首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homeotic changes played a considerable role during the evolution of flowers, but how floral homeotic mutants initially survive in nature has remained enigmatic. To better understand the evolutionary potential of floral homeotic mutants, we established as a model system Stamenoid petals (Spe), a natural variant of Capsella bursa-pastoris (Brassicaceae). In the flowers of Spe plants, petals are transformed into stamens, whereas all other floral organs are unaffected. In contrast with most other homeotic mutants, the Spe variant occurs in relatively stable populations in the wild. In order to determine how the profound change in floral architecture influences plant performance in the wild, we performed common garden experiments running over 3 years. Here, we show that Spe and wild-type plants attract the same assemblage of floral visitors: mainly hoverflies, wild bees and thrips. However, floral visitation is about twice as frequent in wild-type plants as in Spe plants. Nevertheless, the numbers of seeds per fruit were about the same in both variants. Wild-type plants produced more flowers, fruits and seeds per plant than Spe plants, whereas the germination capacity of Spe seeds was higher than that of the wild-type. Determination of volatile composition revealed monoterpenes and 3,4-dimethylbenzaldehyde, which were detected only in wild-type flowers, presumably because they are produced only by petals. Our data indicate that the similar fitness of Spe and wild-type C. bursa-pastoris in the field results from complex compensation between plant architecture and germination capacity. In contrast, flower structure and floral visitation are only of minor importance, possibly because C. bursa-pastoris is mainly self-pollinating.  相似文献   

2.
Wang YQ  Melzer R  Theissen G 《Annals of botany》2011,107(9):1445-1452

Background and Aims

Homeotic transitions are usually dismissed by population geneticists as credible modes of evolution due to their assumed negative impact on fitness. However, several lines of evidence suggest that such changes in organ identity have played an important role during the origin and subsequent evolution of the angiosperm flower. Better understanding of the performance of wild populations of floral homeotic varieties should help to clarify the evolutionary potential of homeotic mutants. Wild populations of plants with changes in floral symmetry, or with reproductive organs replacing perianth organs or sepals replacing petals have already been documented. However, although double-flowered varieties are quite popular as ornamental and garden plants, they are rarely found in the wild and, if they are, usually occur only as rare mutant individuals, probably because of their low fitness relative to the wild-type. We therefore investigated a double-flowered variety of lesser periwinkle, Vinca minor flore pleno (fl. pl.), that is reported to have existed in the wild for at least 160 years. To assess the merits of this plant as a new model system for investigations on the evolutionary potential of double-flowered varieties we explored the morphological details and distribution of the mutant phenotype.

Methods

The floral morphology of the double-flowered variety and of a nearby population of wild-type plants was investigated by means of visual inspection and light microscopy of flowers, the latter involving dissected or sectioned floral organs.

Key Results

The double-flowered variety was found in several patches covering dozens of square metres in a forest within the city limits of Jena (Germany). It appears to produce fewer flowers than the wild-type, and its flowers are purple rather than blue. Most sepals in the first floral whorl resemble those in the wild-type, although occasionally one sepal is broadened and twisted. The structure of second-whorl petals is very similar to that of the wild-type, but their number per flower is more variable. The double-flowered character is due to partial or complete transformation of stamens in the third whorl into petaloid organs. Occasionally, ‘flowers within flowers’ also develop on elongated pedicels in the double-flowered variety.

