首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Mitochondrial anaplerosis is important for insulin secretion, but only some of the products of anaplerosis are known. We discovered novel effects of mitochondrial metabolites on insulin release in INS-1 832/13 cells that suggested pathways to some of these products. Acetoacetate, beta-hydroxybutyrate, alpha-ketoisocaproate (KIC), and monomethyl succinate (MMS) alone did not stimulate insulin release. Lactate released very little insulin. When acetoacetate, beta-hydroxybutyrate, or KIC were combined with MMS, or either ketone body was combined with lactate, insulin release was stimulated 10-fold to 20-fold the controls (almost as much as with glucose). Pyruvate was a potent stimulus of insulin release. In rat pancreatic islets, beta-hydroxybutyrate potentiated MMS- and glucose-induced insulin release. The pathways of their metabolism suggest that, in addition to producing ATP, the ketone bodies and KIC supply the acetate component and MMS supplies the oxaloacetate component of citrate. In line with this, citrate was increased by beta-hydroxybutyrate plus MMS in INS-1 cells and by beta-hydroxybutyrate plus succinate in mitochondria. The two ketone bodies and KIC can also be metabolized to acetoacetyl-CoA and acetyl-CoA, which are precursors of other short-chain acyl-CoAs (SC-CoAs). Measurements of SC-CoAs by LC-MS/MS in INS-1 cells confirmed that KIC, beta-hydroxybutyrate, glucose, and pyruvate increased the levels of acetyl-CoA, acetoacetyl-CoA, succinyl-CoA, hydroxymethylglutaryl-CoA, and malonyl-CoA. MMS increased incorporation of (14)C from beta-hydroxybutyrate into citrate, acid-precipitable material, and lipids, suggesting that the two molecules complement one another to increase anaplerosis. The results suggest that, besides citrate, some of the products of anaplerosis are SC-CoAs, which may be precursors of molecules involved in insulin secretion.  相似文献   

2.
Methyl succinate (MS) and alpha-ketoisocaproate (KIC) when applied alone to cultured pancreatic islets or INS-1 832/13 cells do not stimulate insulin release. However, when the two metabolites are combined together they strongly stimulate insulin release. Studying the possible explanations for this complementarity has provided clues to the pathways involved in insulin secretion. MS increased carbon incorporation of KIC into acid-precipitable material and lipid in INS-1 cells. In isolated mitochondria, MS alone increased malate, but MS plus KIC increased citrate, alpha-ketoglutarate, and isocitrate. These data and the known pathways of their metabolism suggest that MS supplies the oxaloacetate component of citrate and KIC supplies the acetate component of citrate. Other citric acid cycle intermediates can be formed from citrate enabling anaplerosis to supply precursors for extramitochondrial pathways. In addition, KIC, glucose and pyruvate can be metabolized to acetoacetate. In an INS-1 cell line deficient in ATP citrate lyase, incorporation of carbon from pyruvate into acid-precipitable material and lipid was not lowered. This negative result is in agreement with our recent discovery that citrate is not the only carrier of acyl groups from the mitochondria to the cytosol in the beta cell and that acetoacetate can also transfer acyl carbon to the cytosol.  相似文献   

3.
Anaplerosis, the synthesis of citric acid cycle intermediates, by pancreatic beta cell mitochondria has been proposed to be as important for insulin secretion as mitochondrial energy production. However, studies designed to lower the rate of anaplerosis in the beta cell have been inconclusive. To test the hypothesis that anaplerosis is important for insulin secretion, we lowered the activity of pyruvate carboxylase (PC), the major enzyme of anaplerosis in the beta cell. Stable transfection of short hairpin RNA was used to generate a number of INS-1 832/13-derived cell lines with various levels of PC enzyme activity that retained normal levels of control enzymes, insulin content, and glucose oxidation. Glucose-induced insulin release was decreased in proportion to the decrease in PC activity. Insulin release in response to pyruvate alone, 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) plus glutamine, or methyl succinate plus beta-hydroxybutyrate was also decreased in the PC knockdown cells. Consistent with a block at PC, the most PC-deficient cells showed a metabolic crossover point at PC with increased basal and/or glucose-stimulated pyruvate plus lactate and decreased malate and citrate. In addition, in BCH plus glutamine-stimulated PC knockdown cells, pyruvate plus lactate was increased, whereas citrate was severely decreased, and malate and aspartate were slightly decreased. The incorporation of 14C into lipid from [U-14C]glucose was decreased in the PC knockdown cells. The results confirm the central importance of PC and anaplerosis to generate metabolites from glucose that support insulin secretion and even suggest PC is important for insulin secretion stimulated by noncarbohydrate insulin secretagogues.  相似文献   

