首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S A Latt  M Marino  M Lalande 《Cytometry》1984,5(4):339-347
The spectroscopic properties of three new dyes, EK4, VL772, and LL585, free and bound to nucleic acids, are presented, with particular emphasis on their potential use in flow cytometry. Two of these dyes, EK4 and LL585, exhibit red fluorescence, while dye VL772 exhibits yellow fluorescence. Dye LL585 exhibits specificity for DNA, relative to RNA, and a marked enhancement of fluorescence efficiency upon binding to DNA, needed for a red fluorescent DNA-specific stain for flow cytometry. The dye penetrates live cells, although uniformity of nuclear fluorescence, as evidenced by DNA flow histograms, is better if the cells are first permeabilized with Triton X-100. Dye VL772 exhibits yellow fluorescence and little DNA-RNA discrimination, but may prove useful in conjunction with dye LL585 when simultaneous assay of cellular RNA and DNA is desired. Dye EK4 shares properties of the other two dyes but fluoresces with much less efficiency. Dyes LL585 and VL772, used singly, as a pair, or in combination with blue-fluorescing DNA specific dyes, such as bisbenzimidazole derivatives, should permit new, convenient analyses of the content and organization of cellular nucleic acids.  相似文献   

2.
New fluorogenic dyes were designed and synthesized based on Cu(I)-catalyzed 'click' reaction. Conjugating weakly fluorescent benzothiazole derivatives with an electron-deficient alkyne group at the 2-position with azide-containing molecules in aqueous solution form 'click-on' fluorescent adducts. Model reactions and cell culture experiment indicated that the developed 'click-on' dye could be applied to labeling various biomolecules, such as nucleic acids, proteins, and other molecules, in cells.  相似文献   

3.
Summary Cationic cyanine dyes have been widely used to measure electrical potentials of red blood cells and other membrane preparations. A quantitative analysis of the binding of the most extensively studied of these dyes, diS-C3-(5), to red blood cells and their constituents is presented here. Absorption spectra were recorded for the dye in suspensions of isolated red cell membranes and in solutions of cell lysate. The dependence of the spectra on the concentrations of dye and cell constituents shows that the dye binds to these membranes as monomers with an absorbance maximum at 670 nm instead of 650 nm as for free aqueous dye and that the dye binds to oxyhaemoglobin partly as monomer but primarily as dimer, with absorbance maxima ca. 670 and 595 nm, respectively. Quantitative estimates are derived for all binding constants and extinction coefficients. These estimates are applied to suspensions of whole cells to predict the dye binding, absorbance spectra, and calibration curves of binding and fluorescencevs. membrane voltage. Satisfactory agreement is found with binding and absorbance data for whole cells at zero membrane potential and with the binding and fluorescence data reported by Hladky and Rink (J. Physiol. (London) 263:287, 1976) for cells driven to positive and negative potentials using valinomycin. The marked tendency of oxyhaemoglobin to bind dye as dimer is not shared by some other proteins tested, including deocyhaemoglobin and oxymyoglobin.  相似文献   

4.
The effect of polycations on cultured mouse peitoneal macrophages has been examined. Polycations, at concentrations greater than 5 µg/ml, are toxic for macrophages) as measured by failure of the cells to exclude vital dyes. At toxic concentrations polycations bind in large amounts to nuclei and endoplasmic reticulum, while at nontoxic levels polycations bind selectively to the cell surface. Nontoxic concentrations of polycations stimulate binding of reovirus double-stranded (ds) RNA to the macrophages by forming polycation-dsRNA complexes either in the medium or at the cell surface. These complexes enter the cell in endocytic vacuoles and are concentrated in secondary lysosomes. Despite exposure to the acid hydrolases within this cell compartment, the dsRNA and the polycation (poly-L-lysine) are conserved in a macromolecular form within the vacuolar system. The mechanism(s) by which the uptake of infectious nucleic acids and the induction of interferon by dsRNA are stimulated by polycations are discussed.  相似文献   

