首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspergillus niger or Aspergillus tamarii when grown as mixed cultures with toxigenic A. flavus inhibits biosynthesis of aflatoxin by A. flavus, owing primarily to its ability to produce inhibitors of aflatoxin biosynthesis and to their ability to degrade aflatoxin. Gluconic acid partly prevents aflatoxin production. The other factors such as changes in pH of the medium and the effect on the growth of A. flavus have no role in imparting capabilities to these cultures to inhibit aflatoxin production by A. flavus.  相似文献   

2.
Four agar media used to isolate aflatoxin producing fungi were compared for utility in isolating fungi in theAspergillus flavus group from agricultural soils collected in 15 fields and four states in the southern United States. The four media wereAspergillus flavus andparasiticus Agar (AFPA, 14), the rose bengal agar described by Bell and Crawford (BCRB; 3), a modified rose bengal agar (M-RB), and Czapek's-Dox Agar supplemented with the antibiotics in BC-RB (CZ-RB). M-RB was the most useful for studying the population biology of this group because it permitted both identification of the greatest number ofA. flavus group strains and growth of the fewest competing fungi. M-RB supported an average of 12% moreA. flavus group colonies than the original rose bengal medium while reducing the number of mucorales colonies and the number of total fungi by 99% and 70%, respectively. M-RB was successfully employed to isolate all three aflatoxin producing species,A. flavus, A. parasiticus andA. nomius, and both the S and L strains ofA. flavus. M-RB is a defined medium without complex nitrogen and carbon sources (e.g. peptone and yeast extract) present in BC-RB. M-RB should be useful for studies on the population biology of theA. flavus group.Abbreviations M-RB Modified Rose Bengal Agar - CZ-RB Czapeks Rose Bengal Agar - BC-RB Bell and Crawford's Rose Bengal Agar - AFPA Aspergillus flavus andparasiticus agar  相似文献   

3.
Aflatoxins are carcinogenic, teratogenic and immunosuppressive secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus. Aflatoxin contamination of peanut is one of the most important constraints to peanut production worldwide. In order to develop an eco-friendly method of prevention of A. flavus infection and aflatoxin contamination in peanut, aqueous extracts obtained from leaves of 30 medicinal plants belonging to different families were evaluated for their ability to inhibit the growth of A. flavus in vitro. Among them the leaf extract of zimmu (Allium sativum L. × Allium cepa L.) was the only one that showed antifungal activity against A. flavus and recorded 73% inhibition of A. flavus growth. The antifungal activity of the zimmu extract was significantly decreased upon dialysis with a dialysis membrane having molecular cut off 12 kDa or autoclaving at 121°C for 20 min or boiling at 100°C for 10 min and recorded inhibition of 52, 16 and 21%, respectively. When A. flavus was grown in medium containing zimmu extract the production of aflatoxin B1 (AFB1) was completely inhibited even at a concentration of 0.5%. When AFB1 was incubated with zimmu extract a complete degradation of AFB1 was observed 5 days after incubation. When the roots of zimmu were incubated in water containing 70 ng of AFB1/ml, a reduction (by 58.5%) in AFB1 concentration was observed 5 days after incubation. A significant reduction in the population of A. flavus in the soil, kernel infection by A. flavus and aflatoxin contamination in kernels was observed when peanut was intercropped with zimmu. The population of the fungal antagonist, Trichoderma viride in the zimmu-intercropped field increased approximately twofold.  相似文献   

4.
The effect of different nitrogen sources and varying glucose concentration on aflatoxin production by a toxigenic and non-toxigenic strain of Aspergillus flavus was studied. Greatest production (3.8 ppm) of aflatoxin B1 was produced in a synthetic medium when casamino acids were supplied as the nitrogen source. Optimum sugar concentration for aflatoxin B1 production ranged between 3 and 10 g/100 ml. There was no appreciable difference in the metabolic behaviour between toxigenic and non-toxigenic strains of A. flavus when dry mycelial weight, total proteins, non-protein nitrogen and reducing sugar were the criteria.  相似文献   

