4 does not physically plug the DNA entry/exit channel, but acts as a structural adaptor for the other tail accessory factors: gp10 and gp26.  相似文献   

16.
Bacteriophage T4 and related viruses have a contractile tail that serves as an efficient mechanical device for infecting bacteria. A three-dimensional cryo-EM reconstruction of the mature T4 tail assembly at 15-A resolution shows the hexagonal dome-shaped baseplate, the extended contractile sheath, the long tail fibers attached to the baseplate and the collar formed by six whiskers that interact with the long tail fibers. Comparison with the structure of the contracted tail shows that tail contraction is associated with a substantial rearrangement of the domains within the sheath protein and results in shortening of the sheath to about one-third of its original length. During contraction, the tail tube extends beneath the baseplate by about one-half of its total length and rotates by 345 degrees , allowing it to cross the host's periplasmic space.  相似文献   

17.
The tail of bacteriophage T4 consists of a contractile sheath surrounding a rigid tube and terminating in a multiprotein baseplate, to which the long and short tail fibers of the phage are attached. Upon binding of the fibers to their cell receptors, the baseplate undergoes a large conformational switch, which initiates sheath contraction and culminates in transfer of the phage DNA from the capsid into the host cell through the tail tube. The baseplate has a dome-shaped sixfold-symmetric structure, which is stabilized by a garland of six short tail fibers, running around the periphery of the dome. In the center of the dome, there is a membrane-puncturing device, containing three lysozyme domains, which disrupts the intermembrane peptidoglycan layer during infection.  相似文献   

18.
We report the localization of the proteins gp7, gp8 and gp10 in the bacteriophage T4 baseplate. Proceeding on the assumption that these proteins occupy discrete locations, we have decorated baseplates and tails with immunological probes. Using 5 nm diameter colloidal gold: F(ab')2 conjugates, we show that proteins gp7 and gp10 are located directly at the vertex, with gp10 positioned in the pin directly below gp7. gp8 is located beside gp7 towards the centre of the baseplate. Using a novel undecagold: Fab' conjugate we have also determined the radial positions of gp7 and gp8 in baseplates that have transformed to stars. A mechanism for the nature of the hexagon-to-star transformation is proposed.  相似文献   

19.
Gene product 9 (gp9, 288 amino acid residues per monomer, molecular weight 30.7 kD) of bacteriophage T4 triggers the baseplate reorganization and the sheath contraction after interaction of the long tail fibers with the receptors of the bacterial cell. In this work we have produced the recombinant protein and determined that gp9 is a stable homotrimer and active in in vitro complementation assay completing the defective phage particles which lack gp9. According to CD-spectroscopy data, the gp9 polypeptide chain contains 65-73% beta-structure and 11-16% alpha-helical segments, this being in good agreement with secondary structure prediction results. Additionally, we have constructed a set of plasmid vectors for expression of gp9 deletion mutants. The fragments with consecutive truncations of the N-terminus of the molecule, as well as the full-length protein, are trimers resistant to SDS treatment and decrease infective phage particle formation in in vitro complementation assay with native gp9. The deletion of the molecule C-terminal region results in failure of trimerization and decreases the stability of the protein.  相似文献   

20.
The protein products of at least 21 phage genes are needed for the formation of the tail of bacteriophage T4. Cells infected with amber mutants defective in these genes are blocked in the assembly process. By characterizing the intermediate structures and unassembled proteins accumulating in mutant-infected cells, we have been able to delineate most of the gene-controlled steps in tail assembly. Both the organized structures and unassembled proteins serve as precursors for in vitro tail assembly. We review here studies on the initiation, polymerization, and termination of the tail tube and contractile sheath and the genetic control of these processes. These studies make clear the importance of the baseplate; if baseplate formation is blocked (by mutation) the tube and sheath subunits remain essentially unaggregated, in the form of soluble subunits. Seventeen of the 21 tail genes specify proteins involved in baseplate assembly. The genes map contiguously in two separate clusters, one of nine genes and the other of eight genes. Recent studies show that the hexagonal baseplate is the end-product of two independent subassembly pathways. The proteins of the first gene cluster interact to form a structure which probably represents one-sixth of the outer radius. The products of the other gene cluster interact to form the central part of the baseplate. Most of the phage tail precursor proteins appear to be synthesized in a non-aggregating form; they are converted to a reactive form upon incorporation into preformed substrate complexes, without proteolytic cleavage. Thus reactive sites are limited to growing structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号