4.
13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells   总被引:6,自引:0,他引:6  
Anaplerotic flux into the Kreb's cycle is crucial for glucose-stimulated insulin secretion from pancreatic beta-cells. However, the regulation of flux through various anaplerotic pathways in response to combinations of physiologically relevant substrates and its impact on glucose-stimulated insulin secretion is unclear. Because different pathways of anaplerosis generate distinct products, they may differentially modulate the insulin secretory response. To examine this question, we applied 13C-isotopomer analysis to quantify flux through three anaplerotic pathways: 1) pyruvate carboxylase of pyruvate derived from glycolytic sources; 2) pyruvate carboxylase of pyruvate derived from nonglycolytic sources; and 3) glutamate dehydrogenase (GDH). At substimulatory glucose, anaplerotic flux rate in the clonal INS-1 832/13 cells was approximately 40% of Kreb's cycle flux, with similar contributions from each pathway. Increasing glucose to 15 mm stimulated insulin secretion approximately 4-fold, and was associated with a approximately 4-fold increase in anaplerotic flux that could mostly be attributed to an increase in PC flux. In contrast, the addition of glutamine to the perfusion media stimulated GDH flux approximately 6-fold at both glucose concentrations without affecting insulin secretion rates. In conclusion, these data support the hypothesis that a signal generated by anaplerosis from increased pyruvate carboxylase flux is essential for glucose-stimulated insulin secretion in beta-cells and that anaplerosis through GDH does not play a major role in this process.  相似文献   

5.
Combinations of insulin secretagogue-derived metabolites were added to microgram amounts of mitochondria obtained from rat and mouse pancreatic islets and the INS-1 cell line, and the export of citric acid cycle intermediates was surveyed to study anaplerosis in insulin secretion. Cellular levels of metabolites were also measured. In mitochondria from all three tissues, malate production was the most responsive to various substrates. The export of citrate and isocitrate in the presence of pyruvate and most other substrates was small and their levels in intact cells did not change with any secretagogue, except in INS-1 cells where citrate increased slightly. Changes in alpha-ketoglutarate and glutamate export from mitochondria and levels in intact cells indicate that glutamate can be consumed as a fuel secretagogue, but it is not likely produced as a messenger in insulin secretion. The citrate level may not need to increase in order to provide increased malonyl-CoA for signaling insulin secretion. Unlike some cells, insulin cells probably obtain cytosolic NADPH equivalents by exporting them from mitochondria to the cytosol via a pyruvate malate shuttle or an isocitrate shuttle. Only fuels that can enhance anaplerosis via pyruvate or alpha-ketoglutarate can be insulin secretagogues.  相似文献   

6.
The mitochondria of pancreatic beta cells are believed to convert insulin secretagogues into products that are translocated to the cytosol where they participate in insulin secretion. We studied the hypothesis that short chain acyl-CoA (SC-CoAs) might be some of these products by discerning the pathways of SC-CoA formation in beta cells. Insulin secretagogues acutely stimulated 1.5-5-fold increases in acetoacetyl-CoA, succinyl-CoA, malonyl-CoA, hydroxymethylglutaryl-CoA (HMG-CoA), and acetyl-CoA in INS-1 832/13 cells as judged from liquid chromatography-tandem mass spectrometry measurements. Studies of 12 relevant enzymes in rat and human pancreatic islets and INS-1 832/13 cells showed the feasibility of at least two redundant pathways, one involving acetoacetate and the other citrate, for the synthesis SC-CoAs from secretagogue carbon in mitochondria and the transfer of their acyl groups to the cytosol where the acyl groups are converted to SC-CoAs. Knockdown of two key cytosolic enzymes in INS-1 832/13 cells with short hairpin RNA supported the proposed scheme. Lowering ATP citrate lyase 88% did not inhibit glucose-induced insulin release indicating citrate is not the only carrier of acyl groups to the cytosol. However, lowering acetoacetyl-CoA synthetase 80% partially inhibited glucose-induced insulin release indicating formation of SC-CoAs from acetoacetate in the cytosol is important for insulin secretion. The results indicate beta cells possess enzyme pathways that can incorporate carbon from glucose into acetyl-CoA, acetoacetyl-CoA, and succinyl-CoA and carbon from leucine into these three SC-CoAs plus HMG-CoA in their mitochondria and enzymes that can form acetyl-CoA, acetoacetyl-CoA, malonyl-CoA, and HMG-CoA in their cytosol.  相似文献   

