首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The contribution of cell proliferation to regeneration varies greatly between different metazoan models. Planarians rely on pluripotent neoblasts and amphibian limb regeneration depends upon formation of a proliferative blastema, while regeneration in Hydra can occur in the absence of cell proliferation. Recently, the cnidarian Nematostella vectensis has shown potential as a model for studies of regeneration because of the ability to conduct comparative studies of patterning during embryonic development, asexual reproduction, and regeneration. The present study investigates the pattern of cell proliferation during the regeneration of oral structures and the role of cell proliferation in this process. In intact polyps, cell proliferation is observed in both ectodermal and endodermal tissues throughout the entire oral-aboral axis, including in the tentacles and physa. Following bisection, there is initially little change in proliferation at the wound site of the aboral fragment, however, beginning 18 to 24?hours after amputation there is a dramatic increase in cell proliferation at the wound site in the aboral fragment. This elevated level of proliferation is maintained throughout the course or regeneration of oral structures, including the tentacles, the mouth, and the pharynx. Treatments with the cell proliferation inhibitors hydroxyurea and nocodazole demonstrate that cell proliferation is indispensable for the regeneration of oral structures. Although inhibition of regeneration by nocodazole was generally irreversible, secondary amputation reinitiates cell proliferation and regeneration. The study has found that high levels of cell proliferation characterize the regeneration of oral structures in Nematostella, and that this cell proliferation is necessary for the proper progression of regeneration. Thus, while cell proliferation contributes to regeneration of oral structures in both Nematostella and Hydra, Nematostella lacks the ability to undergo the compensatory morphallactic mode of regeneration that characterizes Hydra. Our results are consistent with amputation activating a quiescent population of mitotically competent stem cells in spatial proximity to the wound site, which form the regenerated structures.  相似文献   

3.
4.
5.
Cnidarians are primitive animals located in a basal position in the phylogenetic tree of the Animal Kingdom, as an outgroup of the Bilaterians. Therefore, studies on cnidarian developmental biology may illustrate how fundamental developmental processes have originated and changed during animal evolution. A particular example of this is the establishment of polarity along the body axes, which is under the control of a number of developmental genes, most of them conserved in evolution and playing similar roles in diverged species. Concerning the anterior-posterior axis, genetic and molecular studies on Drosophila have shown that the nanos gene plays an essential role in defining posterior structures during early embryonic development. Here we report the isolation of two nanos orthologs in the anthozoan Nematostella vectensis. We show that nanos mRNA is asymmetrically distributed in the fertilized egg and this asymmetry is maintained during embryonic development. At gastrula and planula larva stages, nanos expression is permanently associated with posterior body regions. These results, together with our previous analysis in the hydrozoan Podocoryne carnea, indicate that posterior nanos expression during development is a conserved feature among cnidarians. Therefore, the potential role of cnidarian nanos in defining axial polarity as a posterior determinant would represent an ancestral trait in the Animal Kingdom.  相似文献   

6.
7.
The evolutionary origin of the anterior-posterior and the dorsoventral body axes of Bilateria is a long-standing question. It is unclear how the main body axis of Cnidaria, the sister group to the Bilateria, is related to the two body axes of Bilateria. The conserved antagonism between two secreted factors, BMP2/4 (Dpp in Drosophila) and its antagonist Chordin (Short gastrulation in Drosophila) is a crucial component in the establishment of the dorsoventral body axis of Bilateria and could therefore provide important insight into the evolutionary origin of bilaterian axes. Here, we cloned and characterized two BMP ligands, dpp and GDF5-like as well as two secreted antagonists, chordin and gremlin, from the basal cnidarian Nematostella vectensis. Injection experiments in zebrafish show that the ventralizing activity of NvDpp mRNA is counteracted by NvGremlin and NvChordin, suggesting that Gremlin and Chordin proteins can function as endogenous antagonists of NvDpp. Expression analysis during embryonic and larval development of Nematostella reveals asymmetric expression of all four genes along both the oral-aboral body axis and along an axis perpendicular to this one, the directive axis. Unexpectedly, NvDpp and NvChordin show complex and overlapping expression on the same side of the embryo, whereas NvGDF5-like and NvGremlin are both expressed on the opposite side. Yet, the two pairs of ligands and antagonists only partially overlap, suggesting complex gradients of BMP activity along the directive axis but also along the oral-aboral axis. We conclude that a molecular interaction between BMP-like molecules and their secreted antagonists was already employed in the common ancestor of Cnidaria and Bilateria to create axial asymmetries, but that there is no simple relationship between the oral-aboral body axis of Nematostella and one particular body axis of Bilateria.  相似文献   

8.
The starlet sea anemone Nematostella vectensis is an emerging model organism for developmental and evolutionary biology. Due to the availability of genome data and its amenability to genetic manipulation Nematostella serves as a source for comparative molecular and phylogenetic studies. Despite this fact, the characterization of the nematocyst inventory and of nematocyst-specific genes is still fragmentary and sometimes misleading in this cnidarian species. Here, we present a thorough qualitative and quantitative analysis of nematocysts in Nematostella vectensis. In addition, we have cloned major nematocyst components, Nematostella minicollagens 1, 3 and 4, and show their expression patterns by in situ hybridization and immunocytochemistry using specific antibodies. Our data provides tools and insights for further studies on nematocyst morphogenesis in Nematostella and comparative evolution in cnidarians.  相似文献   

