首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The recent derivation of otherwise isogenic Epstein-Barr virus (EBV) recombinants carrying or lacking the EBV small RNA (EBER) genes enabled us to test whether EBERs are similar to adenovirus VA RNAs in modulating interferon (IFN) effects on virus infection. EBER-positive and -negative EBV recombinants did not differ in their sensitivity to alpha interferon (IFN-alpha)- or IFN-gamma-mediated inhibition of lymphocyte growth transformation. In addition, EBERs did not decrease the inhibitory effects of IFN on vesicular stomatitis virus replication in EBV-transformed lymphocytes. EBER deletion also did not render EBV-transformed B lymphocytes susceptible to an IFN effect on cell proliferation or EBV replication.  相似文献   

2.
3.
Epstein Barr virus (EBV) infection of human B lymphocytes in vitro results in immortalisation of the cells and augmented membranous expression of numerous B-cell activation molecules, including CD23. Other studies demonstrated that only those B lymphocytes which carry the surface CD21 (EBV receptor) become transformation-competent. Inspired by the relatively unclear relations between expression of EBV and those of CD21 and CD23 in in vivo conditions we have decided to define correlations between tissue markers of EBV and of CD21 and CD23 molecules in B-cell non-Hodgkin's lymphomas (NHLs) in children. The studies were performed on an archival tissue material originating from children with B-cell NHLs (n=26) using immunocytochemical techniques, in situ hybridisation, and PCR. Our studies confirmed the latent phase of EBV infection in all of the EBV-positive patients. Viral proteins as well as viral RNAs (EBERs) was found both in the cytoplasm, in cell nuclei and in cell membranes of mainly the transformed lymphocytes B. Expression of the latent proteins (EBNA2 and LMP1) and that of EBERs in B-cell NHLs was significantly higher as compared to children with nonneoplastic lesions. The studies demonstrated reciprocally positive correlations between expressions of CD21 and CD23 in our children, but no correlation could be demonstrated between expression of EBV tissue markers and that of CD21 and/or CD23. Positive correlation was confirmed between expression of EBNA2 and LMP1 as well as between expression of the two proteins and EBERs in B-cell NHLs. Our studies have shown mainly latency III pattern of EBV. We have also demonstrated a novel form of EBV latency with no EBERs expression. The high detectability of EBV-positive cases both in the group of B-cell NHLs (77%), and in the group with non-neoplastic lesions (64%) suggested that only more pronounced tissue expression of EBV markers in B-cell NHLs as compared to the non-neoplastic material may point to a potential role of EBV in pathogenesis of lymphoma in this group of population in our country.  相似文献   

4.
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are human gammaherpesviruses associated with numerous malignancies. Primary effusion lymphoma or body cavity-based lymphoma is a distinct clinicopathological entity that, in the majority of cases, manifests coinfection with KSHV and EBV. In previous analyses, we have characterized the EBV in the BC-1 and BC-2 cell lines as potential intertypic recombinants of the EBV types 1 and 2. In order to examine the infectious and transforming capacities of KSHV and the intertypic EBV recombinants from the BC-1 and BC-2 cell lines, viral replication was induced in these cell lines and fresh human primary B lymphocytes were infected with progeny virus. The transformed clones were analyzed by PCR and Western blotting. All analyzed clones were infected with the intertypic progeny EBV but had no detectable signal for progeny KSHV. Additionally, primary B lymphocytes incubated with viral supernatant containing KSHV alone showed an unsustained initial proliferation, but prolonged growth or immortalization of these cells in vitro was not observed. We also show that the EBV recombinants from BC-1 were less efficient than the EBV recombinants from BC-2 in the ability to maintain the transformed phenotype of the infected human B lymphocytes. From these findings, we conclude that the BC-1 and BC-2 intertypic EBV recombinants can immortalize human primary B lymphocytes, albeit at different levels of efficiency. However, the KSHV induced from BC-1 and BC-2 alone cannot transform primary B cells, nor can it coinfect EBV-positive B lymphocytes under our experimental conditions with B lymphocytes from EBV-seropositive individuals. These results are distinct from those in one previous report and suggest a possible requirement for other factors to establish coinfection with both viral agents.  相似文献   