5.
We have investigated cytotoxic action of p-aminobenzhydrazide and its influence on biosynthesis of nucleic acids in cultures of intact cells, tumor cells and intact cells stimulated by phytohemagglutinin. p-Aminobenzhydrazide is considered as a representative of hydrazine's derivatives (in particular, of hydrazine sulphate). We compare its action with that of a typical cytotoxic agent such as iododeoxyuridine. We have found that p-aminobenzhydrazide influences biosynthesis of nucleic acids in the same way as iododeoxyuridine. However it acts toxically on tumor cells though it is not toxic for intact cells so that its action is different as compared to that of cytotoxic agents. Specific toxic action of aminobenzhydrazide on tumor cells may be due to the enhancement of antitumor activity substances of this compound and absence of such enhancement of side toxic effects.  相似文献   

6.
Despite recent advances in blood safety by careful donor selection and implementation of infectious disease testing, transmission of viruses, bacteria and parasites by transfusion can still rarely occur. One approach to reduce the residual risk from currently tested pathogens and to protect against the emergence of new ones is to investigate methods for pathogen inactivation. The use of photosensitizing dyes for pathogen inactivation has been studied in both red cell and platelet blood components. Optimal properties of sensitizing dyes for use in red cell suspensions include selection of dyes that traverse cell and viral membranes, bind to nucleic acids, absorb light in the red region of the spectrum, inactivate a wide range of pathogens, produce little red cell photodamage from dye not bound to nucleic acid and do not hemolyze red cells in the dark. Early research at the American Red Cross focused on the use of a class of dyes with rigid structures, such as the phenothiazine dyes, beginning with the prototypical sensitizer methylene blue. Results revealed that methylene blue phototreatment could inactivate extracellular virus, but resulted in undesirable defects in the red cell membrane that resulted in enhanced hemolysis that became evident during extended refrigerated blood storage. In addition, methylene blue phototreatment could neither inactivate intracellular viruses nor appreciably inactivate bacteria under conditions of extracellualar viral killing. Attempts to improve intracellular viral inactivation led to the investigations of more hydrophobic phenothiazines, such as methylene violet or dimethylmethylene blue. Although these dyes could inactivate intracellular virus, problems with increased red cell membrane damage and hemolysis persisted or increased. Further studies using red cell additive storage solutions containing high levels of the impermeable ion, citrate, to protect against colloidal osmotic hemolysis as well as competitive inhibitors to limit sensitizer binding to red cell membranes revealed that photoinduced hemolysis stemmed from dye bound to the red cell membrane as well as dye free in solution. Use of red cell additive solutions to prevent colloidal-osmotic hemolysis and use of novel flexible dyes that only act as sensitizers when bound to their targets are two techniques that currently are under investigation for reducing red cell damage. Ultimately, the decision to implement a photodynamic method for pathogen reduction will be determined by weighing the risks of unintended adverse consequences of the procedure itself, such as the potential for genotoxicity and allergic reactions, against the cost and benefits of its implementation.  相似文献   

7.
Despite recent advances in blood safety by careful donor selection and implementation of infectious disease testing, transmission of viruses, bacteria and parasites by transfusion can still rarely occur. One approach to reduce the residual risk from currently tested pathogens and to protect against the emergence of new ones is to investigate methods for pathogen inactivation. The use of photosensitizing dyes for pathogen inactivation has been studied in both red cell and platelet blood components. Optimal properties of sensitizing dyes for use in red cell suspensions include selection of dyes that traverse cell and viral membranes, bind to nucleic acids, absorb light in the red region of the spectrum, inactivate a wide range of pathogens, produce little red cell photodamage from dye not bound to nucleic acid and do not hemolyze red cells in the dark. Early research at the American Red Cross focused on the use of a class of dyes with rigid structures, such as the phenothiazine dyes, beginning with the prototypical sensitizer methylene blue. Results revealed that methylene blue phototreatment could inactivate extracellular virus, but resulted in undesirable defects in the red cell membrane that resulted in enhanced hemolysis that became evident during extended refrigerated blood storage. In addition, methylene blue phototreatment could neither inactivate intracellular viruses nor appreciably inactivate bacteria under conditions of extracellualar viral killing. Attempts to improve intracellular viral inactivation led to the investigations of more hydrophobic phenothiazines, such as methylene violet or dimethylmethylene blue. Although these dyes could inactivate intracellular virus, problems with increased red cell membrane damage and hemolysis persisted or increased. Further studies using red cell additive storage solutions containing high levels of the impermeable ion, citrate, to protect against colloidal osmotic hemolysis as well as competitive inhibitors to limit sensitizer binding to red cell membranes revealed that photoinduced hemolysis stemmed from dye bound to the red cell membrane as well as dye free in solution. Use of red cell additive solutions to prevent colloidal-osmotic hemolysis and use of novel flexible dyes that only act as sensitizers when bound to their targets are two techniques that currently are under investigation for reducing red cell damage. Ultimately, the decision to implement a photodynamic method for pathogen reduction will be determined by weighing the risks of unintended adverse consequences of the procedure itself, such as the potential for genotoxicity and allergic reactions, against the cost and benefits of its implementation.  相似文献   

