首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S/MARs (scaffold/matrix attachment regions) are the DNA regions that are involved in the interaction with the nuclear matrix and are identified by in vitro methods. According to the available information, S/MARs possess an insulating activity, i.e., the ability to block the interaction between the enhancer and promoter in vivo, and are, probably, intact insulators or their fragments. Nevertheless, there is still no direct proof for this correspondence. To obtain additional information on the insulator activity of S/MARs, we selected five DNA fragments of different lengths and affinities for the nuclear matrix from the previously constructed library of S/MARs and tested their ability to serve as insulators. Two of five elements exhibited an insulator (enhancer-blocking) activity upon the transient transfection of CHO cells. None of the S/MARs displayed either promoter or enhancer/silencer activities in these cells.  相似文献   

2.
Nuclear DNA is organized into chromatin loop domains. At the base of these loops, matrix-associated regions (MARs) of the DNA interact with nuclear matrix proteins. MARs act as structural boundaries within chromatin, and MAR binding proteins may recruit multiprotein complexes that remodel chromatin. The potential tumor suppressor protein CTCF binds to vertebrate insulators and is required for insulator activity. We demonstrate that CTCF is associated with the nuclear matrix and can be cross-linked to DNA by cisplatin, an agent that preferentially cross-links nuclear matrix proteins to DNA in situ. These results suggest that CTCF anchors chromatin to the nuclear matrix, suggesting that there is a functional connection between insulators and the nuclear matrix. We also show that the chromatin-modifying enzymes HDAC1 and HDAC2, which are intrinsic nuclear matrix components and thought to function as corepressors of CTCF, are incapable of associating with CTCF. Hence, the insulator activity of CTCF apparently involves an HDAC-independent association with the nuclear matrix. We propose that CTCF may demarcate nuclear matrix-dependent points of transition in chromatin, thereby forming topologically independent chromatin loops that may support gene silencing.  相似文献   

3.
4.
5.
6.
MARs found flanking the -phaseolin gene (phas) were tested for insulating activity in an enhancer blocking assay. True insulators should block enhancer dependent expression of a reporter gene when placed between the enhancer and a promoter. Insertion of phas 3 MAR or coding sequences lowered CaMV 35S enhancer driven GUS expression from the phas basal promoter, indicating a distance dependence of the 35S enhancer. 5 MAR or 5 MAR core fragments could not act as independent enhancers when fused to the phas basal promoter, and did not lower expression when inserted in the enhancer blocking assay construct, indicating that they facilitated 35S enhancer expression at a distance when located between the enhancer and the promoter.  相似文献   

7.
8.
9.
10.
11.
Fine regulation of complex gene loci in higher eukaryotes is realized through the interaction of promoters with enhancers and repressors, which can be located long distance from the promoter regulated. A question arises, what mechanisms determine proper contacts between the regulatory elements over large distances in the genome. It is suggested that the important role in this process is played by a special class of regulatory elements, insulators, which block the interaction of enhancer and promoter, if they are positioned between them. Furthermore, enhancers do not directly inactivate the activities of enhancer and promoter. Nevertheless, an enhancer, isolated from one of the promoters by an insulator, can activate another, not isolated promoter. The best studied insulator of Drosophila melanogaster was found in the 5′ regulatory region of retrotransposon MDG4. It consists of 12 binding sites for the Su(Hw) protein, which is critical for the activity of this insulator. It was demonstrated that Su(Hw) insulator could protect the gene expression from the negative influence of heterochromatin and from repression, induced by the Polycomb group proteins (Pc proteins). In the present study, it was demonstrated that in transgenic lines, two or three copies of the Su(Hw) insulator could determine the interaction of the miniwhite enhancer and Pc dependant silencer with the miniwhite promoter. Thus, it was first demonstrated that insulators could participate in the regulation of the contacts between promoter and functionally opposite elements, responsible for either gene activation, or repression. Original Russian Text ? M.V. Kostyuchenko, E.E. Savitskaya, M.N. Krivega, P.G. Georgiev, 2008, published in Genetika, 2008, Vol. 44, No. 12, pp. 1693–1697.  相似文献   

