首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular events following infection of competent Haemophilus influenzae cells by N3 phage or transfection by DNA from phage were examined. After infection by whole phage three forms of intracellular phage DNA were observed by sedimentation velocity analysis. These forms are probably twisted circles, open circles and linear duplexes. In transfection only about 15% of the phage DNA is efficiently taken up by the competent cells. After entry of phage DNA into wild-type cells in transfection the DNA is degraded at early times, but later some of the fragments are reassembled, resulting in molecules that sediment faster than the monomer length of phage DNA. These presumably concatamer forms are generated by recombination. In strain rec-1 the fast-sedimenting molecules do not appear and degradation of phage DNA is even more pronounced than in the wild-type cells. Since rec-1 is transfected with much lower efficiency than the wild-type our hypothesis is that both fragmentation and generation of fast-sedimenting phage DNA by recombination are required for efficient transfection. These results also show that although phage N3 codes for its own recombination system it cannot operate in the early stages of transfection and succesful transfection is entirely dependent upon the host recombination system.  相似文献   

2.
T7 bacteriophage infects with equal efficiency restriction-proficient Escherichia coli K12 cells and the restriction-deficient mutants. To the contrary, the purified phage DNA transfects wild-type cells at a very low efficiency (10?9 plaques/genome equivalent). Mutations in the recB recC (exonuclease V) and sbcB (exonuclease I) loci increase the transfecting efficiency tenfold. A 1000-fold increase is obtained with cells deficient in restriction. No further increase is observed in hosts carrying both sets of mutations. The transfecting activity of the DNA on restriction-deficient hosts increases another 20-fold (up to 4 × 10?5 plaques/genome equivalent) by complete erosion of the redundant regions of DNA with λ exonuclease, both in rec+ and recB recC sbcB genotypes. Circles and linear oligomers arising from the annealing of eroded DNA show the same transfecting activity as the unannealed monomers. The terminal redundancy of the genome, as measured by the onset of annealability of eroded molecules, was found to comprise 50 to 100 base-pairs.  相似文献   

3.
A method was devised for extracting, from cells of Escherichia coli K12, DNA molecules which sedimented on neutral sucrose gradients as would be expected for free DNA molecules approaching the genome in size. Gamma ray irradiation of oxygenated cells produced 0.20 DNA double-strand breaks per kilorad per 109 daltons. Incubation after irradiation of cells grown in K medium, with four to five genomes per cell, showed repair of the double-strand breaks. No repair of double-strand breaks was found in cells grown in aspartate medium, with only 1.3 genomes per cell, although DNA single-strand breaks were still efficiently repaired. Cells which were recA? or recA?recB? also did not repair double-strand breaks. These results suggest that repair of DNA double-strand breaks may occur by a recombinational event involving another DNA double helix with the same base sequence.  相似文献   

4.
Phenol-extracted, infectious deoxyribonucleic acid (DNA) species from phi105 phage particles, from phi105 lysogenic bacteria, and from induced phi105 lysogenic bacteria were sedimented in sucrose gradients. Infectious DNA from phi105 particles sedimented like the bulk of mature phage DNA in neutral sucrose. Infectivity of prophage DNA was associated with fast-sedimenting material of heterogenous size. Infectious vegetative phage DNA sedimented somewhat faster than mature phage DNA; it was rapidly converted to a poorly infectious form during the infection.  相似文献   

5.
The transfecting efficiency of P22 DNA on “rough” strains of Salmonella typhimurium or non-restricting mutants of Escherichia coli K12 approaches 3 × 10?8 plaques/genome equivalent. It increases 20-fold upon complete erosion of the terminally redundant regions of the DNA molecule with either λ exonuclease or exonuclease III. Eroded DNA molecules form circles and linear oligomers upon annealing. The circular monomers display transfecting activity about ten times higher than that of eroded linear monomers or hydrogen-bonded oligomers. recB recC sbcB strains of E. coli K12 are transfected with P22 DNA with an efficiency of 1.5 × 10?6 plaques/genome equivalent. The activity of DNA molecules on these strains is not augmented by erosion. This suggests that the activation by erosion, seen in assays on rec+ genotypes, is due to the formation of hydrogen-bonded circular molecules, which more readily escape degradation by the recBC nuclease.  相似文献   

