首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The alpha 3 beta 3 hexamer was reconstituted from the alpha and beta subunits of TF1 portion of ATP synthase of thermophilic bacterium (Kagawa et al. (1989) FEBS Lett. 249, 67). The alpha 1 beta 1 heterodimer of ATP synthase was isolated by high performance liquid chromatography (HPLC) of the alpha 3 beta 3 hexamer in the presence of AT(D)P-Mg. On polyacrylamide gel electrophoresis, both bands corresponding to the dimer and hexamer showed ATPase activity. The alpha 1 beta 1 dimer was dissociated into the equal amounts of the alpha and beta monomers by sodium dodecyl sulfate. The alpha and beta monomers were practically inactive. The alpha 2 and beta 2 homodimers were not detected by electrophoresis and HPLC.  相似文献   

3.
Zharova TV  Vinogradov AD 《Biochemistry》2006,45(48):14552-14558
The presence of medium Pi (half-maximal concentration of 20 microM at pH 8.0) was found to be required for the prevention of the rapid decline in the rate of proton-motive force (pmf)-induced ATP hydrolysis by Fo.F1 ATP synthase in coupled vesicles derived from Paracoccus denitrificans. The initial rate of the reaction was independent of Pi. The apparent affinity of Pi for its "ATPase-protecting" site was strongly decreased with partial uncoupling of the vesicles. Pi did not reactivate ATPase when added after complete time-dependent deactivation during the enzyme turnover. Arsenate and sulfate, which was shown to compete with Pi when Fo.F1 catalyzed oxidative phosphorylation, substituted for Pi as the protectors of ATPase against the turnover-dependent deactivation. Under conditions where the enzyme turnover was not permitted (no ATP was present), Pi was not required for the pmf-induced activation of ATPase, whereas the presence of medium Pi (or sulfate) delayed the spontaneous deactivation of the enzyme which was induced by the membrane de-energization. The data are interpreted to suggest that coupled and uncoupled ATP hydrolysis catalyzed by Fo.F1 ATP synthases proceeds via different intermediates. Pi dissociates after ADP if the coupling membrane is energized (no E.ADP intermediate exists). Pi dissociates before ADP during uncoupled ATP hydrolysis, leaving the E.ADP intermediate which is transformed into the inactive ADP(Mg2+)-inhibited form of the enzyme (latent ATPase).  相似文献   

4.
The FoF1 synthase produces ATP from ADP and inorganic phosphate. The γ subunit of FoF1 ATP synthase in photosynthetic organisms, which is the rotor subunit of this enzyme, contains a characteristic β-hairpin structure. This structure is formed from an insertion sequence that has been conserved only in phototrophs. Using recombinant subcomplexes, we previously demonstrated that this region plays an essential role in the regulation of ATP hydrolysis activity, thereby functioning in controlling intracellular ATP levels in response to changes in the light environment. However, the role of this region in ATP synthesis has long remained an open question because its analysis requires the preparation of the whole FoF1 complex and a transmembrane proton-motive force. In this study, we successfully prepared proteoliposomes containing the entire FoF1 ATP synthase from a cyanobacterium, Synechocystis sp. PCC 6803, and measured ATP synthesis/hydrolysis and proton-translocating activities. The relatively simple genetic manipulation of Synechocystis enabled the biochemical investigation of the role of the β-hairpin structure of FoF1 ATP synthase and its activities. We further performed physiological analyses of Synechocystis mutant strains lacking the β-hairpin structure, which provided novel insights into the regulatory mechanisms of FoF1 ATP synthase in cyanobacteria via the phototroph-specific region of the γ subunit. Our results indicated that this structure critically contributes to ATP synthesis and suppresses ATP hydrolysis.  相似文献   

5.
The F(1) component of mitochondrial ATP synthase is an oligomeric assembly of five different subunits, alpha, beta, gamma, delta, and epsilon. In terms of mass, the bulk of the structure ( approximately 90%) is provided by the alpha and beta subunits, which form an (alphabeta)(3) hexamer with adenine nucleotide binding sites at the alpha/beta interfaces. We report here ultrastructural and immunocytochemical analyses of yeast mutants that are unable to form the alpha(3)beta(3) oligomer, either because the alpha or the beta subunit is missing or because the cells are deficient for proteins that mediate F assembly (e.g. Atp11p, Atp12p, or Fmc1p). The F(1) alpha(1) and beta subunits of such mutant strains are detected within large electron-dense particles in the mitochondrial matrix. The composition of the aggregated species is principally full-length F(1) alpha and/or beta subunit protein that has been processed to remove the amino-terminal targeting peptide. To our knowledge this is the first demonstration of mitochondrial inclusion bodies that are formed largely of one particular protein species. We also show that yeast mutants lacking the alpha(3)beta(3) oligomer are devoid of mitochondrial cristae and are severely deficient for respiratory complexes III and IV. These observations are in accord with other studies in the literature that have pointed to a central role for the ATP synthase in biogenesis of the mitochondrial inner membrane.  相似文献   

