首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wnts          下载免费PDF全文

Background

The eukaryotic ubiquitin-conjugation system sets the turnover rate of many proteins and includes activating enzymes (E1s), conjugating enzymes (UBCs/E2s), and ubiquitin-protein ligases (E3s), which are responsible for activation, covalent attachment and substrate recognition, respectively. There are also ubiquitin-like proteins with distinct functions, which require their own E1s and E2s for attachment. We describe the results of RNA interference (RNAi) experiments on the E1s, UBC/E2s and ubiquitin-like proteins in Caenorhabditis elegans. We also present a phylogenetic analysis of UBCs.

Results

The C. elegans genome encodes 20 UBCs and three ubiquitin E2 variant proteins. RNAi shows that only four UBCs are essential for embryogenesis: LET-70 (UBC-2), a functional homolog of yeast Ubc4/5p, UBC-9, an ortholog of yeast Ubc9p, which transfers the ubiquitin-like modifier SUMO, UBC-12, an ortholog of yeast Ubc12p, which transfers the ubiquitin-like modifier Rub1/Nedd8, and UBC-14, an ortholog of Drosophila Courtless. RNAi of ubc-20, an ortholog of yeast UBC1, results in a low frequency of arrested larval development. A phylogenetic analysis of C. elegans, Drosophila and human UBCs shows that this protein family can be divided into 18 groups, 13 of which include members from all three species. The activating enzymes and the ubiquitin-like proteins NED-8 and SUMO are required for embryogenesis.

Conclusions

The number of UBC genes appears to increase with developmental complexity, and our results suggest functional overlap in many of these enzymes. The ubiquitin-like proteins NED-8 and SUMO and their corresponding activating enzymes are required for embryogenesis.  相似文献   

2.
3.
Caenorhabditis elegans gene ubc-25 encodes a novel type of an E2 ubiquitin transferase domain (UBCc) protein, which is highly conserved in multicellular animals, but which is not present in the genomes of fungi or plants. To identify the cellular localization of UBC-25 during the development of C. elegans, we used a ubc-25::gfp reporter gene construct. These experiments showed that ubc-25 expression starts during embryogenesis and that it is restricted to neurons and muscle cells in all later stages of development as well as in adult animals. RNA interference with ubc-25 caused late-onset paralysis of most muscular functions such as locomotion, egg laying, and defecation. We therefore propose that ubc-25 in C. elegans is required for the maintenance (homeostasis) of neuromuscular functions by contributing to a tissue specific protein modification pathway, and we speculate that the adult onset phenotype results from the accumulation of target proteins which fail to be degraded.  相似文献   

4.
In a yeast two-hybrid screen, RING finger protein 1 (RFP-1) and UBR1 were identified as potential binding partners of C. elegans UBC-1, a ubiquitin-conjugating enzyme with a high degree of identity to S. cerevisiae UBC2/RAD6. The interaction of RFP-1 and UBC-1 was confirmed by co-immunoprecipitation experiments. Yeast interaction trap experiments mapped the region of interaction to the basic N-terminal 313 residues of RFP-1. The acidic carboxy-terminal extension of UBC-1 was not required for the interaction with RFP-1. Western blot analysis and indirect immunohistochemical staining show that RFP-1 is present in embryos, larvae, and adults, where it is found in intestinal, nerve ring, pharyngeal, gonadal, and oocyte cell nuclei. Double-stranded RNA interference experiments against rfp-1 indicate that this gene is required for L1 development, vulval development, and for egg laying. By contrast, RNA interference against ubc-1 gave no obvious phenotype, suggesting that ubc-1 is nonessential or is functionally redundant.  相似文献   

5.
Qiu X  Fay DS 《Developmental biology》2006,291(2):239-252
The LIN-35 retinoblastoma protein homolog and the ubiquitin-conjugating enzyme UBC-18 function redundantly to control an early step of pharyngeal morphogenesis in C. elegans. In order to identify ubiquitin-ligases acting downstream of UBC-18, we carried out a two-hybrid screen using UBC-18 as the bait molecule. Our screen identified three putative ubiquitin-ligases, one of which, ARI-1, showed genetic interactions leading to defective pharyngeal development that were identical to that previously observed for UBC-18. ARI-1 is a member of the RBR family of ubiquitin-ligases and contains a C-terminal motif that places it within the highly conserved Ariadne subfamily of RBR ligases. Our analyses indicate that ARI-1 is the principal Ariadne family member in C. elegans that is involved in the control of pharyngeal development with UBC-18. Using GFP reporters, we find that ARI-1 is expressed dynamically in a wide range of tissues including muscles and neurons during embryonic and postembryonic development. We also provide evidence that dsRNA species containing 14 or fewer base pairs of contiguous identity with closely related mRNAs are sufficient to mediate off-target silencing in C. elegans.  相似文献   