5.
The distribution of aflatoxin producing isolates of the Aspergillus flavus group in feeds was studied. Aflatoxin production was investigated by a sequential method previously reported (fluorescence in Coconut Agar Medium, rapid extraction from a wheat medium, and total extraction from the same wheat medium). Twenty-seven of 32 samples contained A. flavus, and 21 of them had at least one aflatoxicogenic isolate of A. flavus. Of the 115 isolates analysed, 65 produced aflatoxins, mainly B aflatoxins.  相似文献   

6.
Bamba R  Sumbali G 《Mycopathologia》2005,159(3):407-411
During hot and humid seasons, extensive rot of sour lime was observed to be caused by Aspergillus flavus. In view of this, investigations were undertaken to obtain data on the production of various toxins by A. flavus during post harvest pathogenesis of sour lime. Sixty percent of the pathogenic A. flavus isolates were detected to be aflatoxin B1 producers in sour lime tissue. It was also noted that thirty three percent of aflatoxigenic A. flavus isolates had the potential to coproduce cyclopiazonic acid (CPA). Such aflatoxigenic isolates produced quantitatively more CPA (ranging from 250.0 to 2501.3 g/kg) than aflatoxin B1 (ranging from 141.3 to 811.7 g/kg) in the affected sour lime. This study demonstrates for the first time that sour lime are a favourable substrate for aflatoxin B1 and cyclopiazonic acid production by A. flavus isolates. This is of great concern to the health of consumers.  相似文献   

7.
Intraspecific competition is the basis for biological control of aflatoxins, but there is little understanding of the mechanism(s) by which competing strains inhibit toxin production. Evidence is presented that demonstrates a relationship between strength of the vegetative compatibility reaction and aflatoxin production in Aspergillus flavus and A. parasiticus using the suspended disk culture method. Combining wild-type aflatoxin-producing isolates belonging to different vegetative compatibility groups (VCGs) resulted in a substantial reduction in aflatoxin yield. Pairs of aflatoxin-producing isolates within the same VCG, but showing weak compatibility reactions using complementary nitrate-nonutilizing mutants, also were associated with reduced levels of aflatoxin B1. In contrast, pairings of isolates displaying a strong compatibility reaction typically produced high levels of aflatoxins. These results suggest that interactions between vegetatively compatible wild-type isolates of A. flavus and A. parasiticus are cooperative and result in more aflatoxin B1 than pairings between isolates that are incompatible. Successful hyphal fusions among spore germlings produce a common mycelial network with a larger resource base to support aflatoxin biosynthesis. By comparison, vegetative incompatibility reactions might result in the death of those heterokaryotic cells composed of incompatible nuclei and thereby disrupt the formation of mycelial networks at the expense of aflatoxin biosynthesis. The content of this paper was presented at the 50th Anniversary Meeting of the Mycological Society of Japan, June 3–4, 2006, Chiba, Japan  相似文献   

8.
A two-year study was conducted to evaluate the efficacy of three formulations of nontoxigenic strains of Aspergillus flavus and Aspergillus parasiticus to reduce preharvest aflatoxin contamination of peanuts. Formulations included: (1) solid-state fermented rice; (2) fungal conidia encapsulated in an extrusion product termed Pesta; (3) conidia encapsulated in pregelatinized corn flour granules. Formulations were applied to peanut plots in 1996 and reapplied to the same plots in 1997 in a randomized design with four replications, including untreated controls. Analysis of soils for A. flavus and A. parasiticus showed that a large soil population of the nontoxigenic strains resulted from all formulations. In the first year, the percentage of kernels infected by wild-type A. flavus and A. parasiticus was significantly reduced in plots treated with rice and corn flour granules, but it was reduced only in the rice-treated plots in year two. There were no significant differences in total infection of kernels by all strains of A. flavus and A. parasiticus in either year. Aflatoxin concentrations in peanuts were significantly reduced in year two by all formulation treatments with an average reduction of 92%. Reductions were also noted for all formulation treatments in year one (average 86%), but they were not statistically significant because of wide variation in the aflatoxin concentrations in the untreated controls. Each of the formulations tested, therefore, was effective in delivering competitive levels of nontoxigenic strains of A. flavus and A. parasiticus to soil and in reducing subsequent aflatoxin contamination of peanuts.  相似文献   