6.
ATP synthase consists of two portions, F(1) and F(o), connected by two stalks: a central rotor stalk containing gamma and epsilon subunits and a peripheral, second stalk formed by delta and two copies of F(o)b subunits. The second stalk is expected to keep the stator subunits from spinning along with the rotor. We isolated a TF(1)-b'(2) complex (alpha(3)beta(3)gammadeltaepsilonb'(2)) of a thermophilic Bacillus PS3, in which b' was a truncated cytoplasmic fragment of F(o)b subunit, and introduced a cysteine at its N terminus (bc'). Association of b'(2) or bc'(2) with TF(1) did not have significant effect on ATPase activity. A disulfide bond between the introduced cysteine of bc' and cysteine 109 of gamma subunit was readily formed, and this cross-link caused inactivation of ATPase. This implies that F(o)b subunit bound to stator subunits of F(1) with enough strength to resist rotation of gamma subunit and to prevent catalysis. Contrary to this apparent tight binding, some detergents such as lauryldodecylamine oxide tend to cause release of b'(2) from TF(1).  相似文献   

7.
Escherichia coli DNA polymerase III holoenzyme is a multisubunit composite containing the beta sliding clamp and clamp loading gamma complex. The gamma complex requires ATP to load beta onto DNA. A two-color fluorescence spectroscopic approach was utilized to study this system, wherein both assembly (red fluorescence; X-rhodamine labeled DNA anisotropy assay) and ATP hydrolysis (green fluorescence; phosphate binding protein assay) were simultaneously measured with millisecond timing resolution. The two temporally correlated stopped-flow signals revealed that a preassembled beta. gamma complex composite rapidly binds primer/template DNA in an ATP hydrolysis independent step. Once bound, two molecules of ATP are rapidly hydrolyzed (approximately 34 s(-1)). Following hydrolysis, gamma complex dissociates from the DNA ( approximately 22 s(-1)). Once dissociated, the next cycle of loading is severely compromised, resulting in steady-state ATP hydrolysis rates with a maximum of only approximately 3 s(-1). Two single-site beta dimer interface mutants were examined which had impaired steady-state rates of ATP hydrolysis. The pre-steady-state correlated kinetics of these mutants revealed a pattern essentially identical to wild type. The anisotropy data showed that these mutants decrease the steady-state rates of ATP hydrolysis by causing a buildup of "stuck" binary-ternary complexes on the primer/template DNA.  相似文献   

8.
In crystal structures of bovine MF(1), the side chains of alpha F(357) and beta R(372) are near the adenines of nucleotides bound to noncatalytic sites. To determine if during catalysis these side chains must pass through the different arrangements in which they are present in crystal structures, the catalytic properties of the (alpha F(357)C)(3)(beta R(372)C)(3)gamma subcomplex of the TF(1)-ATPase were characterized before and after cross-linking the introduced cysteines with CuCl(2). The unmodified mutant enzyme hydrolyzes MgATP at 50% the rate exhibited by wild type. Detailed comparison of the catalytic properties of the double mutant enzyme before and after cross-linking with those of the wild-type subcomplex revealed the following. Before cross-linking, the (alpha F(357)C)(3)(beta R(372)C)(3)gamma subcomplex has less tendency than wild type to release inhibitory MgADP entrapped in a catalytic site during turnover when MgATP binds to noncatalytic sites. Following cross-linking, ATPase activity is reduced 5-fold, and inhibitory MgADP entrapped in a catalytic site during turnover does not release under conditions wherein binding of ATP to noncatalytic sites of the wild-type enzyme promotes release of MgADP from the affected catalytic site. When assayed in the presence of lauryldimethylamine oxide, which prevents turnover-dependent entrapment of inhibitory MgADP in a catalytic site, ATPase activity of the cross-linked form is 47% that of the unmodified mutant enzyme. These results suggest that, during catalysis, the side chains of alpha F(357) and beta R(372) do not pass through the extremely different relative positions in which they exist at the three noncatalytic site interfaces in crystal structures.  相似文献   