8.
Despite recent advances in blood safety by careful donor selection and implementation of infectious disease testing, transmission of viruses, bacteria and parasites by transfusion can still rarely occur. One approach to reduce the residual risk from currently tested pathogens and to protect against the emergence of new ones is to investigate methods for pathogen inactivation. The use of photosensitizing dyes for pathogen inactivation has been studied in both red cell and platelet blood components. Optimal properties of sensitizing dyes for use in red cell suspensions include selection of dyes that traverse cell and viral membranes, bind to nucleic acids, absorb light in the red region of the spectrum, inactivate a wide range of pathogens, produce little red cell photodamage from dye not bound to nucleic acid and do not hemolyze red cells in the dark. Early research at the American Red Cross focused on the use of a class of dyes with rigid structures, such as the phenothiazine dyes, beginning with the prototypical sensitizer methylene blue. Results revealed that methylene blue phototreatment could inactivate extracellular virus, but resulted in undesirable defects in the red cell membrane that resulted in enhanced hemolysis that became evident during extended refrigerated blood storage. In addition, methylene blue phototreatment could neither inactivate intracellular viruses nor appreciably inactivate bacteria under conditions of extracellualar viral killing. Attempts to improve intracellular viral inactivation led to the investigations of more hydrophobic phenothiazines, such as methylene violet or dimethylmethylene blue. Although these dyes could inactivate intracellular virus, problems with increased red cell membrane damage and hemolysis persisted or increased. Further studies using red cell additive storage solutions containing high levels of the impermeable ion, citrate, to protect against colloidal osmotic hemolysis as well as competitive inhibitors to limit sensitizer binding to red cell membranes revealed that photoinduced hemolysis stemmed from dye bound to the red cell membrane as well as dye free in solution. Use of red cell additive solutions to prevent colloidal-osmotic hemolysis and use of novel flexible dyes that only act as sensitizers when bound to their targets are two techniques that currently are under investigation for reducing red cell damage. Ultimately, the decision to implement a photodynamic method for pathogen reduction will be determined by weighing the risks of unintended adverse consequences of the procedure itself, such as the potential for genotoxicity and allergic reactions, against the cost and benefits of its implementation.  相似文献   

9.
Standardized specimens composed of extracts of biologic objects (nucleoprotamine and bovine liver) were developed as tools for the quantitative evaluation of stain performance on biologic substrates. The specimens are mixtures of proteins and nucleic acids and thus mimic the staining characteristics of cytologic smears. The concentration of each mixture and the specimen thickness can be precisely controlled, ensuring the production of a large number of samples with a nearly identical capability for dye binding. The transmitted light spectra of the standardized specimens varied depending on the extract and the preparation conditions. Spectra similar to those reported from the nuclei and cytoplasm of cell types in Papanicolaou-stained cervicovaginal smears were observed. Light transmission was uniform to +/- 5% across each specimen and from specimen to specimen. The specimen thickness was uniform within +/- 2%. Studies with these standardized samples could reveal the much-needed correlations between the chemical and optical characteristics of dyes and dye solutions and the performance of the dyes on biologic substrates.  相似文献   

