首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate protective immunity conferred by CTL against viral pathogens, we have analyzed CD8(+) T cell responses to the immunodominant nucleoprotein epitope (NP(366-374)) of influenza A virus in B6 mice during primary and secondary infections in vivo. Unlike the highly biased TCR Vbeta repertoire, the associated Valpha repertoire specific for the NP(366-374)/D(b) ligand is quite diverse. Nonetheless, certain public and conserved CDR3alpha clonotypes with distinct molecular signatures were identified. Pairing of public Valpha and Vbeta domains creates an alphabeta TCR heterodimer that binds efficiently to the NP(366-374)/D(b) ligand and stimulates T cell activation. In contrast, private TCRs, each comprising a distinct alpha chain paired with the same public beta chain, interact very differently. Molecular dynamics simulation reveals that the conformation and mobility of the shared Vbeta CDR loops are governed largely by the associated Valpha domains. These results provide insight into molecular principles regarding public versus private TCRs linked to immune surveillance after infection with influenza A virus.  相似文献   

2.
The CD8(+) T cell response to Moloney-murine leukemia virus (M-MuLV)-induced Ags is almost entirely dominated by the exclusive expansion of lymphocytes that use preferential TCRVbeta chain rearrangements. In mice lacking T cells expressing these TCRVbeta, we demonstrate that alternative TCRVbeta can substitute for the lack of the dominant TCRVbeta in the H-2-restricted M-MuLV Ag recognition. We show that, at least for the H-2(b)-restricted response, the shift of TCR usage is not related to a variation of the immunodominant M-MuLV epitope recognition. After virus immunization, all the potentially M-MuLV-reactive lymphocytes are primed, but only the deletion of dominant Vbeta rescues the alternative Vbeta response. The mechanism of clonal T cell "immunodomination" that guides the preferential Vbeta expansion is likely the result of a proliferative advantage of T cells expressing dominant Vbeta, due to differences in TCR affinity and/or cosignal requirements. In this regard, a CD8 involvement is strictly required for the virus-specific cytotoxic activity of CTL expressing alternative, but not dominant, Vbeta gene rearrangements. The ability of T cells expressing alternative TCRVbeta rearrangements to mediate tumor protection was evaluated by a challenge with M-MuLV tumor cells. Although T cells expressing alternative Vbeta chains were activated and expanded, they were not able to control tumor growth in a long-lasting manner due to their incapacity of conversion and accumulation in the T central memory pool.  相似文献   

3.
Jessen B  Faller S  Krempl CD  Ehl S 《Journal of virology》2011,85(19):10135-10143
Susceptibility to respiratory syncytial virus (RSV) infection in mice is genetically determined. While RSV causes little pathology in C57BL/6 mice, pulmonary inflammation and weight loss occur in BALB/c mice. Using major histocompatibility complex (MHC)-congenic mice, we observed that the H-2(d) allele can partially transfer disease susceptibility to C57BL/6 mice. This was not explained by altered viral elimination or differences in the magnitude of the overall virus-specific cytotoxic T lymphocyte (CTL) response. However, H-2(d) mice showed a more focused response, with 70% of virus-specific CTL representing Vβ8.2(+) CTL directed against the immunodominant epitope M2-1 82, while in H-2(b) mice only 20% of antiviral CTL were Vβ9(+) CTL specific for the immunodominant epitope M187. The immunodominant H-2(d)-restricted CTL lysed target cells less efficiently than the immunodominant H-2(b) CTL, probably contributing to prolonged CTL stimulation and cytokine-mediated immunopathology. Accordingly, reduction of dominance of the M2-1 82-specific CTL population by introduction of an M187 response in the F1 generation of a C57BL/6N × C57BL/6-H-2(d) mating (C57BL/6-H-2(dxb) mice) attenuated disease. Moreover, disease in H-2(d) mice was less pronounced after infection with an RSV mutant failing to activate M2-1 82-specific CTL or after depletion of Vβ8.2(+) cells. These data illustrate how the MHC-determined diversity and functional avidity of CTL responses contribute to disease susceptibility after viral infection.  相似文献   