7.
Mitochondrial metabolism plays a pivotal role in the pancreatic beta cell by generating signals that couple glucose sensing to insulin secretion. We have demonstrated previously that mitochondrially derived glutamate participates directly in the stimulation of insulin exocytosis. The aim of the present study was to impose altered cellular glutamate levels by overexpression of glutamate decarboxylase (GAD) to repress elevation of cytosolic glutamate. INS-1E cells infected with a recombinant adenovirus vector encoding GAD65 showed efficient overexpression of the GAD protein with a parallel increase in enzyme activity. In control cells glutamate levels were slightly increased by 7.5 mm glucose (1.4-fold) compared with the effect at 15 mm (2.3-fold) versus basal 2.5 mm glucose. Upon GAD overexpression, glutamate concentrations were no longer elevated by 15 mm glucose as compared with controls (-40%). Insulin secretion was stimulated in control cells by glucose at 7.5 mm (2.5-fold) and more efficiently at 15 mm (5.2-fold). INS-1E cells overexpressing GAD exhibited impaired insulin secretion on stimulation with 15 mm glucose (-37%). The secretory response to 30 mm KCl, used to raise cytosolic Ca(2+) levels, was unaffected. Similar results were obtained in perifused rat pancreatic islets following adenovirus transduction. This GAD65-mediated glutamate decarboxylation correlating with impaired glucose-induced insulin secretion is compatible with a role for glutamate as a glucose-derived factor participating in insulin exocytosis.  相似文献   

8.
Production of nitric oxide through the action of nitric oxide synthase (NOS) has been detected in the islets of Langerhans. The inducible isoform of NOS (iNOS) is induced by cytokines and might contribute to the development of type-1 diabetes, while the constitutive isoform (cNOS) is thought to be implicated in the physiological regulation of insulin secretion. In the present study we have detected and quantified islet cNOS- and iNOS-derived NO production concomitant with measuring its influence on insulin secretion in the presence of different secretagogues: glucose, L-arginine, L-leucine and α-ketoisocaproic acid (KIC) both during fasting and freely fed conditions. In intact islets from freely fed mice both cNOS- and iNOS-activity was greatly increased by glucose (20 mmol/l). Fasting induced islet iNOS activity at both physiological (7 mmol/l) and high (20 mmol/l) glucose concentrations. NOS blockade increased insulin secretion both during freely fed conditions and after fasting. L-arginine stimulated islet cNOS activity and did not affect islet iNOS activity. l-leucine or KIC, known to enter the TCA cycle without affecting glycolysis, did not affect either islet cNOS- or iNOS activity. Accordingly, insulin secretion stimulated by L-leucine or KIC was unaffected by addition of L-NAME both during feeding and fasting. We conclude that both high glucose concentrations and fasting increase islet total NO production (mostly iNOS derived) which inhibit insulin secretion. The insulin secretagogues L-leucine and KIC, which do not affect glycolysis, do not interfere with the islet NO-NOS system.  相似文献   