10.
11.
The interaction of surface proteins from A431 cells and cellular extracts with nucleic acids was investigated using affinity modification with 32P-labeled reactive oligonucleotide derivatives. Proteins with molecular weights of 68, 46, 38, and 28 kD as well as several low molecular weight proteins capable of binding to nucleic acids were found on the surface of intact cells. It was demonstrated that a protein with molecular weight of 68 kD is exposed at the cell surface, since the treatment of cells with trypsin results in the cleavage of this protein. Disruption of the integrity of the cell membrane (scrapping, treatment with trypsin, or permeabilization of the cell membrane with streptolysin O or saponin) disrupts the interaction of the reactive oligonucleotides with the cell surface proteins. Affinity modification of the cytosolic and membrane-cytosolic cell fractions with labeled oligonucleotides results in the modification of a large number of proteins, where proteins with molecular weights of 68, 46, 38, and 28 kD can be found as minor components. Surface oligonucleotide-binding proteins with molecular weight of ~68 kD were isolated by affinity chromatography after the modification of intact A431 cells with a reactive oligonucleotide derivative. The isolated surface oligonucleotide-binding proteins from A431 cells were sequenced, and one of the proteins was identified as keratin K1.  相似文献   

12.
The trypanocidal effects of aqueous gold(III) and palladium(II) and their metalloporphyrin derivatives on Trypanosoma brucei brucei growth in culture have been studied using an Alamar Blue indicator assay. All the experiments were conducted in the dark. As previously described for mercury(II), cadmium(II) and lead(II) porphyrins [Chem.-Biol. Interact. 139 (2002) 177], the toxicity of the metalloporphyrin complex of palladium(II) to T. b. brucei parasites was much higher compared to the aqueous free palladium(II) and free base porphyrin. Palladium(II) porphyrin, free palladium(II), and the free base porphyrin were trypanocidal to T. b. brucei at concentrations >1.5 x 10(-6), >6.1 x 10(-6) and >1.9 x 10(-5) M, respectively. While gold(III) porphyrin was effective against the parasites at concentrations >4.8 x 10(-6) M, its aqueous gold(III) was toxic at concentrations as low as 2.0 x 10(-7) M due to the generation of free radicals in the presence of this metal ion which enhanced its toxicity to the T. b. brucei parasites. Although some cell division was observed in some of the cells treated with palladium(II) porphyrin, some dividing cells had no nucleus due to unequal division and delivery of the nuclei into the daughter cells. As a result, the rate of cell division decreased with time and cell death occurred within 24 h. Interestingly, trypanosomes treated with metalloporphyrin complexes displayed different morphological features from those cells treated with free base porphyrin or metal ions. Of all the porphyrins and free metal ions tested, only mercury(II) porphyrin and aqueous gold(III) ion were toxic to the trypanosomes in the 10(-7) M range. The chemotherapeutic potential of these observations is discussed.  相似文献   

13.
It was shown that within the liposomes mono- and oligonucleotides and their alkylating derivatives penetrate the cells of Ehrlich ascite carcinoma and peritoneal exudate of the mice. Inside the cells the alkylating reagents are mainly utilized for modification of proteins (42--76%), RNA (5--16%) and DNA (3--9%). Presumably DNA modification is largely dependent on the penetration of the reagents into the nuclei. No significant differences in alkylation of the cell components by oligoadenylate derivatives, capable of complementary interactions with nucleic acids and mononucleotide derivatives, incapable of such interactions, were observed.  相似文献   