Conclusions

The flowers of V. minor fl. pl. show meristic as well as homeotic changes, and occasionally other developmental abnormalities such as mis-shaped sepals or loss of floral determinacy. V. minor fl. pl. thus adds to a growing list of natural floral homeotic varieties that have established persistent populations in the wild. Our case study documents that even mutant varieties that have reproductive organs partially transformed into perianth organs can persist in the wild for centuries. This finding makes it at least conceivable that even double-flowered varieties have the potential to establish new evolutionary lineages, and hence may contribute to macroevolutionary transitions and cladogenesis.  相似文献   

3.
  • The trait–fitness relationship influences the strength and direction of floral evolution. To fully understand and predict the evolutionary trajectories of floral traits, it is critical to disentangle the direct and indirect effects of floral traits on plant fitness in natural populations.
  • We experimentally quantified phenotypic selection on floral traits through female fitness and estimated the casual effects of nectar robbing with different nectar robbing intensities on trait–fitness relationships in both the L‐ (long‐style and short‐anther phenotype) and S‐morph (short‐style and long‐anther phenotype) flowers among Primula secundiflora populations.
  • A larger number of flowers and wider corolla tubes had both direct and indirect positive effects on female fitness in the P. secundiflora populations. The indirect effects of these two traits on female fitness were mediated by nectar robbers. The indirect effect of the number of flowers on female fitness increased with increasing nectar robbing intensity. In most populations, the direct and/or indirect effects of floral traits on female fitness were stronger in the S‐morph flowers than in the L‐morph flowers. In addition, nectar robbers had a direct positive effect on female fitness, but this effect varied between the L‐ and S‐morph flowers.
  • These results show the potential role of nectar robbers in influencing the trait–fitness relationships in this primrose species.
  相似文献   

4.
Striking feature of angiosperm diversity is the huge number of variations in corolla morphology including complex innovations like variations in symmetry or the identity and number of floral organs. Throughout the Brassicaceae, the disymmetric flower structure is highly conserved. Still, quite a few floral alterations occur like a variant of Common Shepherds purse (Capsella bursa-pastoris), in which all petals have been transformed into additional stamens. This “decandric” phenotype has been reported for the first time about 200 years ago. In some of the original locations the variant has been recovered recently. The long term persistence indicates the establishment of an evolutionary novelty in wild populations in sympatric occurrence with wild-type plants. Due to this fact the floral variant has become an interesting model for evolutionary studies. The phenotype is heritable and just a single locus, termed “Stamenoid petals” (Spe), is assumed to be involved in the molecular origin. To unravel the chromosomal localization of this locus, a linkage map analysis was carried out using molecular markers (AFLPs, RAPDs). The final map includes 15 linkage groups and the floral trait was integrated on linkage group 12 (CBP12) including six AFLP markers. Out of these, five markers were successfully sequenced and revealed sequence identities with chromosome IV of the A. thaliana genome. Interestingly, AGAMOUS is located on this chromosome, the only class C floral organ identity gene in the A. thaliana genome, which is compatible with the assumption that Spe is an allele of AGAMOUS rather than a regulator of that gene.  相似文献   

5.
Capsella is a small genus within the mustard family (Brassicaceae). Its three species, however, show many evolutionary trends also observed in other Brassicaceae (including Arabidopsis) and far beyond, including transitions from a diploid, self-incompatible, obligatory outcrossing species with comparatively large and attractive flowers but a restricted distribution to a polyploid, self-compatible, predominantly selfing, invasive species with floral reductions. All these evolutionary transitions may have contributed to the fact that Capsella bursa-pastoris (shepherd's purse) has become one of the most widely distributed flowering plants on our planet. In addition, Capsella bursa-pastoris shows a phenomenon that, although rare, could be of great evolutionary importance, specifically the occurrence of a homeotic variety found in relatively stable populations in the wild. Several lines of evidence suggest that homeotic changes played a considerable role in floral evolution, but how floral homeotic varieties are established in natural populations has remained a highly controversial topic among evolutionary biologists. Due to its close relationship with the model plant Arabidopsis thaliana, numerous experimental tools are available for studying the genus Capsella, and further tools are currently being developed. Hence, Capsella provides great opportunities to investigate the evolution of flower development from molecular developmental genetics to field ecology and biogeography, and from morphological refinements to major structural transitions.  相似文献   