9.
Esters of succinic acid are potent insulin secretagogues, and have been proposed as novel antidiabetic agents for type 2 diabetes. This study examines the effects of acute and chronic exposure to succinic acid monomethyl ester (SAM) on insulin secretion, glucose metabolism and pancreatic beta cell function using the BRIN-BD11 cell line. SAM stimulated insulin release in a dose-dependent manner at both non-stimulatory (1.1mM) and stimulatory (16.7mM) glucose. The depolarizing actions of arginine also stimulated a significant increase in SAM-induced insulin release but 2-ketoisocaproic acid (KIC) inhibited SAM induced insulin secretion indicating a possible competition between the preferential oxidative metabolism of these two agents. Prolonged (18hour) exposure to SAM revealed decreases in the insulin-secretory responses to glucose, KIC, glyceraldehyde and alanine. Furthermore, SAM diminished the effects of nonmetabolized secretagogues arginine and 3-isobutyl-1-methylxanthine (IBMX). While the ability of BRIN-BD11 cells to oxidise glucose was unaffected by SAM culture, glucose utilization was substantially reduced. Collectively, these data suggest that while SAM may enhance the secretory potential of non-metabolized secretagogues, it may also serve as a preferential metabolic fuel in preference to other important physiological nutrients and compromise pancreatic beta cell function following prolonged exposure.  相似文献   

10.
Cyclic AMP potentiates glucose-stimulated insulin release and mediates the stimulatory effects of hormones such as glucagon-like peptide 1 (GLP-1) on pancreatic beta-cells. By inhibition of cAMP-degrading phosphodiesterase (PDE) and, in particular, selective inhibition of PDE3 activity, stimulatory effects on insulin secretion have been observed. Molecular and functional information on beta-cell PDE3 is, however, scarce. To provide such information, we have studied the specific effects of the PDE3B isoform by adenovirus-mediated overexpression. In rat islets and rat insulinoma cells, approximate 10-fold overexpression of PDE3B was accompanied by a 6-8-fold increase in membrane-associated PDE3B activity. The cAMP concentration was significantly lowered in transduced cells (INS-1(832/13)), and insulin secretion in response to stimulation with high glucose (11.1 mm) was reduced by 40% (islets) and 50% (INS-1). Further, the ability of GLP-1 (100 nm) to augment glucose-stimulated insulin secretion was inhibited by approximately 30% (islets) and 70% (INS-1). Accordingly, when stimulating with cAMP, a substantial decrease (65%) in exocytotic capacity was demonstrated in patch-clamped single beta-cells. In untransduced insulinoma cells, application of the PDE3-selective inhibitor OPC3911 (10 microm) was shown to increase glucose-stimulated insulin release as well as cAMP-enhanced exocytosis. The findings suggest a significant role of PDE3B as an important regulator of insulin secretory processes.  相似文献   

11.
The NADH shuttle system, which transports reducing equivalents from the cytosol to the mitochondria, is essential for the coupling of glucose metabolism to insulin secretion in pancreatic beta cells. Aralar1 and citrin are two isoforms of the mitochondrial aspartate/glutamate carrier, one key constituent of the malate-aspartate NADH shuttle. Here, the effects of Aralar1 overexpression in INS-1E beta cells and isolated rat islets were investigated for the first time. We prepared a recombinant adenovirus encoding for human Aralar1 (AdCA-Aralar1), tagged with the small FLAG epitope. Transduction of INS-1E cells and isolated rat islets with AdCA-Aralar1 increased aralar1 protein levels and immunostaining revealed mitochondrial localization. Compared with control INS-1E cells, overexpression of Aralar1 potentiated metabolism secretion coupling stimulated by 15 mm glucose. In particular, there was an increase of NAD(P)H generation, of mitochondrial membrane hyperpolarization, ATP levels, glucose oxidation, and insulin secretion (+45%, p < 0.01). Remarkably, this was accompanied by reduced lactate production. Rat islets overexpressing Aralar1 secreted more insulin at 16.7 mm glucose (+65%, p < 0.05) compared with controls. These results show that aspartate-glutamate carrier capacity limits glucose-stimulated insulin secretion and that Aralar1 overexpression enhances mitochondrial metabolism.  相似文献   