4.
We previously studied the lung Vbeta TCR repertoire of C57BL/6 mice during primary infection with the pathogen Histoplasma capsulatum. We observed a consistent oligoclonal expansion of Vbeta4(+) T cells during the peak of infection and early stages of resolution. The Vbeta4(+) family played a role in protective immunity against the fungus. Depletion of this subpopulation of T cells hindered optimal clearance of infection from tissues. In this report we analyze the flux of the Vbeta TCR repertoire in the lungs of C57BL/6 mice with reinfection histoplasmosis. We observed a significant increase in Vbeta6(+) T cells on days 7, 10, and 14, the peak and early resolution phases of infection. This skewing was preceded by an increased number of memory T cells within Vbeta6(+) cells. The VDJ sequences of Vbeta6 chains were oligoclonal during the early stages of the infection, suggesting that the expansion was driven by a small number of Ags. More than 96% of the expanded Vbeta6(+) cells were CD4(+). Depletion of Vbeta6(+) T cells but not Vbeta4(+) T cells induced a modest but significant delay in fungal clearance. Simultaneous depletion of Vbeta4(+) and Vbeta6(+) T cells induced a more pronounced impairment of host resistance. These studies illustrate the dynamic interactions between Vbeta families in the response to microbial challenge.  相似文献   

5.
The NK1.1(+)TCRalphabeta(int) CD4(+), or double negative T cells (NK T cells) consist of a mixture of CD1d-restricted and CD1d-unrestricted cells. The relationships between CD4(+)NK1.1(+) T cells and conventional T cells are not understood. To compare their respective TCR repertoires, NK1.1(+)TCRalphabeta(int), CD4(+) T cells have been sorted out of the thymus, liver, spleen, and bone marrow of C57BL/6 mice. Molecular analysis showed that thymus and liver used predominantly the Valpha14-Jalpha281 and Vbeta 2, 7, and 8 segments. These cells are CD1d restricted and obey the original definition of NK T cells. The complementarity-determining region 3 (CDR3) sequences of the TCR Vbeta8.2-Jbeta2.5 chain of liver and thymus CD4(+) NK T cells were determined and compared with those of the same rearrangements of conventional CD4(+) T cells. No amino acid sequence or usage characteristic of NK T cells could be evidenced: the Vbeta8.2-Jbeta2.5 diversity regions being primarily the same in NK T and in T cells. No clonal expansion of the beta-chains was observed in thymus and liver CD1d-restricted CD4(+)NK T cells, suggesting the absence of acute or chronic Ag-driven stimulation. Molecular analysis of the TCR used by Valpha14-Jalpha281 transgenic mice on a Calpha(-/-) background showed that the alpha-chain can associate with beta-chains using any Vbeta segment, except in NK T cells in which it paired predominately with Vbeta 2, 7, and 8(+) beta-chains. The structure of the TCR of NK T cells thus reflects the affinity for the CD1d molecule rather than a structural constraint leading to the association of the invariant alpha-chain with a distinctive subset of Vbeta segment.  相似文献   

6.
Immunodominance in self-Ag-reactive pathogenic CD4(+) T cells has been well established in several experimental models. Although it is clear that regulatory lymphocytes (Treg) play a crucial role in the control of autoreactive cells, it is still not clear whether immunodominant CD4(+) Treg clones are also involved in control of autoreactivity. We have shown that TCR-peptide-reactive CD4(+) and CD8(+) Treg play an important role in the spontaneous recovery and resistance from reinduction of experimental autoimmune encephalomyelitis in B10.PL mice. We report, by sequencing of the TCR alpha- and beta-chain associated with CD4(+) Treg, that the TCR repertoire is limited and the majority of CD4(+) Treg use the TCR Vbeta14 and Valpha4 gene segments. Interestingly, sequencing and spectratyping data of cloned and polyclonal Treg populations revealed that a dominant public CD4(+) Treg clonotype expressing Vbeta14-Jbeta1.2 with a CDR3 length of 7 aa exists in the naive peripheral repertoire and is expanded during the course of recovery from experimental autoimmune encephalomyelitis. Furthermore, a higher frequency of CD4(+) Treg clones in the naive repertoire correlates with less severity and more rapid spontaneous recovery from disease in parental B10.PL or PL/J and (B10.PL x PL/J)F(1) mice. These findings suggest that unlike the Ag-nonspecific, diverse TCR repertoire among the CD25(+)CD4(+) Treg population, TCR-peptide-reactive CD4(+) Treg involved in negative feedback regulation of autoimmunity use a highly limited TCR V-gene repertoire. Thus, a selective set of immunodominant Treg as well as pathogenic T cell clones can be targeted for potential intervention in autoimmune disease conditions.  相似文献   