6.
Explanations of floral adaptation to diverse pollinator faunas have often invoked visitor-mediated trade-offs in which no intermediate, generalized floral phenotype is optimal for pollination success, i.e. fitness valleys are created. In such cases, plant species are expected to specialize on particular groups of flower visitors. Contrary to this expectation, it is commonly observed that flowers interact with various groups of visitors, while at the same time maintaining distinct phenotypes among ecotypes, subspecies, or congeners. This apparent paradox may be due to a gap in our understanding of how visitor-mediated trade-offs could affect floral adaptation. Here we provide a conceptual framework for analysing visitor-mediated trade-offs with the hope of stimulating empirical and theoretical studies to fill this gap. We propose two types of visitor-mediated trade-offs to address negative correlations among fitness contributions of different visitors: visitor-mediated phenotypic trade-offs (phenotypic trade-offs) and visitor-mediated opportunity trade-offs (opportunity trade-offs). Phenotypic trade-offs occur when different groups of visitors impose conflicting selection pressures on a floral trait. By contrast, opportunity trade-offs emerge only when some visitors’ actions (e.g. pollen collection) remove opportunities for fitness contribution by more beneficial visitors. Previous studies have observed disruptive selection due to phenotypic trade-offs less often than expected. In addition to existing explanations, we propose that some flowers have achieved ‘adaptive generalization’ by evolving features to avoid or eliminate the fitness valleys that phenotypic trade-offs tend to produce. The literature suggests a variety of pathways to such ‘trade-off mitigation’. Trade-off mitigation may also evolve as an adaptation to opportunity trade-offs. We argue that active exclusion, or floral specialization, can be viewed as a trade-off mitigation, occurring only when flowers cannot otherwise avoid strong opportunity trade-offs. These considerations suggest that an evolutionary strategy for trade-off mitigation is achieved often by acquiring novel combinations of traits. Thus, phenotypic diversification of flowers through convergent evolution of certain trait combinations may have been enhanced not only through adaptive specialization for particular visitors, but also through adaptive generalization for particular visitor communities. Explorations of how visitor-mediated trade-offs explain the recurrent patterns of floral phenotypes may help reconcile the long-lasting controversy on the validity of pollination syndromes.  相似文献   

7.
Among the homeotic mutants with altered floral organs, two mutants of Arabidopsis thaliana, apetala3 and pistillata, and two mutants of Antirrhinum majus, deficiens and globosa, have a homeotic conversion of the floral organs in whorl 2 and 3, namely petals to sepals and stamens to carpels. We have isolated a homologue of the DEFICIENS gene from A. thaliana wild type and shown complete complementation of apetala3 mutation by introducing the isolated gene using Agrobacterium-mediated transformation. These results show that the APETALA3 is a homologue of DEFICIENS structurally and functionally. The 5-upstream region of APETALA3 contains three SRE-like sequence, where MADS box-containing proteins are assumed to bind and regulate expression in tissue-and stage-specific manner.  相似文献   

8.
Apart from the common floral architecture in Brassicaceae, variation in flower morphology occurs in several genera within the family and is considered to affect speciation processes. We analysed genetic differentiation and flowering time variation of two floral variants of Capsella bursa-pastoris , the Spe variant and the wild-type, which occur sympatrically in a vineyard in southwest Germany. The Spe variant is characterized by an additional whorl of stamens instead of petals and was formerly classified as an independent taxon ' Capsella apetala ' Opiz. Amplified fragment length polymorphism and allozyme analysis revealed a substantial genetic differentiation of the two floral variants and a higher genetic variation within the wild-type subpopulation compared with the Spe subpopulation. The low genetic variation in the mutant provided evidence of a recent local origin or recent introduction. Flowering time analysis indicated that, within the analysed population, the Spe variant flowers significantly later than the wild-type ( P  < 0.001). We conclude that the evolution and persistence of Spe within a wild-type population is facilitated by high selfing rates and been enhanced by a shift in flowering phenology. Hence, our data provide substantial evidence that the Spe phenotype has established itself as an isolated entity within a wild-type population and may thus serve as a model for the analysis of the evolutionary significance of homeotic mutants in wild populations.  相似文献   