5.
6.
These experiments evaluate the role of the Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) in B-lymphocyte growth transformation by using a recombinant EBV molecular genetic approach. Recombinant viruses encoding for a mutant EBNA-LP lacking the carboxy-terminal 45 amino acids were markedly impaired in their ability to transform primary B lymphocytes compared with EBNA-LP wild-type but otherwise isogenic recombinant viruses. This impairment was particularly evident when primary B lymphocytes were infected under conditions of limiting virus dilution. The impairment could be partially corrected by growth of the infected lymphocytes with fibroblast feeder layers or by cocultivation of primary B lymphocytes with relatively highly permissive mutant virus-infected cells. One of the five mutant recombinants recovered by growth of infected cells on fibroblast feeder cultures was a partial revertant which had a normal transforming phenotype. Several lymphoblastoid cell lines infected with the EBNA-LP mutant recombinant viruses had a high percentage of cells with bright cytoplasmic immunoglobulin staining, as is characteristic of cells undergoing plasmacytoid differentiation. Expression of the other EBV latent or lytic proteins and viral replication were not affected by the EBNA-LP mutations. Thus, the EBNA-LP mutant phenotype is not mediated by an effect on expression of another EBV gene. These data are most compatible with the hypothesis that EBNA-LP affects expression of a B-lymphocyte gene which is a mediator of cell growth or differentiation.  相似文献   

7.
Epstein Barr virus (EBV) infection of human B lymphocytes is initiated by selective binding of the virus to the C3d receptor (EBV/C3d receptor) on the cell surface and results in polyclonal proliferation of infected cells. In these studies we examined the fate of the EBV/C3d receptor during viral infection by using an immunotoxin made from a monoclonal antibody (HB5) reactive with the receptor and the potent toxin, gelonin. Binding of the HB5-gelonin conjugate to the EBV/C3d receptor before EBV infection (at concentrations as low as 10(-11) M) significantly inhibited the subsequent polyclonal proliferation of virus-infected B lymphocytes. HB5 antibody and gelonin alone did not inhibit proliferation. Because internalization of gelonin-antibody conjugates is required to cause cytotoxicity, these results indicate that infection of B lymphocytes with EBV selectively induced endocytosis of the EBV/C3d receptor with concomitant internalization of the immunotoxin. Proliferation of B lymphocytes that were activated by prior infection with EBV, or activated by cross-linking of their surface immunoglobulin molecules, was not inhibited by the antibody-toxin conjugate even at concentrations as high as 10(-7) M. Also, the growth of B lymphoblastoid cell lines cultured in the presence or absence of infectious EBV was not inhibited by HB5-gelonin. Thus, our results suggest that the EBV/C3d receptor is internalized only during the infection of normal B lymphocytes by EBV, with co-internalization of immunotoxin, and indicate that internalization of the EBV/C3d receptor-immunotoxin complex does not occur simply as a consequence of activation and proliferation of B lymphocytes. The use of a ligand to induce endocytosis of its receptor offers a new strategy for the selective delivery of immunotoxins to cells and may be more generally applicable.  相似文献   

8.
9.
The Epstein-Barr virus (EBV) glycoprotein gp110 has substantial amino acid homology to gB of herpes simplex virus but localizes differently within infected cells and is essentially undetectable in virions. To investigate whether gp110, like gB, is essential for EBV infection, a selectable marker was inserted within the gp110 reading frame, BALF4, and the resulting null mutant EBV stain, B95-110HYG, was recovered in lymphoblastoid cell lines (LCLs). While LCLs infected with the parental virus B95-8 expressed the gp110 protein product following productive cycle induction, neither full-length gp110 nor the predicted gp110 truncation product was detectable in B95-110HYG LCLs. Infectious virus could not be recovered from B95-110HYG LCLs unless gp110 was provided in trans. Rescued B95-110HYG virus latently infected and growth transformed primary B lymphocytes. Thus, gp110 is required for the production of transforming virus but not for the maintenance of transformation of primary B lymphocytes by EBV.  相似文献   