6.
7.
8.
The ubc-2 gene in Caenorhabditis elegans encodes a ubiquitin-conjugating enzyme (E2) homologous to yeast UBC4 and UBC5. UBC4 and UBC5 are individually dispensable class I E2 enzymes involved in the degradation of short-lived and abnormal proteins. Transgenic analysis using ubc-2-lacZ fusions and in situ immunofluorescence indicate that ubc-2 is abundantly expressed in most tissues of embryos and early larvae, but becomes specific to the nervous system in L4 larvae and adults. This suggests that the functions of this type of E2 are developmentally regulated in C.elegans. This hypothesis is supported by antisense analysis, which shows that blocking the expression of ubc-2 has a more severe effect in early developmental stages than in later stages. Through complementation of previously identified essential genes in the vicinity of ubc-2, we demonstrate that ubc-2 corresponds to let-70, a gene essential for C.elegans larval development. One let-70(ubc-2) allele contains a His75-->Tyr substitution, while another has an altered splice donor site.  相似文献   

9.
The cuticle of the nematode Caenorhabditis elegans is a collagenous extracellular matrix which forms the exoskeleton and defines the shape of the worm. We have characterized the C. elegans gene M142.2, and we show that this is a developmentally regulated gene important for cuticle structure. Transgenic worms expressing M142.2 promoter fused to green fluorescent protein showed that M142.2 is expressed in late embryos and L2d predauers, in the hypodermal cells which synthesize the cuticle. The same temporal pattern was seen by RT-PCR using RNA purified from specific developmental stages. A recombinant fragment of M142.2 was expressed in Escherichia coli and used to raise an antiserum. Immunohistochemistry using the antiserum localized M142.2 to the periphery of the alae of L1 and dauers, forming two longitudinal ribbons over the hypodermal cells. Loss-of-function of M142.2 by RNAi resulted in a novel phenotype: dumpy dauers which lacked alae. M142.2 therefore plays a major role in the assembly of the alae and the morphology of the dauer cuticle; because of its similarity to the other cut genes of the cuticle, we have named the gene cut-6.  相似文献   

10.
11.
C. elegans has proven to be a valuable model system for the discovery and functional characterization of many genes and gene pathways. More sophisticated tools and resources for studies in this system are facilitating continued discovery of genes with more subtle phenotypes or roles. Here we present a generalized protocol we adapted for identifying C. elegans genes with postembryonic phenotypes of interest using RNAi. This procedure is easily modified to assay the phenotype of choice, whether by light or fluorescence optics on a dissecting or compound microscope. This screening protocol capitalizes on the physical assets of the organism and molecular tools the C. elegans research community has produced. As an example, we demonstrate the use of an integrated transgene that expresses a fluorescent product in an RNAi screen to identify genes required for the normal localization of this product in late stage larvae and adults. First, we used a commercially available genomic RNAi library with full-length cDNA inserts. This library facilitates the rapid identification of multiple candidates by RNAi reduction of the candidate gene product. Second, we generated an integrated transgene that expresses our fluorecently tagged protein of interest in an RNAi-sensitive background. Third, by exposing hatched animals to RNAi, this screen permits identification of gene products that have a vital embryonic role that would otherwise mask a post-embryonic role in regulating the protein of interest. Lastly, this screen uses a compound microscope equipped for single cell resolution.  相似文献   

12.

Background

Protein misfolding and subsequent aggregation are hallmarks of several human diseases. The cell has a variety of mechanisms for coping with misfolded protein stress, including ubiquitin-mediated protein degradation. In fact, the presence of ubiquitin at protein aggregates is a common feature of protein misfolding diseases. Ubiquitin conjugating enzymes (UBCs) are part of the cascade of enzymes responsible for the regulated attachment of ubiquitin to protein substrates. The specific UBC used during ubiquitination can determine the type of polyubiquitin chain linkage, which in turn plays an important role in determining the fate of the ubiquitinated protein. Thus, UBCs may serve an important role in the cellular response to misfolded proteins and the fate of protein aggregates.