9.
Arabidopsis thaliana (L.) Heynh. has been used as a model system to investigate the regulatory genes that control and coordinate the determination, differentiation and morphogenesis of the floral meristem and floral organs. We show here that benzylaminopurine (BAP), a cytokinin, influences flower development inArabidopsis and induces partial phenocopies of known floral homeotic mutants. Application of BAP to wild-type inflorescences at three developmental stages results in: (i) increase in floral organ number; (ii) formation of abnormal floral organs and (iii) induction of secondary floral buds in the axils of sepals. These abnormalities resemble the phenotypes of mutants,clv1 (increase in organ number),ap1,ap2,ap3 (abnormal floral organs) andap1 (secondary floral buds in the axils of first-whorl organs). In addition, BAP induces secondary floral buds in the axils of perianth members ofapt2-6, ap3-1 andag mutants, and accentuates the phenotype of theapt2-1 mutant to resemble theapt2-6 mutant. These observations suggest that exogenous BAP suppresses the normal functioning of the genes for floral meristem identity and thereby affects flower development and the later stages of floral organ differentiation.Abbreviations BAP N6-benzylaminopurine - CK cytokinin  相似文献   

10.
This work provides new evidence of the complex genetic regulation necessary to accomplish flower development in legumes. Using scanning electron microscopy (SEM) analysis, we have characterized the early developmental events of the wild type Medicago truncatula flower and selected morphological characters as markers to break it down into eight different developmental stages. The order of floral organ initiation in M. truncatula and pea (Pisum sativum L.), in contrast to Arabidopsis and Antirrhinum, is unidirectional in all whorls starting from the abaxial position of the flower with a high degree of overlap. Another main difference is the existence of four common primordia from which petals and stamens differentiate. The formation of common primordia, as opposed to discrete petal and stamen primordia, has been described in many legume and non-legume plants. The main differences between pea and M. truncatula floral ontogeny are in carpel and fruit development. We also used these morphological markers as tools to characterize early alterations in the flower development of a male-sterile M. truncatula floral homeotic mutant named mtapetala. This mutant displays a phenotype resembling those of weak class B mutants with homeotic conversions of floral organ whorls 2 and 3 into sepaloid and carpelloid structures, respectively. Ontogeny studies of the mtapetala mutant flowers showed similarities with the effects of previously described loss-of-B-function mutations. Differences between ontogeny of wild type and mtapetala flowers could not be detected during the first stages (1-5) of flower development. In late stage 5, abnormal-shaped petals with acute lobes and trichomes as well as abnormal-shaped stamens were visible in whorls 2 and 3. At stage 6, the morphology of petals began to change, developing enlarged sepaloid structures bearing trichomes and first the antesepalous stamens and then the antepetalous stamens began to differentiate carpelloid anthers from filaments. Third whorl organs presented different degrees of carpelloidy. The present study should provide tools for the characterization and comparative analyses of new Medicago floral homeotic mutants and could be useful in elucidating how floral organ identity functions work in legumes.  相似文献   

11.
高山地区生境极端,却拥有许多形态特化的植物,非生物因素在塑造花部性状及其进化过程中发挥着重要作用。该研究选取龙胆科典型高山植物喉毛花(Comastoma pulmonarium)为对象,探究其毛状副冠在多雨、强辐射的极端高山环境中的适应意义及其对植物雌雄繁殖适合度的影响。结果表明:通过比较自然状态和人工去除副冠的花,毛状副冠有效减少了雨水对花粉的冲刷(t=2.61,P0.05),提高了受精比率(t=2.05,P0.05),但是对种子的质量,即种子重量和种子萌发率的影响不显著。另外,花粉浸泡在蒸馏水中后,其萌发率显著低于蔗糖溶液中(t=30.67,P0.001),表明毛状副冠能够有效减小雨水浸泡对花粉活力的影响;同时,与自然状态相比,去除毛状副冠后的花,经太阳暴晒后,其花粉萌发率同样极显著地降低(t=9.89,P0.001),表明毛状副冠有效地避免了太阳辐射对花粉质量产生的不利影响。该研究结果表明喉毛花的毛状副冠结构是应对高山恶劣环境的一种适应策略,对植株的雌性和雄性繁殖成功都具有重要意义,从而进一步证实了非生物因素在植物花部特征演化中的重要作用。  相似文献   