10.
C Rooney  J G Howe  S H Speck    G Miller 《Journal of virology》1989,63(4):1531-1539
The Epstein-Barr virus (EBV) genes expressed in B lymphocytes immortalized in vitro or in Burkitt's lymphoma (BL) cells infected in vivo have been characterized previously; however, the viral products which are essential for immortalization or for establishment of EBV latency are still not known. To approach this question, we compared the kinetics of expression of EBV nuclear antigens and the two EBV-encoded small RNAs, EBER1 and EBER2, after infection of primary B cells or EBV genome-negative BL cells with either an immortalizing EBV strain (B95-8) or the nonimmortalizing deletion mutant (HR-1). Following infection of primary cells with B95-8 virus, EBV nuclear antigen (EBNA)-2 was expressed first, followed by EBNA-1, -3, and -4 (also called leader protein [LP]) and the two small RNAs. Infection of EBV genome-negative BL cells with the same strain of virus resulted in a similar pattern of gene expression, except that the EBNAs appeared together and more rapidly. EBERs were not apparent in one BL cell line converted by B95-8. The only products detected after infection of primary B lymphocytes with the HR-1 deletion mutant were the EBNA-4 (LP) family and trace amounts of EBER1. Although HR-1 could express neither EBNA-1, EBNA-3, nor EBER2 in primary cells, all these products were expressed rapidly after HR-1 infection of EBV genome-negative BL cell lines. The results indicate that the mutation in HR-1 virus affects immortalization not only through failure to express EBNA-2, a gene which is deleted, but also indirectly by curtailing expression of several other EBV genes whose coding regions are intact in the HR-1 virus and normally expressed during latency. The pattern of latent EBV gene expression after HR-1 infection is dependent on the host cell, perhaps through products specific for the cell cycle or the state of B-cell differentiation.  相似文献   

11.
Epstein-Barr virus (EBV) seems to have an etiological role in the pathogenesis of classical Hodgkin's lymphoma (cHL). Studies of whole tissue DNA by polymerase-chain reaction (PCR) have shown a considerable number of cHL cases with co-infections by different EBV strains and variants, which apparently contradict the clonality of EBV in cHL previously demonstrated by Southern blot analysis. Due to the paucity of HRS cells in HL tissues, studies on single cell DNA are necessary to identify the specific cellular location (HRS cells and/or bystander B lymphocytes) of the EBV strains and variants present in tissue specimens. In the current study, the presence of EBV was determined by PCR of the 3' end of the LMP-1 gene and EBNA-3C gene in whole tissue and, consecutively, in isolated cells from 26 cases of cHL: 10 HIV-positive and 16 sporadic cHL cases. EBV EBERs were present in all but 2 sporadic cHL cases, which were used as negative controls. At isolated cell level, EBNA-3C gene PCR was more sensitive. Indeed, from the cHL cases in which dual-infection was present, it was observed that, in most of them, HRS cells were infected by type 1 virus, and B lymphocytes were co-infected by both types, which points towards EBV infection occurring early in cHL development. Moreover, the finding of 2 cases with dual-infection in HRS may suggest that, in a small percentage of cHL cases, HRS cells derive from different neoplastic clones, or that HRS cells are superinfected by other viral types after the establishment of the neoplastic clone.  相似文献   

12.
Epstein-Barr virus (EBV) is a highly efficient acute transforming agent in human cells, provided that the intact virus is used. To investigate the ability of viral DNA alone to transform cells, we introduced the EBV genome into human lymphocytes. After microinjection of EBV DNA into neonatal B lymphocytes, we established a cell line that in early passages contained multiple viral fragments. This cell line retained sequences from the short, unique (Us) region of the EBV genome and sequences from EcoRI-E. The viral sequences were not expressed; however, the cells expressed a 2.3-kilobase polyadenylated message homologous to the c-fgr oncogene, a cellular locus believed to be activated by EBV infection [M. S. C. Cheah, T. J. Ley, S. R. Tronick, and K. C. Robbins, Nature (London) 319:238-240.]. The cell line was monoclonal with rearrangement at the immunoglobulin locus and had a reciprocal translocation t(1;7)(p34;q34) and a deletion of sequences within the locus for the beta chain of the T-cell receptor. The close proximity of the translocation to the chromosomal loci for c-fgr on chromosome 1 and the T-cell receptor beta chain on chromosome 7 suggests that structural alteration of these genes was critical to this transformation event.  相似文献   