7.
8.
The simian virus 40 (SV40) large tumor antigen (Tag) is a virus-encoded oncoprotein which is the target of a strong cytotoxic T-lymphocyte (CTL) response. Three immunodominant H-2(b)-restricted epitopes, designated epitopes I, II/III, and IV, have been defined. We investigated whether induction of CTLs directed against these Tag epitopes might control Tag-induced tumors in SV11(+) (H-2(b)) mice. SV11(+) mice develop spontaneous tumors of the choroid plexus due to expression of SV40 Tag as a transgene. We demonstrate that SV11(+) mice are functionally tolerant to the immunodominant Tag CTL epitopes. CTLs specific for the H-2Kb-restricted Tag epitope IV were induced in SV11(+) mice following adoptive transfer with unprimed C57BL/6 spleen cells and immunization with recombinant vaccinia viruses expressing either full-length Tag or the H-2Kb-restricted epitope IV as a minigene. In addition, irradiation of SV11(+) mice prior to adoptive transfer with unprimed C57BL/6 spleen cells led to the priming of epitope IV-specific CTLs by the endogenous Tag. Induction of epitope IV-specific CTLs in SV11(+) mice by either approach correlated with increased life span and control of the choroid plexus tumor progression, indicating that CTLs specific for the immunodominant Tag epitope IV control the progressive growth of spontaneous tumors induced by this DNA virus oncogene in transgenic mice.  相似文献   

9.
Human CD1d molecules present an unknown ligand, mimicked by the synthetic glycosphingolipid alpha-galactosylceramide (alphaGC), to a highly conserved NKT cell subset expressing an invariant TCR Valpha24-JalphaQ paired with Vbeta11 chain (Valpha24(+)Vbeta11(+) invariant NK T cell (NKT(inv))). The developmental pathway of Valpha24(+)Vbeta11(+)NKT(inv) is still unclear, but recent studies in mice were consistent with a TCR instructive, rather than a stochastic, model of differentiation. Using CD1d-alphaGC-tetramers, we demonstrate that in humans, TCR variable domains other than Valpha24 and Vbeta11 can mediate specific recognition of CD1d-alphaGC. In contrast to Valpha24(+)Vbeta11(+)NKT(inv) cells, Valpha24(-)/CD1d-alphaGC-specific T cells express either CD8alphabeta or CD4 molecules, but they are never CD4 CD8 double negative. We show that CD8alphabeta(+)Valpha24(-)/CD1d-alphaGC-specific T cells exhibit CD8-dependent specific cytotoxicity and have lower affinity TCRs than Valpha24(+)/CD1d-alphaGC-specific T cells. In conclusion, our results demonstrate that, contrary to the currently held view, recognition of CD1d-alphaGC complex in humans is not uniformly restricted to the Valpha24-JalphaQ/Vbeta11 NKT cell subset, but can be mediated by a diverse range of Valpha and Vbeta domains. The existence of a diverse repertoire of CD1d-alphaGC-specific T cells in humans strongly supports their Ag-driven selection.  相似文献   