12.
Hybridization between closely related lineages is a mechanism that might promote substantive changes in phenotypic traits of descendants, resulting in transgressive evolution. Interbreeding between divergent but morphologically similar lineages can produce exceptional phenotypes, but the potential for transgressive variation to facilitate long‐term trait changes in derived hybrid lineages has received little attention. We compare pollinator‐mediated selection on transgressive floral traits in both early‐generation and derived hybrid lineages of the Piriqueta cistoides ssp. caroliniana complex. The bowl‐shaped flowers of morphotypes in this complex have similar gross morphologies and attract a common suite of small insect pollinators. However, they are defined by significant differences in characters that generate pollinator interest and visitation, including floral area and petal separation. In common garden experiments, patterns of pollen deposition in early‐generation recombinant hybrids indicate that Piriqueta's pollinators favour flowers with greater area and reduced petal separation. Changes in floral morphology in derived hybrid lineages are consistent with predictions from selection gradients, but the magnitude of change is limited relative to the range of transgressive variation. These results suggest that hybridization provides variation for evolution of divergent floral traits. However, the potential for extreme transgressive variants to contribute to phenotypic shifts may be limited due to reduced heritability, evolutionary constraints or fitness trade‐offs.  相似文献   

13.
14.
In assessing the capacity of plants to adapt to rapidly changing global climate, we must elucidate the impacts of elevated carbon dioxide on reproduction, fitness and evolution. We investigated how elevated CO2 influenced reproduction and growth of plants exhibiting a range of floral morphologies, the implications of shifts in allocation for fitness in these species, and whether related taxa would show similar patterns of response. Three herbaceous, annual species each of the genera Polygonum, Ipomoea, and Cassia were grown under 350 or 700 ppm CO2. Vegetative growth and reproductive output were measured non-destructively throughout the full life span, and vegetative biomass was quantified for a subsample of plants in a harvest at first flowering. Viability and germination studies of seed progeny were conducted to characterize fitness precisely. Early vegetative growth was often enhanced in high-CO2 grown plants of Polygonum and Cassia (but not Ipomoea). However, early vegetative growth was not a strong predictor of subsequent reproduction. Phenology and production of floral buds, flowers, unripe and abscised fruits differed between CO2 treatments, and genera differed in their reproductive and fitness responses to elevated CO2. Polygonum and Cassia species showed accelerated, enhanced reproduction, while Ipomoea species generally declined in reproductive output in elevated CO2. Seed quality and fitness (in terms of viability and percentage germination) were not always directly correlated with quantity produced, indicating that output alone may not reliably indicate fitness or evolutionary potential. Species within genera typically responded more consistently to CO2 than unrelated species. Cluster analyses were performed separately on suites of vegetative and reproductive characters. Some species assorted within genera when these reproductive responses were considered, but vegetative responses did not reflect taxonomic affinity in these plants. Congeners may respond similarly in terms of reproductive output under global change, but fitness and prognoses of population persistence and evolutionary performance can be inferred only rarely from examination of vegetative characters alone.  相似文献   