13.
Epstein-Barr virus (EBV) isolates show sequence divergence in the BamHI YH region of the genome which encodes the nuclear antigen EBNA 2, a protein thought to be involved in the initiation of virus-induced B-cell transformation; type A isolates (such as B95-8 EBV) encode a 82- to 87-kilodalton EBNA 2A protein, whereas type B isolates (such as AG876 EBV) encode an antigenically distinct 75-kilodalton EBNA 2B protein. In the present work 12 type A isolates and 8 type B isolates have been compared for their ability to transform resting human B cells in vitro into permanent lymphoblastoid cell lines. Although the kinetics of initial focus formation was not markedly dependent upon the EBNA 2 type of the transforming virus, on subsequent passage type A virus-transformed cells (type A transformants) yielded cell lines much more readily than did type B transformants. Direct comparison between the two types of transformant revealed clear differences in several aspects of growth phenotype. Compared with type A transformants, cell lines established with type B virus isolates consistently displayed an unusual growth pattern with poor survival of individual cells shed from lymphoblastoid clumps, a lower growth rate and a greater sensitivity to seeding at limiting dilutions, and a significantly lower saturation density that could not be corrected by supplementation of the medium with culture supernatant containing B-cell growth factors. This is the first direct evidence that, in EBV-transformed B-cell lines, the EBNA 2 protein plays a continuing role in determining the cellular growth phenotype.  相似文献   

14.
Transformation-competent, replication-defective Epstein-Barr virus (EBV) recombinants which are deleted for 18 kbp of DNA encoding the largest EBNA intron and for 58 kbp of DNA between the EBNA1 and LMP1 genes were constructed. These recombinants were made by transfecting three overlapping cosmid-cloned EBV DNA fragments into cells infected with a lytic replication-competent but transformation-defective EBV (P3HR-1 strain) and were identified by clonal transformation of primary B lymphocytes into lymphoblastoid cell lines. One-third of the lymphoblastoid cell lines were infected with recombinants which had both deletions and carried the EBNA2 and EBNA3 genes from the transfected EBV DNA and therefore are composed mostly or entirely from the transfected EBV DNA fragments. The deleted DNA is absent from cells infected with most of these recombinants, as demonstrated by Southern blot and sensitive PCR analyses for eight different sites within the deleted regions. Cell growth and EBNA, LMP, and BZLF1 gene expression in lymphoblastoid cell lines infected with these recombinants are similar to those in cells infected with wild-type EBV recombinants. Together with previous data, these experiments reduce the complexity of the EBV DNA necessary for transformation of primary B lymphocytes to 64 kbp. The approach should be useful for molecular genetic analyses of transforming EBV genes or for the insertion of heterologous fragments into transforming EBV genomes.  相似文献   

15.
We have demonstrated that Epstein-Barr virus (EBV) confers enhanced growth capability in soft agarose, tumorigenesis in the SCID mouse, and resistance to apoptosis in the Burkitt's lymphoma cell line Akata. Subsequently, we have shown that EBV-encoded small RNAs (EBERs) are responsible for these phenotypes. We constantly observed the upregulation of bcl-2 oncoprotein expression upon EBV infection and expression of EBERs. To test whether these phenotypes were due to the upregulation of bcl-2 expression, we introduced bcl-2 into EBV-negative Akata cells at various levels encompassing the range at which EBV-positive cells expressed it. As cells expressed bcl-2 at higher levels, they became more capable of growing in soft agarose and became resistant to apoptosis. However, clones expressing bcl-2 at a higher level than EBV-positive Akata cells were negative in the tumorigenesis assay in the SCID mouse. On the other hand, introduction of bax into EBV-positive Akata cells reduced the resistance to apoptosis; however, it failed to reduce the growth capability in soft agarose. These data indicate that EBV targets not only bcl-2, but also an unknown pathway(s) to enhance the oncogenic potential of Akata cells.  相似文献   