9.
Fo.F1-ATP synthase in inside-out coupled vesicles derived from Paracoccus denitrificans catalyzes Pi-dependent proton-translocating ATPase reaction if exposed to prior energization that relieves ADP.Mg2+ -induced inhibition (Zharova, T.V. and Vinogradov, A.D. (2004) J. Biol. Chem.,279, 12319-12324). Here we present evidence that the presence of medium ADP is required for the steady-state energetically self-sustained coupled ATP hydrolysis. The initial rapid ATPase activity is declined to a certain level if the reaction proceeds in the presence of the ADP-consuming, ATP-regenerating system (pyruvate kinase/phosphoenol pyruvate). The rate and extent of the enzyme de-activation are inversely proportional to the steady-state ADP concentration, which is altered by various amounts of pyruvate kinase at constant ATPase level. The half-maximal rate of stationary ATP hydrolysis is reached at an ADP concentration of 8 x 10(-6) M. The kinetic scheme is proposed explaining the requirement of the reaction products (ADP and Pi), the substrates of ATP synthesis, in the medium for proton-translocating ATP hydrolysis by P. denitrificans Fo.F1-ATP synthase.  相似文献   

10.
A mutant F(1)-ATPase alpha(3)beta(3)gamma subcomplex from the thermophilic Bacillus PS3 was constructed, in which 111 amino acid residues (Val(92) to Phe(202)) from the central region of the gamma subunit were replaced by the 148 amino acid residues of the homologous region from spinach chloroplast F(1)-ATPase gamma subunit, including the regulatory stretch, and were designated as alpha(3)beta(3)gamma((TCT)) (Thermophilic-Chloroplast-Thermophilic). By the insertion of this regulatory region into the gamma subunit of thermophilic F(1), we could confer the thiol modulation property to the thermophilic alpha(3)beta(3)gamma subcomplex. The overexpressed alpha(3)beta(3)gamma((TCT)) was easily purified in large scale, and the ATP hydrolyzing activity of the obtained complex was shown to increase up to 3-fold upon treatment with chloroplast thioredoxin-f and dithiothreitol. No loss of thermostability compared with the wild type subcomplex was found, and activation by dithiothreitol was functional at temperatures up to 80 degrees C. alpha(3)beta(3)gamma((TCT)) was inhibited by the epsilon subunit from chloroplast F(1)-ATPase but not by the one from the thermophilic F(1)-ATPase, indicating that the introduced amino acid residues from chloroplast F(1)-gamma subunit are important for functional interaction with the epsilon subunit.  相似文献   

11.
Incubation of Rhodospirillum rubrum chromatophores with 2 M LiCl in the presence of MgATP has been shown to remove their F1 beta subunit leaving inactive but fully reconstitutable beta-less chromatophores (Gromet-Elhanan, Z., and Khanashvili, D., (1986) Methods Enzymol, 126, 528-538). A similar treatment of thoroughly washed spinach thylakoids has now been shown to release the CF1 beta subunit (CF1 beta) together with a complex containing equal amounts of CF1 alpha and CF1 beta (CF1 (alpha beta]. The purified CF1 (alpha beta) complex can reconstitute an active membrane-bound hybrid F0F1-ATPase with beta-less R. rubrum chromatophores and also catalyzes a low but very reproducible soluble MgATPase. Purified CF1 beta shows none of these activities although it can bind as efficiently as CF1 (alpha beta) to the beta-less chromatophores. By subjecting the crude spinach 2 m LiCl extract to dissociating conditions an enriched CF1 beta preparation is released. It contains traces of CF1 alpha and CF1 delta, is able to reconstitute an active hybrid F0F1-ATPase but, as the pure CF1 beta shows no soluble ATPase activity. These results indicate that trace amounts of CF1 alpha are enough for endowing CF1 beta with a reconstitutive capacity, but for exhibition of a significant soluble ATPase activity equivalent amounts of CF1 alpha and beta are required. The CF 1 (alpha beta) complex isolated and purified in this report thus represents the minimal catalytic core of the CF1-ATPase.  相似文献   