6.
We have studied the role of the red and gam genes in lambda replication, after infection of wild type and two recombination deficient hosts. Our results show that the rate of phage DNA replication is abnormally low in the absence of red function, in rec+ as well as rec? (A? and A?B?) bacteria. It appears that the virus general recombination proteins play some role in lambda replication that cannot be assumed by the general recombination proteins of its bacterial host. The red? defect in replication results in a decrease in the total amount of intracellular phage DNA. This DNA, nevertheless, seems normal in structure and is matured and packaged with good efficiency.In rec+ and recA? hosts infected with gam? mutants, the rate of lambda replication is also low, but in this case, abnormal DNA structures are produced at late times. The gam mutation seems to alter the program of replication such that circular molecules are produced not only at early times, but continuously, throughout the lytic cycle. This, and other facts, suggest that the gam protein is required for the transition from “early” to “late” replication. This requirement for gam function is not observed in recA?B? hosts, in which gam mutants replicate at a normal rate and produce DNA indistinguishable from that made by wild type phage. Thus, the gam requirement seems to involve an interaction of this phage protein with the product of the host's recB gene. Other evidence for such interaction comes from our finding that, in vivo, the gam protein does inhibit presumed action of the host's BC nuclease.In the gam? mutant infections, which are blocked in late replication, absence of a general recombination system seems to create a severe defect in maturation of intracellular phage DNA. This defect, unlike the one affecting λ replication rate, can be alleviated by either the red or rec functions and is correlated with the inability of the mutant phages to make DNA concatemers. Since other late functions (i.e. late messenger RNA production) appear to be normal, we conclude that concatemer formation, via replication or recombination, is an essential step in phage development.  相似文献   

7.
When λ bacteriophages were treated with a photosensitizing agent, psoralen or khellin, and 360 nm light, monoadducts and interstrand crosslinks were produced in the phage DNA. The DNA from the treated phages was injected normally into Escherichia coli uvrA? (λ) cells and it was converted to the covalent circular form in yields similar to those obtained in experiments with undamaged λ phages. In excision-proficient host cells, however, there was a dose-dependent reduction in the yield of rapidly sedimenting molecules, and a corresponding increase in slow sedimenting material, the extent of this conversion corresponding to about one cut per two crosslinks. Presumably, the damaged λ DNA molecules were cut by the uvrA endonuclease of the host cell, but were not restored to the original covalent circular form.The presence of psoralen damage in λ phage DNA greatly increased the frequency of genetic exchanges in λ phage-prophage crosses in homoimmune lysogens (Lin et al., 1977). As genetic recombination is thought to depend on cutting and joining in DNA molecules, experiments were performed to test whether psoralen-damaged λ DNA would cause other λ DNA in the same cell to be cut. E. coli (λ) host cells were infected with 32P-labeled λ phages and incubated to permit the labeled DNA to form covalent circles. When these host cells were superinfected with untreated λ phages, there was no effect upon the circular DNA. When superinfected with λ phages that had been treated with psoralen and light, however, many of the covalent circular molecules were cut. The cutting of undamaged molecules in response to the damaged DNA was referred to as “cutting in trans”. It required the uvrA+ and recA+ host gene functions, but neither recB+ nor any phage gene functions. It occurred normally in non-lysogenic hosts treated with chloramphenicol before infection. Cutting in trans may be one of the steps in recA-controlled recombination between psoralen crosslinked phage λ DNA and its homologs.  相似文献   