9.
10.
Gene families, which encode toxins, are found in many poisonous animals, yet there is limited understanding of their evolution at the nucleotide level. The release of the genome draft sequence for the sea anemone Nematostella vectensis enabled a comprehensive study of a gene family whose neurotoxin products affect voltage-gated sodium channels. All gene family members are clustered in a highly repetitive approximately 30-kb genomic region and encode a single toxin, Nv1. These genes exhibit extreme conservation at the nucleotide level which cannot be explained by purifying selection. This conservation greatly differs from the toxin gene families of other animals (e.g., snakes, scorpions, and cone snails), whose evolution was driven by diversifying selection, thereby generating a high degree of genetic diversity. The low nucleotide diversity at the Nv1 genes is reminiscent of that reported for DNA encoding ribosomal RNA (rDNA) and 2 hsp70 genes from Drosophila, which have evolved via concerted evolution. This evolutionary pattern was experimentally demonstrated in yeast rDNA and was shown to involve unequal crossing-over. Through sequence analysis of toxin genes from multiple N. vectensis populations and 2 other anemone species, Anemonia viridis and Actinia equina, we observed that the toxin genes for each sea anemone species are more similar to one another than to those of other species, suggesting they evolved by manner of concerted evolution. Furthermore, in 2 of the species (A. viridis and A. equina) we found genes that evolved under diversifying selection, suggesting that concerted evolution and accelerated evolution may occur simultaneously.  相似文献   

11.
12.
Salt marshes are challenging habitats due to natural variability in key environmental parameters including temperature, salinity, ultraviolet light, oxygen, sulfides, and reactive oxygen species. Compounding this natural variation, salt marshes are often heavily impacted by anthropogenic insults including eutrophication, toxic contamination, and coastal development that alter tidal and freshwater inputs. Commensurate with this environmental variability, estuarine animals generally exhibit broader physiological tolerances than freshwater, marine, or terrestrial species. One factor that determines an organism's physiological tolerance is its ability to upregulate "stress-response genes" in reaction to particular stressors. Comparative studies on diverse organisms have identified a number of evolutionarily conserved genes involved in responding to abiotic and biotic stressors. We used homology-based scans to survey the sequenced genome of Nematostella vectensis, the starlet sea anemone, an estuarine specialist, to identify genes involved in the response to three kinds of insult-physiochemical insults, pathogens, and injury. Many components of the stress-response networks identified in triploblastic animals have clear orthologs in the sea anemone, meaning that they must predate the cnidarian-triploblast split (e.g., xenobiotic receptors, biotransformative genes, ATP-dependent transporters, and genes involved in responding to reactive oxygen species, toxic metals, osmotic shock, thermal stress, pathogen exposure, and wounding). However, in some instances, stress-response genes known from triploblasts appear to be absent from the Nematostella genome (e.g., many metal-complexing genes). This is the first comprehensive examination of the genomic stress-response repertoire of an estuarine animal and a member of the phylum Cnidaria. The molecular markers of stress response identified in Nematostella may prove useful in monitoring estuary health and evaluating coastal conservation efforts. These data may also inform conservation efforts on other cnidarians, such as the reef-building corals.  相似文献   

13.
A protocol was established to reproducibly induce spawning in the basal cnidarian Nematostella vectensis (Anthozoa). We found that a combination of feeding regime, dark-light cycle and temperature shift synergistically induced gametogenesis in adult polyps. Females lay between 100-600 eggs. This procedure led reproducibly to the production of thousands of eggs over the course of more than 1 year in weekly cycles. Gametes are released in a time window of about 2 h resulting in predictable and fairly synchronized development. We also present a method for in vitro fertilization allowing manipulation of early embryos. These methods as well as the simple culture conditions could provide important prerequisites for the use of Nematostella as a model system for the development of a basal Metazoa.  相似文献   

14.
We characterized 10 polymorphic microsatellite loci from Nematostella vectensis, a burrowing anemone recently introduced to estuaries along the Pacific coast of North America and the southeast coast of England. Preliminary results indicate high variability and significant departures from Hardy–Weinberg equilibrium, the latter likely the result of population genetic structure and reproductive plasticity. Both results are consistent with earlier genetic analyses. These markers will be useful for resolving global patterns of introduction and for describing spatio‐temporal genetic structure at local and regional scales.  相似文献   