15.
卢涛  凌少军  任明迅 《广西植物》2019,39(8):1007-1015
泛热带分布的苦苣苔科(Gesneriaceae)在我国南方具有极高的物种丰富度与特有率,花部特征变化丰富,是研究物种形成与适应演化的代表类群。镜像花(mirror-image flowers)是极为特化的传粉系统,在苦苣苔科中出现了较多的不同类型,可能与苦苣苔科物种多样性形成与维持有关。该研究总结与分析了苦苣苔科镜像花的类型多样性以及系统分布与适应演化等,讨论了镜像花对苦苣苔科物种形成与维持的积极意义。结果表明:镜像花仅分布在亚洲和非洲的苦苣苔亚科(Didymocarpoideae)的7个属,在历史上就至少发生了5次独立起源。长冠苣苔属(Rhabdothamnopsis)、南洋苣苔属(Henckelia)及长蒴苣苔属(Didymocarpus)镜像花的花柱与可育雄蕊分别向左、右两侧偏转,形成互补镜像花;蛛毛苣苔属(Paraboea)、喜鹊苣苔属(Ornithoboea)、非洲堇属(Saintpaulia)镜像花缺乏与花柱对应侧偏的可育雄蕊(非互补镜像花);而海角苣苔属(Streptocarpus)直立堇兰亚属(subg.Streptocarpella Engler)则同时出现了互补、非互补镜像花。不同于其他被子植物(离瓣花、缺乏花冠筒),苦苣苔科中的镜像花大多伴随着明显的花冠筒、内藏的雄蕊、合生的花药,以非互补镜像花为主;传粉者以小型的无垫蜂(Amegilla spp.)和熊蜂(Bombus spp.)为主。这些特殊的花部综合征与特化的传粉机制,提高了传粉精确性,可能促进了传粉隔离与物种适应辐射。今后的一个研究重点应通过分子系统发育方法,进一步揭示苦苣苔亚科互补与非互补镜像花的进化顺序及其在物种分化与长距离扩散过程中的可能作用。  相似文献   

16.
17.
Floral resource subsidies can have differential effects on insect herbivores compared with the herbivores’ natural enemies. While the nectar of many plant species enhances parasitoid fitness, it may also increase damage by herbivores. This may occur as a result of enhanced herbivore fitness or by enhancing fourth-trophic-level processes, possibly disrupting a trophic cascade as a result. The responses of different arthropod guilds to different floral resource subsidies were compared using Plutella xylostella (Hyponomeutidae), its parasitoid Diadegma semiclausum (Ichneumonidae) and data from two other published herbivore–parasitoid systems. These were Dolichogenidea tasmanica (Braconidae) and its host Epiphyas postvittana, and Copidosoma koehleri (Encyrtidae) and its host Phthorimaea operculella. The parasitoids and hosts in the three systems exhibited differential responses to the nectar sources. The differential response was not explained by morphology, demonstrating that physical access to nectaries alone does not determine the potential of flowers as a food source. For some flowering plants, enhancement of herbivore and parasitoid fitness occurred. Other flowering plants, such as buckwheat and phacelia, conferred a selective enhancement on parasitoids by increasing only their fitness. More effective conservation biocontrol may be achieved by the provision of selective floral resources. Attempts to ‘engineer’ agroecosystems to enhance biological control require an extensive knowledge of the ecology of the herbivore, its enemies and their interactions with potential resource subsidies.  相似文献   

18.
The Arabidopsis floral homeotic gene AGAMOUS (AG) is a regulator of early flower development. The ag mutant phenotypes suggest that AG has two functions in flower development: (1) specifying the identity of stamens and carpels, and (2) controlling floral meristem determinacy. To dissect these two AG functions, we have generated transgenic Arabidopsis plants carrying an antisense AG construct. We found that all of the transgenic plants produced abnormal flowers, which can be classified into three types. Type I transgenic flowers are phenocopies of the ag-1 mutant flowers, with both floral meristem indeterminacy and floral organ conversion; type II flowers are indeterminate and have partial conversion of the reproductive organs; and type III flowers have normal stamens and carpels, but still have an indeterminate floral meristem inside the fourth whorl of fused carpels. The existence of type III flowers indicates that AG function can be perturbed to affect only floral meristem determinacy, but not floral organ identity. Furthermore, the fact that floral meristem determinacy is affected in all transformants, but floral organ identity only in a subset of them, suggests that the former may required a higher level of AG activity than the latter. This hypothesis is supported by the levels of AG'mRNA detected in different transformants with different frequencies of distinct types of abnormal antisense AG transgenic flowers. Finally, since AG inhibits the expression of another floral regulatory gene AP1, we examined AP1 expression in antisense AG flowers, and found that AP1 is expressed at a relatively high level in the center of type II flowers, but very little or below detectable levels in the inner whorls of type III flowers. These results provide further insights into the interaction of AG and AP1 and how such an interaction may control both organ identity and floral meristem determinacy.  相似文献   