14.
In order to combine laser confocal microscopy with physiological measurements, a number of conditions have to be met: the dye must not be toxic to the cells the laser light itself must not damage the cells; and the excitation of the fluorochrome during imaging must not generate products with toxic effects. We have investigated these conditions the hearing organ of the guinea pig. Two dyes were used, namely, calcein-AM, which is metabolized in vital cells to a fluorescent product in the cytoplasm, and a lipophilic membrane dye. The effect of the dyes on cell function was tested in the intact hearing organ, maintained in the isolated temporal bone, by measuring the electrophysiological potentials generated by the sensory cells in response to tone pulses. The loading of the cells with the dyes had no adverse effects. The effect of the laser beam was explored on isolated coils from the cochlea. In two preparations, the specimens viewed in the confocal system were fixed and processed for electron microscopy. Identified cells were followed before, during, and after laser exposure and could ultimately be examined at the ultrastructural level. Exposure to the laser beam did not cause damage in unstained cells, even at high intensities. In stained tissue, confocal microscopy could safely be performed at normal beam intensity without causing ultrastructural changes. At high intensities, about 100 times normal for 60 times as long, irradiation damage was seen that was selective in that the cells stained with the different dyes exhibited damage at the different sites corresponding to the subcellular location of the dyes. Cells stained with calcein showed lysis of mitochondria and loss of cytoplasmic matrix, whereas cells stained with the styryl membrane dye showed swelling of subsurface cisternae, contortion of the cell wall, and shrinkage. The styryl dyes, in particular, which selectively stain the sensory and neuronal cells in the organ of Corti, could be exploited for phototoxic use.  相似文献   

15.
The fluorescent dye chlorotetracycline (CTC) has several disadvantages compared with ratio dyes like Fura-dextran. However, in many plant tissues the derivatives of Fura cannot be loaded. Thus, the pitfalls and possible precautions for the measurement of the light-induced changes in cytosolic free calcium concentration ([Ca2+]c) were investigated in algae and higher plants. Eremosphaeraviridis de Bary and the flowing cytosol in whorl cells of Characorallina Klein ex Willd. were used as examples for possible pressure injection of Fura-dextran or bis-carboxyethyl-carboxy-fluorescein (BCECF) dextran, illustrating the better calibration in absolute terms provided by these dyes. However, here it is shown that CTC works better than Fura-dextran for monitoring the light-induced changes in [Ca2+]c in the ectoplasm close to the plasma membrane in Chara. Protoplasts of Solanumnigrum L. and whole intact leaves of Viciafaba L. and Nicotianatabacum L. were used as examples of cells that were too fragile for pressure injection of Fura-dextran. The sensitivity of CTC to pH may cause artefacts when light-induced changes in [Ca2+]c in intact leaves are to be measured. If some precautions are met, this problem and others (requirement of constant temperature, sensitivity to other ions, effect on plasma-membrane Ca2+ permeability) can be circumvented, thus making CTC a suitable dye for monitoring light-induced changes in [Ca2+]c in a broad spectrum of different plant cells, tissues and species. Received: 3 May 1997 / Accepted: 19 May 1998  相似文献   

16.
Silver and mercury ions are known to react with the bases of nucleic acids in solution. At low cation/base ratios Ag+ has an affinity for GC pairs in DNA, whereas Hg++ is preferentially bound to AT-rich nucleic acids. We have used fluorometry to measure the effect of these cations on the fluorescence intensity of preformed complexes of acranil and DNA in solution. The results are: 1) Ag+ enhances the fluorescence intensity presumably by affecting the dye intercalated in the vicinity of GC-pairs. 2) The addition of Hg++ leads to a quenching of the fluorescence intensity of the complex at low ion/base ratios, suggesting an effect on the dye molecules bound to AT pairs. At high GC-content of the nucleic acid, slight enhancement of the fluorescence intensity occurs with Hg++. 3) With both metals there is a correlation between base content of DNA and effect on the intensity of fluorescence indicating base specificity of the dye-polymer interaction.  相似文献   