15.
The matricellular glycoprotein SPARC is composed of three functional domains that are evolutionarily conserved in organisms ranging from nematodes to mammals: a Ca2+-binding glutamic acid-rich acidic domain at the N-terminus (domain I), a follistatin-like module (domain II), and an extracellular Ca2+-binding (EC) module that contains two EF-hands and two collagen-binding epitopes (domain III). We report that four SPARC orthologs (designated nvSPARC1-4) are expressed by the genome of the starlet anemone Nematostella vectensis, a diploblastic basal cnidarian composed of an ectoderm and endoderm separated by collagen-based mesoglea. We also report that domain I is absent from all N. vectensis SPARC orthologs. In situ hybridization data indicate that N. vectensis SPARC mRNAs are restricted to the endoderm during post-gastrula development. The absence of the Ca2+-binding N-terminal domain in cnidarians and conservation of collagen-binding epitopes suggests that SPARC first evolved as a collagen-binding matricellular glycoprotein, an interaction likely to be dependent on the binding of Ca2+-ions to the two EF-hands in the EC domain. We propose that further Ca2+-dependent activities emerged with the acquisition of an acidic N-terminal module in triplobastic organisms.  相似文献   

16.
Microbes can play an important role in the physiology of animals by providing essential nutrients, inducing immune pathways, and influencing the specific species that compose the microbiome through competitive or facilitatory interactions. The community of microbes associated with animals can be dynamic depending on the local environment, and factors that influence the composition of the microbiome are essential to our understanding of how microbes may influence the biology of their animal hosts. Regularly repeated changes in the environment, such as diel lighting, can result in two different organismal responses: a direct response to the presence and absence of exogenous light and endogenous rhythms resulting from a molecular circadian clock, both of which can influence the associated microbiota. Here, we report how diel lighting and a potential circadian clock impacts the diversity and relative abundance of bacteria in the model cnidarian Nematostella vectensis using an amplicon‐based sequencing approach. Comparisons of bacterial communities associated with anemones cultured in constant darkness and in light:dark conditions revealed that individuals entrained in the dark had a more diverse microbiota. Overall community composition showed little variation over a 24‐hr period in either treatment; however, abundances of individual bacterial OTUs showed significant cycling in each treatment. A comparative analysis of genes involved in the innate immune system of cnidarians showed differential expression between lighting conditions in N. vectensis, with significant up‐regulation during long‐term darkness for a subset of genes. Together, our studies support a hypothesis that the bacterial community associated with this species is relatively stable under diel light conditions when compared with static conditions and that particular bacterial members may have time‐dependent abundance that coincides with the diel photoperiod in an otherwise stable community.  相似文献   

17.
Abstract. Cnidarians have extracellular matrix, or mesoglea, situated between an outer epidermis and an inner gastrodermis. In this article, we describe the ultrastructure of the mesoglea of polyps of Nematostella vectensis during development and regeneration. The column wall of recently metamorphosed polyps had basal laminae composed of a meshwork of thin filaments underlying each epithelium and a network of unstriated thick (20–25 nm in diameter) and thin fibrils (~5 nm) decorated with particulate matter. In juvenile polyps with eight tentacles, the system of thick fibrils was concentrated near the gastrodermis. In the column wall and mesenteries of the adult there were bundles of thick fibrils that ran parallel to the myonemes. In regenerating polyps 2 days after transection, the network of thin fibrils and particulate material as well as the basal lamina largely disappeared in the healing part of the oral, but not aboral, half. In the regenerating portion of the aboral half 1 and 2 days after transection, the bundles of thick fibrils were smaller and less organized, and the basal laminae were thicker than in the column wall of untransected polyps. In both regenerating halves, the general organization of the mesoglea of normal polyps was reattained by 5 days after transection. At all stages the mesoglea contained cellular processes that may belong to amebocytes; nucleated amebocytes with a range of shapes were present in the mesoglea of the column wall and mesenteries of adult polyps. Certain features of the mesoglea of members of N. vectensis and Hydra are similar, especially the ultrastructure of the basal laminae, but the fibrillar systems of these two model cnidarians are different. Temporal and spatial differences in the composition of the mesoglea of N. vectensis point to different roles for its components during development and regeneration.  相似文献   

18.
19.
Fibroblast growth factor (FGF) signalling regulates essential developmental processes in vertebrates and invertebrates, but its role during early metazoan evolution remains obscure. Here, we analyse the function of FGF signalling in a non-bilaterian animal, the sea anemone Nematostella vectensis. We identified the complete set of FGF ligands and FGF receptors, of which two paralogous FGFs (NvFGFa1 and NvFGFa2) and one FGF receptor (NvFGFRa) are specifically coexpressed in the developing apical organ, a sensory structure located at the aboral pole of ciliated larvae from various phyla. Morpholino-mediated knockdown experiments reveal that NvFGFa1 and NvFGFRa are required for the formation of the apical organ, whereas NvFGFa2 counteracts NvFGFRa signalling to prevent precocious and ectopic apical organ development. Marker gene expression analysis shows that FGF signalling regulates local patterning in the aboral region. Furthermore, NvFGFa1 activates its own expression and that of the antagonistic NvFGFa2, thereby establishing positive- and negative-feedback loops. Finally, we show that loss of the apical organ upon NvFGFa1 knockdown blocks metamorphosis into polyps. We propose that the control of the development of sensory structures at the apical pole of ciliated larvae is an ancestral function of FGF signalling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号