8.
Certain temperature-sensitive Escherichia coli cell division mutants and DNA repair mutants were treated in several ways to alter DNA synthesis or cell division. The bacteria were pulsed with [35S]methionine; then membrane proteins were prepared and examined using sodium dodecyl sulfate/polyacrylamide slab gels. Autoradiography was performed on the slab gels so that the rate of synthesis of protein X could be determined by microdensitometry.Several changes in the rate of synthesis of the 40,000 molecular weight protein X were found in the different mutants. The wild-type (rec+ and lex+) strains synthesized protein X in response to DNA synthesis inhibition. However, neither recA? strains nor lex? strains synthesized protein X.Both the filament forming, temperature-sensitive mutants tif? and tsl? (which was derived from lex?) synthesized protein X when DNA synthesis was inhibited, but at rates different from the wild-type strains. Moreover, these strains also produced protein X at their non-permissive temperature, even though DNA synthesis was not inhibited. In the tif? mutant, the rate of synthesis of protein X was influenced by the addition of nucleic acid precursors.A double mutant tsl?recA? produced protein X when DNA synthesis was inhibited, or at the non-permissive temperature (although DNA synthesis was normal). This was the only strain carrying a recA? mutation capable of synthesizing protein X.From these results it is suggested that the genes lex, recA and tif comprise a system that controls DNA repair and limits DNA degradation by the recBC nuclease. The inducer of this control system might be a DNA degradation product.  相似文献   

9.
Inactivation of λ11c and its purified DNA by UV irradiation, γ-rays of 137Cs (in conditions of indirect action), nitrous acid, hydroxylamine and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was studied. The biological activity of isolated phage DNA was measured by the calcium transfection procedure. 14 different recipient strains of Escherichia coli K12 were used, including mutants deficient in excision and recombination repair (uvrA6, uvrB5, uvrC34, polA1, recA13, recC38, recD34, recA13B21C22, recA56uvrA6, exrA and recB21C22sbcB15).Whole phage was more resistant to the action of γ-rays than was isolated DNA. On the other hand, the chemical agents HNO2 and MNNG inactivated phage much faster than isolated DNA. Of all mutations of the host cell only polA1 considerably increased the sensitivity of phage DNA to UV irradiation, γ-rays and MNNG. The mutations uvr? affected the inactivation kinetics under UV action. In all other cases the genotype of the host cell was indifferent for the inactivation kinetics of phage DNA, even if it belonged to recombination deficient mutant λ red3 int6 (in which only UV and γ inactivation was studied). Possible reasons for the low efficiency of the host-cell repair toward the damage caused to λ DNA by different agents are discussed.  相似文献   

10.
Some Properties of DNA from Phage-Infected Bacteria   总被引:15,自引:0,他引:15  
Replicating T5 or λ phage DNA has been labeled by adding tritiated thymidine for short periods to cultures of phage-infected Escherichia coli before isolation of intracellular DNA. Two procedures are described for separating T5 replicating DNA from DNA of intracellular phage particles. Both T5 and λ replicating DNA had the same bouyant density in cesium chloride as DNA from phage particles but sedimented faster when centrifuged in sucrose density gradients. The fast sedimentation did not appear to be caused by DNA protein or DNA-RNA complexes or by aggregation of DNA, but is probably due to DNA molecules of unusual structure. Experiments involving hydrodynamic shear and sucrose density gradient centrifugation at alkaline pH have suggested that with λ the replicating form of DNA is a linear molecule considerably longer than the DNA molecules of λ-phage particles. The constituent polynucleotide chains of λ but not T5 replicating DNA also appear to be longer than those of phage DNA.  相似文献   

11.
Summary Some aspects of the involvment of the terminal reduntant regions of T7 DNA on phage production have been studied by transfection experiments with T7 DNA after treatment of the molecules with exonuclease or exonuclease plus exonuclease I. It was found that terminal 5 gaps between 0.08 and 6.4% of the total length did not decrease the infectivity of the molecules although such gaps cannot be filled directly by DNA polymerases. Rather, compared to fully native DNA the infectivity of gapped DNA increased up to 20 fold in rec + spheroplasts and up to 4 fold in recB spheroplasts. This indicates a protective function of the single-stranded termini against the recBC enzyme in rec + and possibly another unidentified exonuclease present also in recB. The possibility that spontaneous circularization of the gapped molecules in vivo provides protection against exonucleolytic degradation was tested by transfection with T7 DNA circularization in vitro by thermal annealing. Such molecules were separated from linear molecules by neutral sucrose gradient centrifugation. They displayed a 3 to 6 fold higher infectivity in rec + and recB compared to linear gapped molecules, which shows that T7 phage production may effectively start from circular DNA.When the 3 single-stranded ends from gapped molecules were degraded by treatment with exonuclease I the infectivity of the molecules was largely abolished in rec + and recB as soon as 40 to 80 base pairs had been removed per end. It is concluded that the terminal regions of T7 DNA molecules are essential for phage production and that the redundancy comprises probably considerably less than 260 base pairs. The results are discussed with respect to the mode of T7 DNA replication.  相似文献   