10.
W Chen  H Qin  B Chesebro    M A Cheever 《Journal of virology》1996,70(11):7773-7782
FBL-3 is a highly immunogenic murine leukemia of C57BL/6 origin induced by Friend murine leukemia virus (MuLV). Immunization of C57BL/6 mice with FBL-3 readily elicits CD8+ cytotoxic T lymphocytes (CTL) capable of lysing FBL-3 as well as syngeneic leukemias induced by Moloney and Rauscher MuLV. The aim of this current study was to identify the immunogenic epitope(s) recognized by the FBL-3-specific CD8+ CTL. A series of FBL-3-specific CD8+ CTL clones were generated from C57BL/6 mice immunized to FBL-3. The majority of CTL clones (32 of 38) were specific for F-MuLV gag-encoded antigen. By using a series of recombinant vaccinia viruses expressing full-length and truncated F-MuLV gag genes, the antigenic epitope recognized by the FBL-3 gag-specific CTL clones, as well as by bulk-cultured CTL from spleens of mice immune to FBL-3, was localized to the leader sequence of gPr80gag protein. The precise amino acid sequence of the CTL epitope in the leader sequence was identified as CCLCLTVFL (positions 85-93) by examining lysis of targets incubated with a series of synthetic leader sequence peptides. No evidence of other CTL epitopes in the gPr80gag or Pr65gag core virion structural polyproteins was found. The identity of CCLCLTVFL as the target peptide was validated by showing that immunization with the peptide elicited CTL that lysed FBL-3. The CTL elicited by the Gag peptide also specifically lysed syngeneic leukemia cells induced by Moloney and Rauscher MuLV (MBL-2 and RBL-5). The transmembrane peptide was shown to be the major gag-encoded antigenic epitope recognized by bulk-cultured CTL derived from C57BL/6 mice immunized to MBL-2 or RBL-5. Thus, the CTL epitope of FBL-3 is localized to the transmembrane anchor domain of the nonstructural Gag polyprotein and is shared by leukemia/lymphoma cell lines induced by Friend, Moloney, and Rauscher MuLV.  相似文献   

11.
Mice expressing the Torpedo acetylcholine receptor alpha-chain as a neo-self-Ag exhibit a reduced frequency of T cells responding to the immunodominant epitope Talpha146-162 indicating a degree of tolerance. We characterized tolerance induction in these animals by analyzing the residual Talpha146-162-responsive T cell population and comparing it to that of nontransgenic littermates. Using CD4(high) sorting, we isolated the vast majority of Ag-reactive T cells from both strains of mice. Quantitative studies of the CD4(high) populations in transgenic mice following immunization with Talpha146-162 revealed a diminished expansion of cells expressing the canonical TCRBV6 but not other TCRBV gene segments when compared with nontransgenic littermates. In addition, CD4(high) cells from transgenic mice were functionally hyporesponsive to Talpha146-162 in terms of proliferation and cytokine secretion regardless of TCRBV gene segment use. TCR sequence analysis of transgenic Vbeta6(+)CD4(high) cells revealed a reduced frequency of cells expressing a conserved motif within the TCRbeta CDR3. Thus, the canonical Talpha146-162 responsive, Vbeta6(+) population demonstrates both quantitative and qualitative deficits that correlate with an altered TCR repertoire whereas the non-Vbeta6 population in transgenic mice exhibits only a reduction in peptide responsiveness, a qualitative defect. These data demonstrate that discrete autoreactive T cell populations with identical peptide/MHC specificity in Torpedo acetylcholine receptor-alpha-transgenic animals bear distinct tolerance imprints.  相似文献   

12.
Comparison of TCRalphabeta repertoires of myelin oligodendrocyte glycoprotein (MOG)-specific T lymphocytes in C57BL/6 and TdT-deficient littermates (TdT(-/-)) generated during experimental autoimmune encephalomyelitis (EAE) highlights a link between a diversified TCRalphabeta repertoire and EAE relapses. At the onset of the disease, the EAE-severity is identical in TdT(+/-) and TdT(-/-) mice and the neuropathologic public MOG-specific T cell repertoires express closely similar public Valpha-Jalpha and Vbeta-Jbeta rearrangements in both strains. However, whereas TdT(+/+) and TdT(+/-) mice undergo successive EAE relapses, TdT(-/-) mice recover definitively and the lack of relapses does not stem from dominant regulatory mechanisms. During the first relapse of the disease in TdT(+/-) mice, new public Valpha-Jalpha and Vbeta-Jbeta rearrangements emerge that are distinct from those detected at the onset of the disease. Most of these rearrangements contain N additions and are found in CNS-infiltrating T lymphocytes. Furthermore, CD4(+) T splenocytes bearing these rearrangements proliferate to the immunodominant epitope of MOG and not to other immunodominant epitopes of proteolipid protein and myelin basic protein autoantigens, excluding epitope spreading to these myelin proteins. Thus, in addition to epitope spreading, a novel mechanism involving TCRalphabeta repertoire diversification contributes to autoimmune progression.  相似文献   