17.
The attachment kinetics of erythroid cells, such as human erythrocytes, their saponin ghosts, and erythroleukemic cells K562 to a glass surface has been studied in the presence of substances inhibiting spontaneous fluctuations of cell membranes. It has been shown that wheat germ agglutinin (WGA) slows down the attachment kinetics of K562 cells, as is the case in intact erythrocytes. Concanavalin A (Con A), which inhibits the attachment of erythrocytes to glass does not affect the adhesion of K562 cells to glass due to the absence of band 3 proteins in the membranes of K562 cells. Both lectins slow down the adhesion rate of saponin ghosts of human erythrocytes, as it takes place in intact erythrocytes. Suramin and the anionic dye ANS bind specifically to the actin protofilaments of the erythrocyte skeleton and also inhibit cell adhesion to glass. At the same time, these substances do not affect the oscillatory and adhesion activities of intact erythrocytes due to the impermeability of erythrocyte membranes for these drugs. The results obtained allow the conclusion that inhibition of erythrocyte adhesion by lectins is due to lectin binding to different constituents of the erythrocyte membrane--sialic acid moieties of glycophorin in the case of WGA and band 3 proteins in the case of Con A. The most probable mechanism of erythrocyte and K562 cell attachment to glass is the formation of the so-called local contacts between cells and the glass surface. It is also suggested that the cell surface oscillations facilitate the formation of cell contacts.  相似文献   

18.
Cyanine dye labeling reagents containing isothiocyanate groups   总被引:8,自引:0,他引:8  
New isothiocyanate derivatives of cyanine dyes were synthesized as fluorescent covalent labeling reagents for proteins and other biomolecules. These dyes have maximum absorbance in the red and near infrared regions of the spectrum, have high extinction coefficients and have adequate quantum yields. Incorporating two alkyl sulfonate groups in the dye structures increases their water solubility, which is beneficial for labeling biological molecules in aqueous solution. Reactivities of proteins with these new cyanines are similar to their reactivities with fluorescein isothiocyanate. These new labeling reagents are complementary to the fluorescein and rhodamine reagents, expanding the possibilities of multicolor analyses. Sheep anti-mouse-IgG antibody was labeled with a pentamethine cyanine dye (CY5.8-ITC) and used with a fluoresceinated antibody as a second reagent for detecting human T-cell subsets by flow cytometry.  相似文献   

19.
Lewis lung carcinoma cells from tumors, metastasis nodules, or from culture bind fluorescent derivatives of neoglycoproteins containing α-D -glucose residues: This binding is competitively inhibited by neoglycoproteins containing α-D -glucose, by mannan, and by several other neoglycoproteins. Cell binding and uptake of the fluorescent derivatives of the neoglycoproteins was quantified by lysing the cells with an alkylpolyol (MAC 19 or MAC 18) and measuring the fluorescence intensity of the supernatant. The amount of cell-associated neoglycoprotein was higher at 37°C than at 4°C with LLC from tumor. The binding and uptake were inhibited by glycoconjugates containing α-D -glucose. These results suggest the presence of sugar specific receptors in Lewis lung carcinoma cells which are involved in a sugar-specific binding and endocytosis phenomenon. The implication of the existence of a carbohydrate-binding protein on the surface of Lewis lung carcinoma cells are discussed with regard to the in vivo behaviour of these cells, especially in relation to their metastatic properties and to the possibility of using neoglycoproteins as specific carriers of cytotoxic drugs. Hybrid molecules of gelonin and a neoglycoprotein containing α-D -glucose were used as targetted toxin: The targetted toxin was found to bind to and to enter the intact cells and was 100 times more toxic than free drug.  相似文献   

20.
A method to convert the conventional denaturing gradient gel electrophoresis into a highly reproducible experimental system was developed. It was based on the following experimental findings; (i) dyes, which are small molecules, do not exhibit mobility changes attributed to their conformational change while nucleic acids do; and (ii) most of the mobility shifts caused by experimental fluctuations could be cancelled by normalizing the mobility of a sample with respect to the corresponding one of a dye. The method involves co-migration of internal reference dyes with samples (nucleic acids), and computer-aided data processing, allowing us to obtain the relative mobility of nucleic acids with respect to a dye throughout the denaturing gradient. The overall pattern of the relative mobilities thus obtained, named the normalized mobility profile (NMP), corresponded well to conformational changes of a macromolecule induced by denaturing effects. This method provides us with objective data without using internal macromolecular references, which not only guarantees the precision but also extends the range of application of the denaturing gradient method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号