12.
The amphiphylic alkyl cation cetyltrimethylammonium inhibits the catalytic activity of soluble and membrane-bound F1 in a noncompetitive fashion. In sonic submitochondrial particles the Dixon plot showed a peculiar pattern with upward deviation at cetyltrimethylammonium concentration higher than 80µM. In membrane-bound F1 the inhibition by cetyltrimethylammonium was potentiated by the F0 inhibitor ologomycin. Cetyltrimethylammonium also inhibited the oligomycin-sensitive proton conductivity in F1-containing particles but was without any effect in F1-depleted particles. Also this inhibitory effect was potentiated by oligomycin. These results indicate functional cooperative interactions between F0 and F1.  相似文献   

13.
The proton-ATP synthase of thylakoid membranes from chloroplasts (CFoF1) is composed of two parts with different structural and functional properties: the membrane-integral, proton-conducting complex CFo and the hydrophilic part, CF1 which catalyze the formation of adenosine-5'-triphosphate (ATP). To date it is difficult to isolate functional CFoF1 from thylakoids in high purity and yield. Blue native polyacrylamide gel electrophoresis (BN-PAGE) was therefore successfully employed to isolate CFoF1 in a one-step procedure from thylakoid membranes. Using a cathode buffer with low Coomassie Blue G-250 (CBG) concentration (0.002%), CFoF1 remains intact and can be obtained in high purity from solubilized, prepurified ATP synthase. Using BN-PAGE and a cathode buffer with 0.02% CBG, the ATP synthase bifurcates, and we were able to isolate both parts, CFo and CF1, separately. CFoF1, CFo, and CF1, respectively, were electroeluted nearly quantitatively electroeluted from the gel. BN-PAGE is a generally applicable method for the isolation and characterization of multisubunit membrane protein complexes in their native structure. However, the combination of neutral detergents and the negatively charged dye CBG seems to mimic properties of mild ionic detergents. This effect can lead to dissociation of labile subunits and subcomplexes, especially when delipidated membrane protein complexes are applied to BN-PAGE. By variation of the initial electrophoresis conditions, i.e., dye concentration in the cathode buffer, amount of lipid and detergent, BN-PAGE can be used for the isolation of either intact complexes or of subcomplexes.  相似文献   

14.
We have earlier shown that extraction of Rhodospirillum rubrum chromatophores with LiCl removed completely the beta-subunit of their coupling factor ATPase complex leaving the other four subunits attached to the membrane (Philosoph, S., Binder, A., and Gromet-Elhanan, Z. (1977) J. Biol. Chem. 252, 8747-8752). Further treatment of these beta-less chromatophores with LiBr, under the described optimal conditions, resulted in specific removal of one additional subunit, the gamma-subunit, and both subunits were purified to homogeneity. The beta, gamma-less chromatophores as well as the beta-less ones lost their ATP-linked activities, but retained their light-induced proton uptake, resulting in the formation of an electrochemical gradient of protons composed of both a pH gradient and a membrane potential. These results indicate that the removed beta and gamma subunits cannot be an integral part of an H+ gate in the R. rubrum chromatophore membrane. Each of the removed subunits could bind to the beta, gamma-less chromatophores, but such separate reconstitution of either beta or gamma alone did not lead to restoration of any ATP-linked activity. ATP synthesis and hydrolysis could be restored to the same extent to these chromatophores by their reconstitution with both beta and gamma. It is thus concluded that the presence of both subunits is required for ATP synthesis as well as hydrolysis by the R. rubrum F0.F1 complex. The identical degree of elimination and restoration of ATP synthesis and hydrolysis upon removal and reconstitution of beta and gamma indicates that in R. rubrum at least, there seems to be no reason for suggesting the operation of different catalytic sites for the two activities.  相似文献   

15.
J W Lee  M M Cox 《Biochemistry》1990,29(33):7666-7676
ADP and adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) inhibit recA protein promoted ATP hydrolysis by fundamentally different mechanisms. In both cases, at least two modes of inhibition are observed. For ADP, the first mode is competitive inhibition. The second mode is manifested by dissociation of recA protein from DNA. These are readily distinguished in a comparison of ATP hydrolyses that are activated by (a) DNA and (b) high (approximately 2 M) salt concentrations. Competitive inhibition with a significant degree of cooperativity is observed under both sets of conditions, although the DNA-dependent activity is more sensitive to ADP than the high-salt reaction. The reaction in the presence of poly(deoxythymidylic acid) or duplex DNA ceases when about 60% of the available ATP is hydrolyzed, reflecting an ADP-mediated dissociation of recA protein from the DNA that is governed by the ADP/ATP ratio. In contrast, ATP hydrolysis proceeds nearly to completion at high salt concentrations. At high concentrations of ATP and ATP gamma S, ATP gamma S also acts as a competitive inhibitor. At low concentrations of ATP gamma S and ATP, however, ATP gamma S activates ATP hydrolysis. These patterns are observed for recA-mediated ATP hydrolysis with either high salt concentrations or a poly(deoxythymidylic acid) [poly(dT)] cofactor, although the activation is observed at much lower ATP and ATP gamma S concentrations when poly(dT) is used. ATP gamma S can also relieve the inhibitory effect of ADP under some conditions. ATP gamma S and ADP are antagonistic inhibitors, reinforcing the idea that they stabilize different conformations of the protein and suggesting that these conformations are mutually exclusive. The ATP gamma S (ATP) conformation is active in ATP hydrolysis. The ADP conformation is inactive.  相似文献   