9.
Preharvest seed infection byAspergillus flavus and aflatoxin contamination in selected groundnut genotypes (fourA. flavus-resistant and fourA. flavus-susceptible) were examined in different soil types at several locations in India in 1985–1990. Undamaged mature pods were sampled at harvest and seed examined forA. flavus infection and aflatoxin content in two or more trials at ICRISAT Center on light sandy soils and red sandy loam soils (Alfisols), and on Vertisols, at Anantapur on light sandy soils, and at Dharwad and Parbhani on Vertisols. Rainy season trials (1985–1989) were all rainfed. Post-rainy season trials were irrigated; late-season drought stress (90 days after sowing (DAS) until harvest at 125 DAS) was imposed in the 1987/88 and 1989/90 seasons.A. flavus infection and aflatoxin contamination levels were much lower in seed of all genotypes from Vertisols than in seed from Alfisols across locations and seasons. Vertisols also had significantly lower populations ofA. flavus than Alfisols. There were no marked differences between light sandy soils and red sandy loam soils (Alfisols) in respect of seed infection byA. flavus and aflatoxin contamination. Significant interactions between genotypes and soil types were evident, especially in theA. flavus-susceptible genotypes. Irrespective of soil types,A. flavus-resistant genotypes showed lower levels of seed infection byA. flavus and other fungi than didA. flavus-susceptible genotypes. The significance of the low preharvest aflatoxin risk in groundnuts grown on Vertisols is highlighted.ICRISAT Journal Article No. JA 1122  相似文献   

10.
Dorner JW  Horn BW 《Mycopathologia》2007,163(4):215-223
A 2-year study was carried out to determine the effect of applying nontoxigenic strains of Aspergillus flavus and A. parasiticus to soil separately and in combination on preharvest aflatoxin contamination of peanuts. A naturally occurring, nontoxigenic strain of A. flavus and a UV-induced mutant of A. parasiticus were applied to peanut soils during the middle of each of two growing seasons using a formulation of conidia-coated hulled barley. In addition to an untreated control, treatments included soil inoculated with nontoxigenic A. flavus only, soil inoculated with nontoxigenic A. parasiticus only, and soil inoculated with a mixture of the two nontoxigenic strains. Plants were exposed to late-season drought conditions that were optimal for aflatoxin contamination. Results from year one showed that significant displacement (70%) of toxigenic A. flavus occurred only in peanuts from plots treated with nontoxigenic A. flavus alone; however, displacement did not result in a statistically significant reduction in the mean aflatoxin concentration in peanuts. In year two, soils were re-inoculated as in year one and all treatments resulted in significant reductions in aflatoxin, averaging 91.6%. Regression analyses showed strong correlations between the presence of nontoxigenic strains in peanuts and aflatoxin reduction. It is concluded that treatment with the nontoxigenic A. flavus strain alone is more effective than the A. parasiticus strain alone and equally as effective as the mixture. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

11.
Freshly harvested soybean, rice and corn from farms and corn-based pelleted feeds were collected from ranches from the coastal and mountain regions in Ecuador during 1998, and assessed for fungal contamination. The most prevalent fungi on pelleted feed were Aspergillus flavus and Fusarium graminearum. The prevalent fungi recovered from soybean were F. verticillioides, F. semitectum, Aspergillus flavus and A. ochraceus. In rice, F. oxysporum was the most prevalent toxigenic fungal species recorded, followed by F. verticillioides and A. flavus. In corn, F. verticillioides was the most prevalent fungus isolated in both the coastal and mountain regions, with high isolation frequencies of A. flavus and A. parasiticus at the coast. Based on the toxigenic species recovered, ochratoxin A may pose a contamination risk for soybean. A higher probability of aflatoxin contamination of corn was found in the coastal samples compared to those of the mountain region, while a risk of fumonisin contamination of corn exists in both regions.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