13.
Despite the tremendous plasticity of the TCR repertoire, T cells recognize a limited number of antigenic sites (frequently a single site, or immunodominant epitope) on a complex protein Ag. Current models suggest that the immunodominant epitope of a complex protein is the processed peptide that binds to the MHC molecule with the highest affinity. Conversely, the inability of the T cell population to recognize a specific epitope, termed a "hole" in the repertoire, can prevent the immunodominance of a peptide despite efficient processing and MHC binding of the peptide. The role of specific TCR alpha- or beta-chains in determining MHC restriction and recognizing specific epitopes is complex and incompletely understood. To evaluate the contribution of each TCR chain to the functional diversity of the T cell repertoire, we investigated in vivo the T cell response to phage lambda-repressor protein in transgenic mice expressing a single rearranged beta-chain gene (C57L beta mice) in association with the complete germline alpha-chain repertoire. Our results demonstrate that expression of the TCR beta-chain transgene alters the immunodominant epitope recognized by T cells. However, after immunization with the appropriate peptide the transgenic mice can also respond to the nonimmunodominant epitope; thus, the expression of the TCR beta-chain transgene does not create a hole in the repertoire. These data indicate that the primary site, or immunodominant epitope, of an Ag recognized by T cells can be altered by the preimmune TCR repertoire independent of antigen processing and MHC affinity.  相似文献   

14.
Cytotoxic T lymphocyte (CTL) responses against influenza A virus in C57BL/6 mice are dominated by a small number of viral peptides among many that are capable of binding to major histocompatibility complex (MHC) class I molecules. The basis of this limited immune recognition is unknown. Here, we present X-ray structures of MHC class I molecules in complex with two immunodominant epitopes (PA(224-233)/D(b) and PB1(703-711)/K(b)) and one non-immunogenic epitope (HA(468-477)/D(b)) of the influenza A virus. The immunodominant peptides are each characterized by a bulge at the C terminus, lifting P6 and P7 residues out of the MHC groove, presenting featured structural elements to T-cell receptors (TCRs). Immune recognition of PA(224-233)/D(b) will focus largely on the exposed P7 arginine residue. In contrast, the non-immunogenic HA(468-477) peptide lacks prominent features in this C-terminal bulge. In the K(b)-bound PB1(703-711) epitope, the bulge results from a non-canonical binding motif, such that the mode of presentation of this peptide strongly resembles that of D(b)-bound peptides. Given that PA(224-233)/D(b), PB1(703-711)/K(b) and the previously defined NP(366-374)/D(b) epitopes dominate the primary response to influenza A virus in C57BL/6 mice, our findings indicate that residues of the C-terminal bulge are important in selection of the immunodominant CTL repertoire.  相似文献   