16.
Radiobiological Inactivation of Epstein-Barr Virus   总被引:4,自引:4,他引:0       下载免费PDF全文
Lymphocyte transforming properties of B95-8 strain Epstein-Barr virus (EBV) are very sensitive to inactivation by either UV or X irradiation. No dose of irradiation increases the transforming capacity of EBV. The X-ray dose needed for inactivation of EBV transformation (dose that results in 37% survival, 60,000 rads) is similar to the dose required for inactivation of plaque formation by herpes simplex virus type 1 (Fischer strain). Although herpes simplex virus is more sensitive than EBV to UV irradiation, this difference is most likely due to differences in the kinetics or mechanisms of repair of UV damage to the two viruses. The results lead to the hypothesis that a large part, or perhaps all, of the EBV genome is in some way needed to initiate transformation. The abilities of EBV to stimulate host cell DNA synthesis, to induce nuclear antigen, and to immortalize are inactivated in parallel. All clones of marmoset cells transformed by irradiated virus produce extracellular transforming virus. These findings suggest that the abilities of the virus to transform and to replicate complete progeny are inactivated together. The amounts of UV and X irradiation that inactivate transformation by B95-8 virus are less than the dose needed to inactivate early antigen induction by the nontransforming P(3)HR-1 strain of EBV. Based on radiobiological inactivation, 10 to 50% of the genome is needed for early antigen induction. Inactivation of early antigen induction is influenced by the cells in which the assay is performed. Inactivation proceeds more rapidly in EBV genome-free cells than in genome carrier Raji or in P(3)HR-1 converted EBV genome-free cells clone B(1). These results indicate that the resident EBV genome participates in the early antigen induction process. Variation in radio-biological killing of B95-8 and P(3)HR-1 EBV is not attributable to variations in the repair capacities of the cells in which the viruses were assayed, since inactivation of HSV was the same in primary lymphocytes and in all lymphoid cell lines tested.  相似文献   

17.
After infection with Epstein Barr virus (EBV), human B lymphocytes actively secrete immunoglobulin (Ig) and are immortalized to become long-term cell lines. In these studies, we investigated the relationship between these virally induced processes utilizing limiting dilution culture techniques, and asked whether all B cells stimulated by EBV to secrete Ig are also immortalized. The activation of B cells by EBV resulting in Ig production and immortalization involved a single precursor cell, required live viral particles, and was independent of immunity to EBV by the lymphocyte donor. However, the precursor frequency of B cells activated to secrete Ig (mean 4.7%) was higher than the precursor frequency of B cells activated to long-term in vitro growth (mean 2.1%). When examined at a single cell level, it appeared that although the vast majority of the immortalized B cells also secrete Ig, only approximately 50% of the B cell precursors induced by EBV to secrete Ig go on to form long-term cell lines. In addition, although immortalized B cell clones producing all major classes of Ig were detected, IgM-committed precursors were more likely to become immortal than were precursors committed to IgG or IgA production. In contrast to these findings in B cells freshly infected with EBV, Ig production was almost always associated with evidence of long-term growth when B cells from previously established EBV-induced B cell lines were tested in identical limiting dilution cultures. Thus, after infection with EBV, human B cells can either become transiently activated to proliferate and to secrete Ig, or become transformed into long-term cell lines most of which produce Ig.  相似文献   