12.
Mycotoxins in Australia: biocontrol of aflatoxin in peanuts   总被引:3,自引:0,他引:3  
Pitt JI  Hocking AD 《Mycopathologia》2006,162(3):233-243
The major mycotoxin problem in Australia is the formation of aflatoxins in peanuts by Aspergillus flavus and A. parasiticus. This is controlled by good farm management practice, segregation into grades on aflatoxin content at intake to shelling facilities, colour sorting and aflatoxin assays. A second problem is the potential presence of ochratoxin A in grapes and grape products, resulting from infection by Aspergillus carbonarius. Good quality control before and during wine making ensures ochratoxin A is kept to very low levels, but in dried vine fruit, ochratoxin A levels may be higher. Biocontrol by competitive exclusion has been developed as the most promising means of controlling aflatoxins in peanuts. Some details of the process are given, including some basic laboratory experiments.  相似文献   

13.
Thirty-nineAspergillus flavus genotypes (DNA fingerprinting) isolated from corn grown in a field near Kilbourne, Illinois were evaluated for their sensitivity to β-carotene (50 μg/ml) inhibition of aflatoxin B1 biosynthesis. Inhibition of aflatoxin was greater than 90% for 28 of the genotypes and >70% for 38 of the 39 genotypes. FiveA. flavus strains (4 fingerprint groups) isolated from molded raw peanuts, NRRL 3239, NRRL 3357, NRRL 6514, NRRL 6515 and NRRL 13135, produced greater quantities of aflatoxin than all 39 genotypes isolated from corn, and were less sensitive to β-carotene inhibition.Aspergillus flavus NRRL 3357 is commonly used as inoculum in variety trials for aflatoxin resistance. Isolate identity and sensitivity to potential inhibitors in corn can be critical in assessing corn resistance to aflatoxin.  相似文献   

14.
The activities of three natural coumarins, xanthotoxin and bergapten (fromAmmi majus, Umbelliferae) and psoralene (fromFicus cycomorus, Moraceae), were tested against mycelial growth and aflatoxin production of a toxigenic strain ofAspergillus flavus grown in a rice/corn steep liquor medium. Two other natural chromones, khellin and visnagin (fromAmmi visnaga) were also compared. Complete inhibition of aflatoxin release occurred with either xanthotoxin or khellin at 5 mM. The other three compounds also at 5 mM reduced aflatoxin to 12 to 16% of its original concentration. The mould growth was only slightly inhibited by all the compounds used.  相似文献   

15.
The use of nontoxigenic strains of Aspergillus flavus and A. parasiticus in biological control effectively reduces aflatoxin in peanuts when conidium-producing inoculum is applied to the soil surface. In this study, the movement of conidia in soil was examined following natural rainfall and controlled precipitation from a sprinkler irrigation system. Conidia of nontoxigenic A. flavus and A. parasiticus remained near the soil surface despite repeated rainfall and varying amounts of applied water from irrigation. In addition, rainfall washed the conidia along the peanut furrows for up to 100 meters downstream from the experimental plot boundary. The dispersal gradient was otherwise very steep upstream along the furrows and in directions perpendicular to the peanut rows. The retention of biocontrol conidia in the upper soil layers is likely important in reducing aflatoxin contamination of peanuts and aerial crops such as corn and cottonseed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
During an investigation of the mycoflora on oilseed rape, the predominant fungal species present in 20 samples collected from Catalonia (Spain) wereAlternaria alternata (Fries) Keissler,Penicillium spp. andAspergillus flavus. None of the 20 samples analyzed presented contamination byAlternaria mycotoxins (tenuazonic acid, alternariol, alternariol methyl ether, altertoxin I and altertoxin II). Only aflatoxin B1 was detected in 1 of the 20 samples analyzed, with a concentration of 0.25 ppb. Of the 40Aspergillus flavus strains isolated from oilseed rape samples, only 3 revealed aflatoxigenic capacity. None of thePenicillium spp. isolated from oilseed rape samples revealed mycotoxigenic capacity (citreoviridin, griseofulvin, citrinin, patulin and penicillic acid).  相似文献   