12.
Pancreatic beta cell mitochondria convert insulin secretagogues into products that support insulin exocytosis. We explored the idea that lipids are some of these products formed from acyl group transfer out of mitochondria to the cytosol, the site of lipid synthesis. There are two isoforms of acetyl-CoA carboxylase, the enzyme that forms malonyl-CoA from which C2 units for lipid synthesis are formed. We found that ACC1, the isoform seen in lipogenic tissues, is the only isoform present in human and rat pancreatic islets and INS-1 832/13 cells. Inhibitors of ACC and fatty acid synthase inhibited insulin release in islets and INS-1 cells. Carbon from glucose and pyruvate were rapidly incorporated into many lipid classes in INS-1 cells. Glucose and other insulin secretagogues acutely increased many lipids with C14-C24 chains including individual cholesterol esters, phospholipids and fatty acids. Many phosphatidylcholines and phosphatidylserines were increased and many phosphatidylinositols and several phosphatidylethanolamines were decreased. The results suggest that lipid remodeling and rapid lipogenesis from secretagogue carbon support insulin secretion.  相似文献   

13.
Secretion of insulin could be stimulated by several ways. Comparison of glucose- and swelling-induced mechanisms in pancreatic islets revealed the involvement of a novel signal transduction pathway with specific features of osmotically stimulated peptide hormone release including Ca2+ independence and resistance to noradrenalin (NA) inhibition. Cell swelling can be induced by hypotonicity or small permeant molecules (e.g. ethanol, urea). Our experiments were aimed to compare the effect of these permeants on insulin secretion from natural system — freshly isolated pancreatic islets and rat insulinoma cell lines INS-1 and INS-1E. As expected glucose and both permeants (80 mM ethanol and urea in isosmotic medium) induced insulin release from islets and NA did not inhibit permeant-induced secretion. Although ethanol and urea induced similar swelling of tumor cells, they produced opposite effect on insulin secretion; while exposure to ethanol led to stimulation of insulin secretion, exposure to urea led to suppression in both types of neoplastic cells. Surprisingly, stimulating effect of ethanol was completely suppressed by NA in both tumor cell lines. Ethanol in hyperosmotic medium failed to stimulate and even inhibited insulin release from both tumor cell lines in present study indicating thus involvement of an osmotic component. In conclusion, the opposite effect of ethanol and urea on insulin secretion from insulinoma cells and sensitivity of ethanol stimulation to NA indicate utilization of different cellular signaling pathways in tumor cells as compared to natural β-cells. Participation of permeant effect in the mechanism of ethanol stimulation remains to be clarified.  相似文献   

14.
The beta-cell biochemical mechanisms that account for the compensatory hyperfunction with insulin resistance (so-called beta-cell adaptation) are unknown. We investigated glucose metabolism in isolated islets from 10-12-week-old Zucker fatty (ZF) and Zucker lean (ZL) rats (results expressed per mg/islet of protein). ZF rats were obese, hyperlipidemic, and normoglycemic. They had a 3.8-fold increased beta-cell mass along with 3-10-fold increases in insulin secretion to various stimuli during pancreas perfusion despite insulin content per milligram of beta-cells being only one-third that of ZL rats. Islet glucose metabolism (utilization and oxidation) was 1.5-2-fold increased in the ZF islets despite pyruvate dehydrogenase activity being 30% lowered compared with the ZL islets. The reason was increased flux through pyruvate carboxylase (PC) and the malate-pyruvate and citrate-pyruvate shuttles based on the following observations (% ZL islets): increased V(max) of PC (160%), malate dehydrogenase (170%), and malic enzyme (275%); elevated concentrations of oxaloacetate (150%), malate (250%), citrate (140%), and pyruvate (250%); and 2-fold increased release of malate from isolated mitochondria. Inhibition of PC by 5 mm phenylacetic acid markedly lowered glucose-induced insulin secretion in ZF and ZL islets. Thus, our results suggest that PC and the pyruvate shuttles are increased in ZF islets, and this accounts for glucose mitochondrial metabolism being increased when pyruvate dehydrogenase activity is reduced. As the anaplerosis pathways are implicated in glucose-induced insulin secretion and the synthesis of glucose-derived lipid and amino acids, our results highlight the potential importance of PC and the anaplerosis pathways in the enhanced insulin secretion and beta-cell growth that characterize beta-cell adaptation to insulin resistance.  相似文献   