Results

The Q82 strain of C. elegans harbors a transgene encoding an aggregation prone tract of 82 glutamine residues fused to green fluorescent protein (Q82::GFP) that is expressed in the body wall muscle. When measured with time-lapse microscopy in young larvae, the initial formation of individual Q82::GFP aggregates occurs in approximately 58 minutes. This process is largely unaffected by a mutation in the C. elegans E1 ubiquitin activating enzyme. RNAi of ubc-22, a nematode homolog of E2-25K, resulted in higher pre-aggregation levels of Q82::GFP and a faster initial aggregation rate relative to control. Knockdown of ubc-1 (RAD6 homolog), ubc-13, and uev-1 did not affect the kinetics of initial aggregation. However, RNAi of ubc-13 decreases the rate of secondary growth of the aggregate. This result is consistent with previous findings that aggregates in young adult worms are smaller after ubc-13 RNAi. mCherry::ubiquitin becomes localized to Q82::GFP aggregates during the fourth larval (L4) stage of life, a time point long after most aggregates have formed. FLIP and FRAP analysis indicate that mCherry::ubiquitin is considerably more mobile than Q82::GFP within aggregates.

Conclusions

These data indicate that initial formation of Q82::GFP aggregates in C. elegans is not directly dependent on ubiquitination, but is more likely a spontaneous process driven by biophysical properties in the cytosol such as the concentration of the aggregating species. The effect of ubiquitination appears to be most significant in later, secondary aggregate growth.  相似文献   

13.
On the role of RNA amplification in dsRNA-triggered gene silencing.   总被引:155,自引:0,他引:155  
We have investigated the role of trigger RNA amplification during RNA interference (RNAi) in Caenorhabditis elegans. Analysis of small interfering RNAs (siRNAs) produced during RNAi in C. elegans revealed a substantial fraction that cannot derive directly from input dsRNA. Instead, a population of siRNAs (termed secondary siRNAs) appeared to derive from the action of a cellular RNA-directed RNA polymerase (RdRP) on mRNAs that are being targeted by the RNAi mechanism. The distribution of secondary siRNAs exhibited a distinct polarity (5'-->3' on the antisense strand), suggesting a cyclic amplification process in which RdRP is primed by existing siRNAs. This amplification mechanism substantially augments the potency of RNAi-based surveillance, while ensuring that the RNAi machinery will focus on expressed mRNAs.  相似文献   

14.
Serine/arginine-rich proteins (SR proteins) constitute a family of RNA-binding proteins conserved throughout metazoans. The SR proteins are essential for constitutive pre-mRNA splicing and also affect regulated pre-mRNA splicing. We identified five putative genes encoding SR proteins (referred to as srp genes) in Caenorhabditis elegans, examined their expression using the gfp gene as a reporter, and suppressed their functions by double-stranded RNA-mediated interference (RNAi). The srp::gfp fusion genes were expressed in the nuclei of most somatic cells and showed no obvious tissue- or stage-specific expression. Simultaneous RNAi of the five srp genes resulted in embryonic lethality, whereas RNAi of individual srp genes caused no obvious morphological abnormality in the F1 progeny, indicating functional redundancy of the SR proteins. However, RNAi of several combinations of srp genes caused various developmental abnormalities, such as abnormal somatic gonad structures, delayed shift of the germ cell sexual differentiation, and abnormal spermatogenesis. Our results suggest that individual SR proteins have unique but somewhat redundant functions in C. elegans development.  相似文献   

15.
The cadherin-catenin complex is essential for tissue morphogenesis during animal development. In cultured mammalian cells, p120 catenin (p120ctn) is an important regulator of cadherin-catenin complex function. However, information on the role of p120ctn family members in cadherin-dependent events in vivo is limited. We have examined the role of the single Caenorhabditis elegans p120ctn homologue JAC-1 (juxtamembrane domain [JMD]-associated catenin) during epidermal morphogenesis. Similar to other p120ctn family members, JAC-1 binds the JMD of the classical cadherin HMR-1, and GFP-tagged JAC-1 localizes to adherens junctions in an HMR-1-dependent manner. Surprisingly, depleting JAC-1 expression using RNA interference (RNAi) does not result in any obvious defects in embryonic or postembryonic development. However, jac-1(RNAi) does increase the severity and penetrance of morphogenetic defects caused by a hypomorphic mutation in the hmp-1/alpha-catenin gene. In these hmp-1 mutants, jac-1 depletion causes failure of the embryo to elongate into a worm-like shape, a process that involves contraction of the epidermis. Associated with failed elongation is the detachment of actin bundles from epidermal adherens junctions and failure to maintain cadherin in adherens junctions. These results suggest that JAC-1 acts as a positive modulator of cadherin function in C. elegans.  相似文献   