12.
A method is presented for preparing very large DNA from Bacillus subtilis protoplasts. When the DNA is characterized by sedimentation in neutral sucrose gradients, a fast-sedimenting component is found whose sedimentation coefficient varies with centrifuge speed. By use of [3H]thymine label for the DNA and a 14C-labeled amino acid, it is shown that less than 5% cellular material other than DNA is associated with this component. Irradiation of this DNA in solution with gamma rays forms a slower component, called the “main peak”, whose sedimentation coefficient also depends on centrifuge speed. More irradiation breaks down this main peak into even slower-sedimenting DNA; it is shown that for low doses, double-strand breaks are formed in both the B. subtilis DNA and in bacteriophage T2 DNA at the same rate linear in dose, 0.018 double-strand breaks per kilorad per mass equal to that of T2 DNA.The speed dependence of the DNA sedimenting at the main peak is compared with an approximate theory of the speed dependence of the sedimentation coefficient of linear DNA by B. H. Zimm (unpublished calculations). The comparison suggests that for sufficiently high centripedal acceleration, DNA molecules larger than a critical mass will sediment at much the same velocity. The theory, and data on the break-up of the DNA with gamma rays, are used to estimate that the DNA extracted is at least 13 times the mass of T2 DNA, and possibly larger.In the Appendix, data from the literature are put together with data taken during this work to make plausible the assumption that the usual theory for the sedimentation of DNA molecules, experimentally tested in salt solutions, may also be applied to sucrose solutions. If, in neutral sucrose gradients, the distance sedimented is proportional to a power α of the mass, the best value of α = 0.38.  相似文献   

13.
Prior irradiation of non-lysogenic bacteria by ultraviolet light leads to an increase in the viability of infecting irradiated λ phage (ultraviolet reactivation). Similarly, u.v. irradiation of wild type or uvrD bacteria lysogenic for λcIind? increased the fraction of closed circular duplex phage DNA molecules formed after infection with u.v.-irradiated λ phage. The closed circular molecules isolated from the irradiated lysogens were shown to be free from u.v. damage by a spheroplast transfection assay. The increase of closed circular molecules is sufficient to explain the ultraviolet reactivation observed by the increase of viability of irradiated phage.In ultraviolet reactivation, damage must be erased on irradiated DNA molecules and the repair is independent of total replication of phage genomes, exchange of sister chromatids or recombination between phage genomes. Protein synthesis is necessary to increase the level of closed circular molecules of irradiated λ phage after irradiation of bacteria.  相似文献   

14.
RecE independent deletions of recombinant plasmids in Bacillus subtilis   总被引:5,自引:0,他引:5  
M Uhlén  J I Flock  L Philipson 《Plasmid》1981,5(2):161-169
Fragments from the Bacillus bacteriophage φ105 have been cloned in recE+ and recE? bacteria lysogenic and nonlysogenic for the phage. Recombination between homologous DNA in the plasmid and the prophage occurs only in the rec+ strain at a low frequency of around 4%. After prolonged cultivation with selective pressure on the antibiotic resistance gene of the vector, the bacteria contained only plasmids with various deletions. This process is recE independent and occurs irrespective of whether base pair homology exists between chromosomal and plasmid DNA. The rate of spontaneous curing of the plasmid decreases in parallel to the appearance of deletions, presumably due to higher stability of the small plasmids.  相似文献   