17.
Ismail MA  Zaky ZM 《Mycopathologia》1999,146(3):147-154
The luncheon meat samples analyzed, which were produced locally by the two main luncheon meat producing companies in Egypt were relatively highly contaminated either by moulds and yeasts in general, aflatoxigenic species and aflatoxin residues in particular. The most frequently encountered fungi from the samples were yeasts, Aspergillus niger, A. flavus, Penicillium chrysogenum, Rhizopus stolonifer, Mucor circinelloides. Less common were Cladosporium sphaerospermum, Alternaria alternata, Mycosphaerella tassiana, P. aurantiogriseum and P. oxalicum. The most important aflatoxigenic species, A. flavus, was isolated frequently. It was 10% of the total fungal isolates from both samples of the two companies. Seven luncheon meat samples out of 50 analyzed were positive for aflatoxin B1 or B1 and G1, while all samples were negative for aflatoxins B2, G2, M1 and M2. Aflatoxin B1 was detected only in 4 and 3 samples out of 25 analyzed from each of company A and B, respectively. The highest detectable level, 11.1 ppb, was recorded in a sample from company B and the least, 0.5 ppb, in a sample from company A. Aflatoxin G1, at concentration of 3.2 ppb, was detected in only one sample of the aflatoxin B1 – contaminated 3 samples of company B: this sample also had the highest level of aflatoxin B1. Some luncheon meat samples had higher numbers of aflatoxigenic A. flavus than others, however these samples were negative for aflatoxins. The hazardous potential of such contamination will be discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Sharma  Yash Pal  Sumbali  Geeta 《Mycopathologia》2000,148(2):103-107
An investigation was undertaken to obtain data on the occurrence of aflatoxins and the aflatoxin producing potential of Aspergillus flavus strains isolated from dry fruit slices of quinces produced in jammu and Kashmir, India. A total of 147 A. flavus isolates recovered from dr fruit slices were grown in liquid rice flour medium and screened for the production of various aflatoxins by thin layer chromatography. The results showed that 23.14% of the tested isolates were aflatoxigenic, producing aflatoxins B1and B2 in varying amounts. Aflatoxins G1 and G2 were not detected. All 25 of the investigated market samples were also found to be aflatoxin B1 positive and the level of contamination ranged from 96 to 8164 g/kg of the dry fruit which is quite high in comparison to the permissible level of 30 ppb. As per these results biochemical composition of dry fruit slices of quinces, along with climatic conditions seem to be very favourable for aflatoxin production by the toxigenic A. flavus strains. Therefore,monitoring of aflatoxins in dry fruit slices of quincesis recommended for this region.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

19.
A two-year factorial experiment was utilized to test plants field-inoculated singly and in combination withAspergillus flavus andFusarium moniliforme. Pinbar inoculations were made through the husks with conidial suspensions, and 10-ear maize samples were harvested at 60 days post-silking for aflatoxin determinations. When ears were inoculated with both fungi simultaneously,F. moniliforme reduced aflatoxin formation byA. flavus isolate NRRL 3357 by approximately two-thirds.F. moniliforme had no significant effect on naturally occurring aflatoxin contamination byA. flavus. This may be due to the timing of infection by both fungi in the field. In nature,A. flavus andF. moniliforme respond differently to the environment, offering one explanation of whyF. moniliforme did not measurably affect the other fungus.  相似文献   

20.
The aflatoxin-producing fungi, Aspergillus flavus and A. parasiticus, form structures called sclerotia that allow for survival under adverse conditions. Deletion of the veA gene in A. flavus and A. parasiticus blocks production of aflatoxin as well as sclerotial formation. We used microarray technology to identify genes differentially expressed in wild-type veA and veA mutant strains that could be involved in aflatoxin production and sclerotial development in A. flavus. The DNA microarray analysis revealed 684 genes whose expression changed significantly over time; 136 of these were differentially expressed between the two strains including 27 genes that demonstrated a significant difference in expression both between strains and over time. A group of 115 genes showed greater expression in the wild-type than in the veA mutant strain. We identified a subgroup of veA-dependent genes that exhibited time-dependent expression profiles similar to those of known aflatoxin biosynthetic genes or that were candidates for involvement in sclerotial production in the wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号