16.
H(+)-F(O)F(1)-ATP synthase couples proton flow through its membrane portion, F(O), to the synthesis of ATP in its headpiece, F(1). Upon reversal of the reaction the enzyme functions as a proton pumping ATPase. Even in the simplest bacterial enzyme the ATPase activity is regulated by several mechanisms, involving inhibition by MgADP, conformational transitions of the epsilon subunit, and activation by protonmotive force. Here we report that the Met23Lys mutation in the gamma subunit of the Rhodobacter capsulatus ATP synthase significantly impaired the activation of ATP hydrolysis by protonmotive force. The impairment in the mutant was due to faster enzyme deactivation that was particularly evident at low ATP/ADP ratio. We suggest that the electrostatic interaction of the introduced gammaLys23 with the DELSEED region of subunit beta stabilized the ADP-inhibited state of the enzyme by hindering the rotation of subunit gamma rotation which is necessary for the activation.  相似文献   

17.
An alpha beta heterodimer of the F1-ATPase of Rhodospirillum rubrum was isolated by extraction of chromatophores with LiCl. Each alpha beta heterodimer contains one tightly bound ADP, which is released upon removal of medium Mg2+. The dimer can be reversibly dissociated by removal of Mg(2+)-ions. The alpha beta heterodimer restores both ATP-synthetic and -hydrolytic activities to LiCl-treated chromatophores, saturation being achieved at approximately 2 mmol alpha beta.mol BChl-1. The heterodimer itself hydrolyses Mg-ATP with an activity distinct from RF1, being unaffected by azide or sulphite ions. The Vmax and Km (ATP) for this Mg(2+)-dependent activity were 110 +/- 10 nmol.min-1.mg protein-1 and 100 +/- 30 microM, respectively. The Km did not differ significantly from that of RF1.  相似文献   

18.
The alpha 5 beta 1, alpha 6 beta 4 and Mac-1 integrins all participate in the endocytotic cycle. By contrast, alpha 3 beta 1, alpha 4 beta 1 and LFA-1 do so much more slowly, or not at all, in the cell lines examined. This indicates that the alpha-chains appear to determine whether an integrin cycles or not, and that alpha 5 beta 1, alpha 6 beta 4 and Mac-1 can be brought to the leading edge of a moving cell by endocytosis and recycling.  相似文献   

19.
Lowry DS  Frasch WD 《Biochemistry》2005,44(19):7275-7281
Substitution of Escherichia coli F(1)F(0) ATP synthase residues betaD372 or gammaS12 with groups that are unable to form a hydrogen bond at this location decreased ATP synthase-dependent cell growth by 2 orders of magnitude, eliminated the ability of F(1)F(0) to catalyze ATPase-dependent proton pumping in inverted E. coli membranes, caused a 15-20% decrease in the coupling efficiency of the membranes as measured by the extent of succinate-dependent acridine orange fluorescence quenching, but increased soluble F(1)-ATPase activity by about 10%. Substitution of gammaK9 to eliminate the ability to form a salt bridge with betaD372 decreased soluble F(1)-ATPase activity and ATPase-driven proton pumping by 2-fold but had no effect on the proton gradient induced by addition of succinate. Mutations to eliminate the potential to form intersubunit hydrogen bonds and salt bridges between other less highly conserved residues on the gamma subunit N-terminus and the beta subunits had little effect on ATPase or ATP synthase activities. These results suggest that the betaD372-gammaK9 salt bridge contributes significantly to the rate-limiting step in ATP hydrolysis of soluble F(1) while the betaD372-gammaS12 hydrogen bond may serve as a component of an escapement mechanism for ATP synthesis in which alphabetagamma intersubunit interactions provide a means to make substrate binding a prerequisite of proton gradient-driven gamma subunit rotation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号