16.
17.
Park HK  Suh D  Hyun M  Koo HS  Ahn B 《DNA Repair》2004,3(10):1375-1383
The xeroderma pigmentosum complementation group F (XPF) protein is a structure-specific endonuclease in a complex with ERCC1 and is essential for nucleotide excision repair (NER). We report a single cDNA of Caenorhabditis elegans (C. elegans) encoding highly similar protein to human XPF and other XPF members. We propose to name the corresponding C. elegans gene xpf. Messenger RNA for C. elegans xpf is 5'-tagged with a SL2 splice leader, suggesting an operon-like expression for xpf. Using RNAi, we showed that loss of C. elegans xpf function caused hypersensitivity to ultra-violet (UV) irradiation, as observed in enhanced germ cell apoptosis and increased embryonic lethality. This study suggests that C. elegans xpf is conserved in evolution and plays a role in the repair of UV-damaged DNA in C. elegans.  相似文献   

18.
Genome sequence analyses predict many proteins that are structurally related to proteases but lack catalytic residues, thus making functional assignment difficult. We show that one of these proteins (ACN-1), a unique multi-domain angiotensin-converting enzyme (ACE)-like protein from Caenorhabditis elegans, is essential for larval development and adult morphogenesis. Green fluorescent protein-tagged ACN-1 is expressed in hypodermal cells, the developing vulva, and the ray papillae of the male tail. The hypodermal expression of acn-1 appears to be controlled by nhr-23 and nhr-25, two nuclear hormone receptors known to regulate molting in C. elegans. acn-1(RNAi) causes arrest of larval development because of a molting defect, a protruding vulva in adult hermaphrodites, severely disrupted alae, and an incomplete seam syncytium. Adult males also have multiple tail defects. The failure of the larval seam cells to undergo normal cell fusion is the likely reason for the severe disruption of the adult alae. We propose that alteration of the ancestral ACE during evolution, by loss of the metallopeptidase active site and the addition of new protein modules, has provided opportunities for novel molecular interactions important for post-embryonic development in nematodes.  相似文献   

19.
Genome-wide RNAi screening in Caenorhabditis elegans   总被引:19,自引:0,他引:19  
In Caenorhabditis elegans, introduction of double-stranded RNA (dsRNA) results in the specific inactivation of an endogenous gene with corresponding sequence; this technique is known as RNA interference (RNAi). It has previously been shown that RNAi can be performed by direct microinjection of dsRNA into adult hermaphrodite worms, by soaking worms in a solution of dsRNA, or by feeding worms Escherichia coli expressing target-gene dsRNA. We have developed a simple optimized protocol exploiting this third mode of dsRNA introduction, RNAi by feeding, which allows rapid and effective analysis of gene function in C. elegans. Furthermore, we have constructed a library of bacterial strains corresponding to roughly 86% of the estimated 19,000 predicted genes in C. elegans, and we have used it to perform genome-wide analyses of gene function. This library is publicly available, reusable resource allowing for rapid large-scale RNAi experiments. We have used this library to perform genome-wide analyses of gene function in C. elegans. Here, we describe the protocols used for bacterial library construction and for high-throughput screening in C. elegans using RNAi by feeding.  相似文献   

20.
The retinoblastoma gene product has been implicated in the regulation of multiple cellular and developmental processes, including a well-defined role in the control of cell cycle progression. The Caenorhabditis elegans retinoblastoma protein homolog, LIN-35, is also a key regulator of cell cycle entry and, as shown by studies of synthetic multivulval genes, plays an important role in the determination of vulval cell fates. We demonstrate an additional and unexpected function for lin-35 in organ morphogenesis. Using a genetic approach to isolate lin-35 synthetic-lethal mutations, we have identified redundant roles for lin-35 and ubc-18, a gene that encodes an E2 ubiquitin-conjugating enzyme closely related to human UBCH7. lin-35 and ubc-18 cooperate to control one or more steps during pharyngeal morphogenesis. Based on genetic and phenotypic analyses, this role for lin-35 in pharyngeal morphogenesis appears to be distinct from its cell cycle-related functions. lin-35 and ubc-18 may act in concert to regulate the levels of one or more critical targets during C. elegans development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号