15.
It is well established that the route of infection affects the nature of the adaptive immune response. However, little is known about the effects of the route of exposure on development of cytotoxic T-lymphocyte (CTL) responses. Alternative antigen-presenting cell populations, tissue-restricted expression of class I major histocompatibility complex-encoded molecules, and unique T-cell receptor (TCR)-bearing cells in mucosal tissues could influence the selection and expansion of responder T cells. This study addresses the question of whether the route of virus infection affects the selection and expansion of subpopulations of virus-specific CTLs. Mice were infected orally or in the hind footpads with reovirus, and the repertoires of TCR beta-chains expressed on virus-specific CD8(+) T cells in Peyer's patches or lymph nodes and spleens were examined. CD8(+) cells expressing the variable gene segment of the TCR beta-chain 6 (Vbeta6) expanded in the spleens of mice infected by either route and in CTL lines established from the spleens and draining lymphoid tissues. Adoptively transferred Vbeta6(+) CD8(+) T cells from orally or parenterally infected donors expanded in reovirus-infected severe combined immunodeficient recipient mice and mediated cytotoxicity ex vivo. Furthermore, recovered Vbeta6(+) cells were enriched for clones utilizing uniform complementarity-determining region 3 (CDR3) lengths. However, sequencing of CDR3beta regions from Vbeta6(+) CD8(+) cells indicated that Jbeta gene segment usage is significantly more restricted in CTLs from orally infected mice, suggesting that the route of infection affects selection and/or subsequent expansion of virus-specific CTLs.  相似文献   

16.
Immunization with recombinant heat shock protein 60 (rHsp60) from Histoplasma capsulatum or a region of the protein designated fragment 3 (F3) confers protection from a subsequent challenge in mice. To determine the T cell repertoire involved in the response to Hsp60, T cell clones from C57BL/6 mice immunized with rHsp60 were generated and examined for Vbeta usage by flow cytometry and RT-PCR. Vbeta8.1/8.2(+) T cells were preferentially expanded; other clones bore Vbeta4, -6, or -11. When Vbeta8.1/8.2(+) cells were depleted in mice, Vbeta4(+) T cell clones were almost exclusively isolated. Measurement of cytokine production demonstrated that nine of 16 Vbeta8.1/8.2(+) clones were Th1, while only three of 13 non-Vbeta8.1/8.2(+) clones were Th1. In mice immunized with rHsp60, depletion of Vbeta8.1/8.2(+), but not Vbeta6(+) plus Vbeta7(+), T cells completely abolished the protective efficacy of Hsp60 to lethal and sublethal challenges. Examination of the TCR revealed that a subset of Vbeta8.1/2(+) clones that produced IFN-gamma and were reactive to F3 shared a common CDR3 sequence, DGGQG. Transfer of these T cell clones into TCR alpha/beta(-/-) or IFN-gamma(-/-) mice significantly improved survival, while transfer of other Vbeta8.1/8.2(+) clones that were F3 reactive but were Th2 or clones that were not reactive to F3 but were Th1 did not confer protection. These data indicate that a distinct subset of Vbeta8.1/8.2(+) T cells is crucial for the generation of a protective response to rHsp60.  相似文献   

17.
C57BL/6 mice develop a virus-specific cytotoxic T-lymphocyte (CTL) response after intraperitoneal inoculation with either the DA strain of Theiler's virus or Mengo virus, two members of the Cardiovirus genus. These CTLs contribute to viral clearance in the case of Theiler's virus but do not protect the mice from the fatal encephalomyelitis caused by Mengo virus. In this study we show that DA and Mengo virus-induced CTLs are cross-reactive. The cross-reactivity is due to a conserved, H-2Db-restricted epitope located between amino acid residues 122 and 130 of the VP2 capsid protein (VP2(122-130)). This epitope is immunodominant in C57BL/6 mice infected with Theiler's virus. The VP2(122-130) epitope, initially identified for Mengo virus, is the first CTL epitope described for Theiler's virus.  相似文献   