19.
The recent publication of hypotheses explaining the homeotic control of floral organ identity together with the availability of increasingly comprehensive and well‐resolved molecular phylogenies presents an ideal opportunity for reassessing current knowledge of floral diversity and evolution in the Annonaceae. This review summarizes currently available information on selected aspects of floral structure and function, including: changes in the number of perianth whorls and the number of perianth parts per whorl; the evolution of sympetaly; the diversity and evolution of pollination chambers (with a novel classification of seven main structural forms of floral chamber based on the different arrangement, size and shape of petals); the evolution of perianth glands; floral unisexuality and hypotheses explaining the unexpectedly high frequency of occurrence of androdioecy; the origin and possible function of inner and outer staminodes; the evolution of stamen connective diversity and theca septation; and the origin of ‘true’ syncarpy and functionally equivalent extragynoecial compita. In each case, current ideas on the origin, evolution and function are discussed. The information presented in this review enables two main conclusions to be drawn. The first is that changes in the homeotic control of floral organ identity may have had a profound impact on floral structure in several disparate lineages in the family. This is most obvious in Fenerivia, in which a centrifugal shift of floral organ identity has occurred, and in Dasymaschalon, in which a reverse (centripetal) shift has occurred. Other genera that have gained or lost entire perianth whorls are likely to have undergone similar homeotic changes. Attention is also drawn to the extensive functional convergence in Annonaceae flowers, with widespread homoplasy in many characters that have previously been emphasized in higher‐level classifications.  相似文献   

20.
Mutations associated with floral organ number in rice   总被引:14,自引:0,他引:14  
How floral organ number is specified is an interesting subject and has been intensively studied in Arabidopsis thaliana. In rice (Oryza sativa L.), mutations associated with floral organ number have been identified. In three mutants of rice, floral organ number 1 (fon1) and the two alleles, floral organ number 2-1 (fon2-1) and floral organ number 2-2 (fon2-2), the floral organs were increased in number centripetally. Lodicules, homologous to petals, were rarely affected, and stamens were frequently increased from six to seven or eight. Of all the floral organs the number of pistils was the most frequently increased. Among the mutants, fon1 showed a different spectrum of organ number from fon2 -1 and fon2 -2. Lodicules were the most frequently affected in fon1, but pistils of more than half of fon1 flowers were unaffected; in contrast, the pistils of most flowers were increased in fon2 -1 and fon2-2. Homeotic conversion of organ identity was also detected at a low frequency in ectopically formed lodicules and stamens. Lodicules and stamens were partially converted into anthers and stigmas, respectively. Concomitant with the increased number of floral organs, each mutant had an enlarged apical meristem. Although meristem size was comparable among the three mutants and wild type in the early phase of flower development, a significant difference became apparent after the lemma primordium had differentiated. In these mutants, the size of the shoot apical meristem in the embryo and in the vegetative phase was not affected, and no phenotypic abnormalities were detected. These results do not coincide with those for Arabidopsis in which clavatal affects the sizes of both shoot and floral meristems, leading to abnormal phyllotaxis, inflorescence fasciation and increased floral organs. Accordingly, it is considered that FON1 and FON2 function exclusively in the regulation of the floral meristem, not of the vegetative meristem.Abbreviation DIC differential interference contrast This work was supported in part by Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture of Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号