15.
Islet Ca2+-independent phospholipase A2 (iPLA2) is postulated to mediate insulin secretion by releasing arachidonic acid in response to insulin secretagogues. However, the significance of iPLA2 signaling in insulin secretion in vivo remains unexplored. Here we investigated the physiological role of iPLA2 in beta-cell lines, isolated islets, and mice. We showed that small interfering RNA-specific silencing of iPLA2 expression in INS-1 cells significantly reduced insulin-secretory responses of INS-1 cells to glucose. Immunohistochemical analysis revealed that mouse islet cells expressed significantly higher levels of iPLA2 than pancreatic exocrine acinar cells. Bromoenol lactone (BEL), a selective inhibitor of iPLA2, inhibited glucose-stimulated insulin secretion from isolated mouse islets; this inhibition was overcome by exogenous arachidonic acid. We also showed that iv BEL administration to mice resulted in sustained hyperglycemia and reduced insulin levels during glucose tolerance tests. Clamp experiments demonstrated that the impaired glucose tolerance was due to insufficient insulin secretion rather than decreased insulin sensitivity. Short-term administration of BEL to mice had no effect on fasting glucose levels and caused no apparent pathological changes of islets in pancreas sections. These results unambiguously demonstrate that iPLA2 signaling plays an important role in glucose-stimulated insulin secretion under physiological conditions.  相似文献   

16.
Objective of this study was to characterize osmotically-induced insulin secretion in two tumor cell lines. We compared response of freshly isolated rat pancreatic islets and INS-1 and INS-1E tumor cell lines to high glucose, 30 % hypotonic medium and 20 % hypertonic medium. In Ca(2+)-containing medium glucose induced insulin release in all three cell types. Hypotonicity induced insulin secretion from islets and INS-1 cells but not from INS-1E cells, in which secretion was inhibited despite similar increase in cell volume in both cell types. GdCl(3) (100 micromol/l) did not affect insulin response from INS-1E cells to hypotonic challenge. Hypertonic medium inhibited glucose-induced insulin secretion from islets but not from tumor cells. Noradrenaline (1 micromol/l) inhibited glucose-induced but not swelling-induced insulin secretion from INS-1 cells. Surprisingly, perifusion with Ca(2+)-depleted medium showed distinct secretory response of INS-1E cells to hypotonicity while that of INS-1 cells was partially inhibited. Functioning glucose-induced insulin secretion is not sufficient prerequisite for hypotonicity-induced response in INS-1E cells suggesting that swelling-induced exocytosis is not essential step in the mechanism mediating glucose-induced insulin secretion. Both cell lines are resistant to inhibitory effect of hyperosmolarity on glucose-induced insulin secretion. Response of INS-1E cells to hypotonicity is inhibited by the presence of Ca(2+) in medium.  相似文献   

17.
Insulin secretion by pancreatic islet beta-cells is impaired in diabetes mellitus, and normal beta-cells are enriched in phospholipids with arachidonate as sn-2 substituent. Such molecules may play structural roles in exocytotic membrane fusion or serve as substrates for phospholipases activated by insulin secretagogues. INS-1 insulinoma cells respond to secretagogues and permit the study of effects of culture with free fatty acids on phospholipid composition and secretion. INS-1 cell glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) lipids are demonstrated here by electrospray ionization mass spectrometry to contain a lower fraction of molecules with arachidonate and a higher fraction with oleate as sn-2 substituent than native islets. Palmitic acid supplementation induces little change in these INS-1 cell lipids, but supplementation with linoleate or arachidonate induces a large rise in the fraction of INS-1 cell GPC species with polyunsaturated sn-2 substituents and a fall in oleate-containing species to yield a GPC profile similar to native islets. The fraction of GPE lipids comprised of plasmenylethanolamine species with polyunsaturated sn-2 substituents in early-passage INS-1 cells is similar to that of islets, but declines on serial passage. Such molecules might participate in exocytotic membrane fusion, and late-passage INS-1 cells have reduced insulin secretory responses. Arachidonate supplementation induces a rise in the fraction of INS-1 cell GPE lipids with polyunsaturated sn-2 substituents and partially restores responses to insulin secretagogues by late-passage INS-1 cells, but does not further amplify secretion by early-passage cells. Effects of extracellular free fatty acids on beta-cell phospholipid composition and secretory responses could be involved in changes in beta-cell function during the period of hyper-free fatty acidemia that precedes diabetes mellitus.  相似文献   