15.
H Takahashi  H Saito 《Plasmid》1982,8(1):29-35
Transduction of plasmid pBR322 by cytosine-substituted T4 phages has been studied. Three T4 phage mutants which substitute cytosine for all of hydroxymethylcytosine residues in the DNA, were shown to transduce pBR322 at frequencies of 2 × 10?2 to 4 × 10?3 transductants per singly infected cell. Also, three T4 phage strains which partially substitute cytosine for hydroxymethylcytosine, transduced pBR322 at frequencies of 2 × 10?3 to 2 × 10?4. The transduction frequencies of pBR322 we attained are at least 10-fold higher than those reported by G. G. Wilson, K. Young, and G. J. Edlin (1979, Nature (London)280, 80–82). We found that multiplicity of infection in preparation of the transducing phage is the most important factor affecting the frequency of pBR322 transduction. When a lysate made at a multiplicity of infection ranging from 0.5 to 0.05 was used as the donor phage, transduction frequency of pBR322 was 10- to 40-fold higher than that of high-m.o.i. lysate. The transduction frequency was not affected by either restriction systems or amber suppressors of the recipient cells. However, no pBR322-containing transductant was obtained when either recA or polA mutants were used as the recipients. DNA from T4dC phage containing pBR322-transducing particles was analyzed on agarose gel electrophoresis after cleavage with restriction endonucleases. It was suggested that the pBR322 DNA in the T4dC phage particles exists as head-to-tail concatemers.  相似文献   

16.
When Escherichia coli cells were infected with 32P- and 5-bromodeoxyuridine-labeled T7 bacteriophage defective in genes 1.3, 2.3, 4 and 5, doubly branched T7 DNA molecules with “H” or “X”-like configurations were found in the half-heavy density fractions. Physical study showed that they are dimeric molecules composed of two parental DNA molecules (Tsujimoto & Ogawa, 1977a). The transfection assay of these molecules revealed that they were infective. Genetic analysis of progeny in infective centers obtained by transfection of dimeric molecules formed by infection of genetically marked T7 phage showed that these dimeric molecules were genetically biparental.To elucidate the roles of the products of gene 3 (endonuclease I) and gene 5 (DNA polymerase) of phage T7 in the recombination process, the 32P/BrdUrd hybrid DNA molecules which were formed in the infected cells in the presence of these gene products were isolated, and their structures were analyzed. The presence of T7 DNA polymerase seems to stimulate and/or stabilize the interaction of parental DNAs. At an early stage of infection few dimeric molecules were formed in the absence of T7 DNA polymerase, whereas a significant number of doubly branched molecules were formed in its presence. With increasing incubation time, the multiply branched DNA molecules with a high sedimentation velocity accumulated.In contrast to the accumulation of multiply branched molecules in phage with mutations in genes 2, 3 and 4, almost all of the 32P/BrdUrd hybrid DNA formed in phage with mutations in genes 2 and 4 were monomeric linear molecules. Shear fragmentation of monomeric linear 32P/BrdUrd-labeled DNA shifted the density of [32P]DNA to almost fully light density. It was also found that approximately 50% of [32P]DNA was linked covalently to BrdUrd-labeled DNA. These linear monomer DNA molecules had infectivity and some of those formed by infection of genetically marked parents yielded recombinant phages. Therefore the gene 3 product seems to process the branched intermediates to linear recombinant molecules by trimming the branches.  相似文献   

17.
RECOMBINATION-deficient (Rec?) mutants of E. coli express pleiotropic alterations of various phenotypes such as increased ultraviolet light sensitivity, altered patterns of DNA degradation after irradiation, inability to support growth of certain λ phage mutants and many others in addition to reduced recipient ability in mating with Hfr bacteria1. Yet the primary function of any one of the genes responsible for these alterations has not been elucidated. In this paper, the characteristics of recB and recC mutants having temperature-sensitive functions are described. Particular attention is paid to the properties of the ATP-dependent deoxyribonuclease which is known to be missing in recB and recC mutants2–5.  相似文献   

18.
The sedimentation and diffusion coefficients have been determined for Hemophilus influenzae transforming activity and DNA using P32-labeled DNA. The methods employed the Spinco fixed boundary separation cell for measurements of the sedimentation coefficient and the Northrop-Anson diffusion cell to determine the diffusion coefficient. There was a very close correlation between the amount of DNA and transforming activity sedimented or diffused. The sedimentation coefficient (s20°), for both biological activity and DNA was 27 and the diffusion coefficient (D20°) 1 x 10-8 cm2/sec. The molecular weight calculated from these coefficients gave a value of 16 million. There was no difference in the sedimentation coefficients for the two unlinked markers, streptomycin and erythromycin resistance, and the diffusion coefficients for single markers or the linked markers, streptomycin and cathomycin, were the same.  相似文献   