18.
M Daibata  I Kubonishi    I Miyoshi 《Journal of virology》1996,70(12):9003-9007
Epstein-Barr virus (EBV) genome has been detected in several human lymphoproliferative diseases, but the oncogenic function of EBV is not fully understood. We previously established EBV-positive (SP-50B) and EBV-negative (SP-53) cell lines with the t(11;14)(q13;q32) chromosome abnormality from a single patient with mantle cell lymphoma. Monoclonal EBV DNA in a circular episomal form was demonstrated in the SP-50B cells by Southern blot hybridization with the EBV-terminal fragment probe. SP-50B cells were positive for not only EBV-encoded nuclear antigen-1 (EBNA1) but also latent membrane protein-1 and EBNA2. None of the EBV-encoded proteins was expressed in SP-53 cells. The isogenic EBV-infected and EBV-free cell lines of neoplastic clones made it possible to examine a tumorigenic role of EBV. Only EBV-positive SP-50B cells possessed malignant phenotypes, such as growth ability in low serum, colony formation in soft agarose, and tumorigenicity in nude mice. On the other hand, a lymphoblastoid B-cell line established by infecting the patient's normal B lymphocytes in vitro with exogenous EBV had no tumorigenicity. These results suggested that EBV infection, if it occurred in neoplastic lymphoma cells, could play a role in acquisition of malignant phenotypes.  相似文献   

19.
An Epstein-Barr virus (EBV) recombinant (MS231) that expresses the first 231 amino acids (aa) of LMP1 and is truncated 155 aa before the carboxyl terminus transformed resting B lymphocytes into lymphoblastoid cell lines (LCLs) only when the infected cells were grown on fibroblast feeder cells (K. M. Kaye et al., J. Virol. 69:675-683, 1995). Higher-titer MS231 virus has now been compared to wild-type (WT) EBV recombinants for the ability to cause resting primary B-lymphocyte transformation. Unexpectedly, MS231 is as potent as WT EBV recombinants in causing infected B lymphocytes to proliferate in culture for up to 5 weeks. When more than one transforming event is initiated in a microwell, the MS231 recombinant supports efficient long-term LCL outgrowth and fibroblast feeder cells are not required. However, with limited virus input, MS231-infected cells differed in their growth from WT virus-infected cells as early as 6 weeks after infection. In contrast to WT virus-infected cells, most MS231-infected cells could not be grown into long-term LCLs. Thus, the LMP1 amino-terminal 231 aa are sufficient for initial growth transformation but the carboxyl-terminal 155 aa are necessary for efficient long-term outgrowth. Despite the absence of the carboxyl-terminal 155 aa, MS231- and WT-transformed LCLs are similar in latent EBV gene expression, in ICAM-1 and CD23 expression, and in NF-kappaB and c-jun N-terminal kinase activation. MS231 recombinant-infected LCLs, however, require 16- to 64-fold higher cell density than WT-infected LCLs for regrowth after limiting dilution. These data indicate that the LMP1 carboxyl-terminal 155 aa are important for growth at lower cell density and appear to reduce dependence on paracrine growth factors.  相似文献   

20.
A Marchini  J I Cohen  F Wang    E Kieff 《Journal of virology》1992,66(5):3214-3219
The derivation of specifically mutated Epstein-Barr virus (EBV) recombinants is dependent on strategies to identify, enumerate, and clone infected B lymphocytes. In recent experiments, EBV recombinants containing a positive selection marker were identified and cloned in B-lymphoma (BL) cells infected and then plated under selective conditions (F. Wang, A. Marchini, and E. Kieff, J. Virol. 65:1701-1709, 1991). We now use BL cells, for the first time, as hosts for assaying and cloning otherwise isogenic EBV recombinants carrying a hygromycin phosphotransferase (HYG) gene linked to either a nontransforming deletion mutant or a transforming wild-type EBV nuclear antigen 2 (EBNA-2) gene. Both types of recombinants converted BL cells to hygromycin resistance with similar efficiency, formed episomes, and usually expressed only EBNA-1. Only the wild-type EBNA-2 HYG gene EBV recombinant transformed primary B lymphocytes. This strategy of assaying virus on BL and primary B lymphocytes makes possible the direct assessment of the transforming efficiency of an EBV recombinant. The resultant infected BL cells are also useful for the characterization of the nontransforming recombinant EBV genomes. The HYG gene insertion in the BHLF1 open reading frame eliminated BHLF1 protein expression. The insertion and resulting BHLF1 mutation did not interfere with primary B-lymphocyte infection, growth transformation, induction of lytic infection, or virus production. Thus, these experiments also indicate that neither the BHLF1 open reading frame nor the HYG gene insertion critically affects B-lymphocyte infection in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号