18.
We recently identified the immunodominant epitope for polyoma virus-specific CTL as the Dk-associated peptide MT389-397 derived from the middle T (MT) viral oncoprotein. Another Dk-restricted peptide corresponding to residues 236-244 of MT was recognized by nearly all MT389-397-reactive CTL clones, but required concentrations at least 2 logs higher to sensitize syngeneic target cells for lysis. Except for identity at the three putative Dk-peptide anchor residues, MT236-244 shares no homology with MT389-397. Using a novel europium-based class I MHC-peptide binding immunoassay, we determined that MT236-244 bound Dk 2-3 logs less well than MT389-397. Infection with a mutant polyoma virus whose MT is truncated just before the MT389-397 epitope or immunization with MT389-397 or MT236-244 peptides elicited CTL that recognized both MT389-397 and MT236-244. Importantly, infection with a polyoma virus lacking MT389-397 and mutated in an MT236-244 Dk anchor position induced polyoma virus-specific CTL recognizing neither MT389-397 nor MT236-244 epitopes. Despite predominant usage of the Vbeta6 gene segment, MT389-397/MT236-244 cross-reactive CTL clones possess diverse complementarity-determining region 3beta domains; this is functionally reflected in their heterogeneous recognition patterns of alanine-monosubstituted MT389-397 peptides. Using Dk/MT389-397 tetramers, we directly visualized MT236-244 peptide-induced TCR down-modulation of virtually all MT389-397-specific CD8+ T cells freshly explanted from polyoma-infected mice, suggesting that a single TCR recognizes both Dk-restricted epitopes. The availability of immunodominant epitope-specific CTL capable of recognizing a second epitope in MT, a viral protein essential for tumorigenesis, may serve to amplify the CTL response to the immunodominant epitope and prevent the emergence of immunodominant epitope-loss viruses and virus-induced tumors.  相似文献   

19.
HSV type 1 (HSV-1) expresses its genes sequentially as immediate early (α), early (β), leaky late (γ1), and true late (γ2), where viral DNA synthesis is an absolute prerequisite only for γ2 gene expression. The γ1 protein glycoprotein B (gB) contains a strongly immunodominant CD8(+) T cell epitope (gB(498-505)) that is recognized by 50% of both the CD8(+) effector T cells in acutely infected trigeminal ganglia (TG) and the CD8(+) memory T cells in latently infected TG. Of 376 predicted HSV-1 CD8(+) T cell epitopes in C57BL/6 mice, 19 (gB(498-505) and 18 subdominant epitopes) stimulated CD8(+) T cells in the spleens and TG of HSV-1 acutely infected mice. These 19 epitopes identified virtually all CD8(+) T cells in the infected TG that represent all or the vast majority of the HSV-specific CD8(+) TCR repertoire. Only 11 of ~84 HSV-1 proteins are recognized by CD8(+) T cells, and most (~80%) are expressed before viral DNA synthesis. Neither the immunodominance of gB(498-505) nor the dominance hierarchy of the subdominant epitopes is due solely to MHC or TCR affinity. We conclude that the vast majority of CD8(+) T cells in HSV-1 acutely infected TG are HSV specific, that HSV-1 β and γ1 proteins that are expressed before viral DNA synthesis are favored targets of CD8(+) T cells, and that dominance within the TCR repertoire is likely due to the frequency or expansion and survival characteristics of CD8(+) T cell precursors.  相似文献   

20.
CD8(+) T lymphocytes (T(CD8)) responding to subdominant epitopes provide alternate targets for the immunotherapy of cancer, particularly when self-tolerance limits the response to immunodominant epitopes. However, the mechanisms that promote T(CD8) subdominance to tumor Ags remain obscure. We investigated the basis for the lack of priming against a subdominant tumor epitope following immunization of C57BL/6 (B6) mice with SV40 large tumor Ag (T Ag)-transformed cells. Immunization of B6 mice with wild-type T Ag-transformed cells primes T(CD8) specific for three immunodominant T Ag epitopes (epitopes I, II/III, and IV) but fails to induce T(CD8) specific for the subdominant T Ag epitope V. Using adoptively transferred T(CD8) from epitope V-specific TCR transgenic mice and immunization with T Ag-transformed cells, we demonstrate that the subdominant epitope V is weakly cross-presented relative to immunodominant epitopes derived from the same protein Ag. Priming of naive epitope V-specific TCR transgenic T(CD8) in B6 mice required cross-presentation by host APC. However, robust expansion of these T(CD8) required additional direct presentation of the subdominant epitope by T Ag-transformed cells and was only significant following immunization with T Ag-expressing cells lacking the immunodominant epitopes. These results indicate that limited cross-presentation coupled with competition by immunodominant epitope-specific T(CD8) contributes to the subdominant nature of a tumor-specific epitope. This finding has implications for vaccination strategies targeting T(CD8) responses to cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号