18.
Most patients at risk for developing type 2 diabetes are hyperinsulinemic. Hyperinsulinemia may be a response to insulin resistance, but another possible abnormality is insulin hypersecretion. BTBR mice are insulin resistant and hyperinsulinemic. When the leptin(ob) mutation is introgressed into BTBR mice, they develop severe diabetes. We compared the responsiveness of lean B6 and BTBR mouse islets to various insulin secretagogues. The transamination product of leucine, alpha-ketoisocaproate (KIC), elicited a dramatic insulin secretory response in BTBR islets. The KIC response was blocked by methyl-leucine or aminooxyacetate, inhibitors of branched-chain amino transferase. When dimethylglutamate was combined with KIC, the fractional insulin secretion was identical in islets from both mouse strains, predicting that the amine donor is rate-limiting for KIC-induced insulin secretion. Consistent with this prediction, glutamate levels were higher in BTBR than in B6 islets. The transamination product of glutamate, alpha-ketoglutarate, elicited insulin secretion equally from B6 and BTBR islets. Thus formation of alpha-ketoglutarate is a requisite step in the response of mouse islets to KIC. alpha-Ketoglutarate can be oxidized to succinate. However, succinate does not stimulate insulin secretion in mouse islets. Our data suggest that alpha-ketoglutarate may directly stimulate insulin secretion and that increased formation of alpha-ketoglutarate leads to hyperinsulinemia.  相似文献   

19.
The purpose of the present study was to determine whether exposure of pancreatic islets to glucotoxic conditions changes fatty acid translocase cluster determinant 36 (CD36) and examine the role of CD36 on the induction of glucotoxicity. We measured the changes of CD36 and insulin secretion in high glucose (30 mM) exposed INS-1 cells and CD36 suppressed INS-1 cells by transfection of CD36 siRNA. The intracellular peroxide level of INS-1 cells increased in the high glucose media compared to normal glucose (5.6mM) media. The mRNA levels of insulin and PDX-1, as well as glucose stimulated insulin secretion (GSIS) were decreased in INS-1 cells exposed to high glucose media compared to normal glucose media, while CD36 and palmitate uptake were significantly elevated with exposure to high glucose media for 12h. The inhibition of CD36 reversed the decreased GSIS and intracellular peroxide level in INS-1 cells. These results suggest that high glucose may exacerbate glucotoxicity via increasing fatty acid influx by elevation of CD36 expression, and that CD36 may be a possible target molecule for preventing glucotoxicity in pancreatic beta-cells.  相似文献   

20.
Abscisic acid (ABA) is a plant stress hormone recently identified as an endogenous pro-inflammatory cytokine in human granulocytes. Because paracrine signaling between pancreatic beta cells and inflammatory cells is increasingly recognized as a pathogenetic mechanism in the metabolic syndrome and type II diabetes, we investigated the effect of ABA on insulin secretion. Nanomolar ABA increases glucose-stimulated insulin secretion from RIN-m and INS-1 cells and from murine and human pancreatic islets. The signaling cascade triggered by ABA in insulin-releasing cells sequentially involves a pertussis toxin-sensitive G protein, cAMP overproduction, protein kinase A-mediated activation of the ADP-ribosyl cyclase CD38, and cyclic ADP-ribose overproduction. ABA is rapidly produced and released from human islets, RIN-m, and INS-1 cells stimulated with high glucose concentrations. In conclusion, ABA is an endogenous stimulator of insulin secretion in human and murine pancreatic beta cells. Autocrine release of ABA by glucose-stimulated pancreatic beta cells, and the paracrine production of the hormone by activated granulocytes and monocytes suggest that ABA may be involved in the physiology of insulin release as well as in its dysregulation under conditions of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号