19.
Covalent circular λ DNA molecules produced in Escherichia coli (λ) host cells by infection with labeled λ bacteriophages are cut following superinfection with λ phages damaged by exposure to psoralen and 360 nm light. This cutting of undamaged covalent circular molecules is referred to as “cutting in trans”, and could be a step in damage-induced recombination (Ross &; Howard-Flanders, 1977). Similar experiments performed with the temperate phage 186, which is not homologous with phage λ, showed cutting in trans and damage-induced recombination to occur in homoimmune crosses with phage 186 also. Double lysogens carrying both λ and 186 prophages were used in a test for specificity in cutting in trans and in damage-induced recombination. The double lysogens were infected with 3H-labeled 186 and 32P-labeled λ phages. When these doubly infected lysogens containing covalent circular phage DNA molecules of both types were superinfected with psoralen-damaged 186 phages and incubated, the covalent circular 186 DNA was cut, while λ DNA remained intact. Similarly, superinfection with damaged λ phages caused λ, but not 186, DNA to be cut. Evidently, cutting in trans was specific to the covalent circular DNA homologous to the DNA of the damaged phages. Homoimmune phage-prophage genetic crosses were performed in the double lysogenic host infected with genetically marked λ and 186 phages. Damage-induced recombination was observed in this system only between the damaged phage DNA and the homologous prophage, none being detected between other homolog pairs present in the same cell. This result makes it unlikely that the damaged phage DNA induces a general state of enhanced strand cutting and genetic recombination affecting all homolog pairs present in the host cell. The simplest interpretation of the specificity in cutting and in recombination is as follows. When they have been incised, the damaged phage DNA molecules are able to pair directly with their undamaged covalent circular homologs. The latter molecules are cut in a recA + -dependent reaction by a recombination endonuclease that cuts the intact member of the paired homologs.  相似文献   

20.
The λdv1 plasmid forms an extensive oligomeric series of circular DNA molecules in recombination-proficient (recsu+) Escherichia coli. These rec+ [λdv1]+ strains can be typed into the following four classes according to which member of the oligomeric series is most frequent: monomer, dimer, trimer, and tetramer strains. Each of these strains forms a set of circular λdv1 DNA molecules in which most members belong to the series l, 2l, 3l, 4l, where l is the length of the most frequent circular DNA that characterizes the strain—i.e. l equals the length of the most frequent oligomer in the respective strain. In a given strain, the frequency of a molecular species decreases as its length becomes a larger multiple of l. For example, the dimer strains produce dimers, tetramers, hexamers, octomers, etc., in decreasing frequencies, which reach the limits of detection at about the hexadecamer.When recA? mutations that are absolutely defective for host recombination are introduced into each of these four strains, l retains the same values as in the parent rec+ strain, but oligomers larger than 2l are not formed, and the frequency of the 2l oligomer is much reduced. The introduction of recB? or recC? mutations, which are only partially defective for host recombination, produces a much smaller perturbation of the rec+ distributions, and rec+recA? merodiploids exhibit the rec+ phenotype with respect to both oligomerization and host recombination.The effects of rec? mutations on the distribution of λdv1 oligomers and the nature of the oligomeric series produced in rec+ cells all indicate that an intermolecular reciprocal recombination between two circular λdv1 DNAs is the principal reaction responsible for oligomerization. It is suggested that the small residual oligomerization that yields 2l oligomers in recA?cells results from aberrant segregation of the DNA strands at the termination of the replication of l-sized molecules.The inactivation of recA, but not of recB or C, also results in a marked reduction in the frequency of spontaneous curing which in recA+dv1+]hosts leads to the segregation of [λdv?]cells. However, spontaneous curing does not appear to be dependent upon the recombination reactions that yield the [λdv 1+]oligomers, since the frequency of oligomerization in recA+ hosts decreases with increasing l, whereas the frequency of curing increases with increasing l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号