12.
13.
Modern concepts on the chromatin loop–domain organization and the role of the DNA regions specifically binding the nuclear matrix or nuclear scaffold (S/MARs) during its formation, maintenance, and regulation are discussed. Some S/MAR structural features, properties of binding the nuclear matrix, and probable mechanisms of their involvement in the gene regulation of activity are considered.  相似文献   

14.
Chromatin insulators of higher eukaryotes functionally divide the genome into active and inactive domains. Furthermore, insulators regulate enhancer/promoter communication, which is evident from the Drosophila bithorax locus in which a multitude of regulatory elements control segment specific gene activity. Centrosomal protein 190 (CP190) is targeted to insulators by CTCF or other insulator DNA-binding factors. Chromatin analyses revealed that insulators are characterized by open and nucleosome depleted regions. Here, we wanted to identify chromatin modification and remodelling factors required for an enhancer blocking function. We used the well-studied Fab-8 insulator of the bithorax locus to apply a genome-wide RNAi screen for factors that contribute to the enhancer blocking function of CTCF and CP190. Among 78 genes required for optimal Fab-8 mediated enhancer blocking, all four components of the NURF complex as well as several subunits of the dREAM complex were most evident. Mass spectrometric analyses of CTCF or CP190 bound proteins as well as immune precipitation confirmed NURF and dREAM binding. Both co-localise with most CP190 binding sites in the genome and chromatin immune precipitation showed that CP190 recruits NURF and dREAM. Nucleosome occupancy and histone H3 binding analyses revealed that CP190 mediated NURF binding results in nucleosomal depletion at CP190 binding sites. Thus, we conclude that CP190 binding to CTCF or to other DNA binding insulator factors mediates recruitment of NURF and dREAM. Furthermore, the enhancer blocking function of insulators is associated with nucleosomal depletion and requires NURF and dREAM.  相似文献   

15.
Eukaryotic genomic DNA is organized into loop structures by attachments to the nuclear matrix. These attachments to the nuclear matrix have been supposed to form the boundaries of chromosomal DNA. Insulators or boundary elements are defined by two characteristics: they interrupt promoter-enhancer communications when inserted between them, and they suppress the silencing of transgenes stably integrated into inactive chromosomal domains. We recently identified an insulator element in the upstream region of the sea urchin arylsulfatase (HpArs) gene that shows both enhancer blocking and suppression of position effects. Here, we report that Unichrom, originally identified by its G-stretch DNA binding capability, is a nuclear matrix protein that binds to the Ars insulator and canonical nuclear matrix attachment regions (MARs). We also show that Unichrom recognizes the minor groove of the AT-rich region within the Ars insulator, which may have a base-unpairing property, as well as the G-stretch DNA. Furthermore, Unichrom selectively interacts with poly(dG).poly(dC), poly(dA).poly(dT) and poly(dAT).poly(dAT), but not with poly(dGC).poly(dGC). Unichrom also shows high affinity for single-stranded G- and C-stretches. We discuss the DNA binding motif of Unichrom and the function of Unichrom in the nuclear matrix.  相似文献   

16.
Insulators or chromatin boundary are DNA elements that organize the genome into discrete regulatory domains by limiting the actions of enhancers and silencers through a “positional-blocking mechanism”. The role of these sequences, both in modulation of the enhancers range of action (enhancer–promoter selectivity) and in the organization of the chromatin in functional domains, is emerging strongly in these last years. There is a great interest in identifying new insulators because deeper knowledge of these elements can help understand how cis-regulatory elements coordinate the expression of the target genes. However, while insulators are critical in gene regulation and genome functioning, only a few have been reported so far. Here, we describe a new insulator sequence that is located in the 5′UTR of the Drosophila retrotransposon ZAM. We have used an “enhancer–blocking assay” to test its effects on the activity of the enhancer in transiently transfected Drosophila S2R+ cell line. Moreover, we show that the new insulator is able to affect significantly the enhancer–promoter interaction in the human cell line HEK293. These results suggest the possibility of employing the ZAM insulator in gene transfer protocols from insects to mammals in order to counteract the transgene positional and genotoxic effects.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号