首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent investigations have shown macromolecules, such as cutins, and suberins as effective markers for above and belowground plant tissues. These biopolyesters contain structural units specific for different litter components and for root biomass. The aim of this work was to understand the fate of plant organic matter (OM) in Mediterranean forest soils by evaluating the incorporation of cutin and suberin by measuring specific biomarkers. Soil and plant tissue (leaves, woods and roots) samples were collected in two mixed Mediterranean forests of Quercus ilex (holm oak) in costal stands in Tuscany (central Italy), which have different ecological and edaphic features. Ester-bound lipids of mineral and organic horizons and the overlying vegetation were analysed using the saponification method in order to depolymerise cutins and suberins and release their specific structural units. Cutin and suberin specific aliphatic monomers were identified and quantified by gas chromatographic techniques. The distribution of cutin and suberin specific monomers in plant tissue suggested that mid-chain hydroxy acids can be used as leaf-specific markers and α,ω-alkanedioic acids and ωC18:1 as root-specific markers. Differences in the distributions of biomarkers specific for above and belowground plant-derived OM was observed in the two types of soils, suggesting contrasted degradation, stabilisation and transport mechanisms that may be related to soil physico-chemical properties. The acidic and dry soil appeared to inhibit microbial activity, favouring stabilization of leaf-derived compounds, while, in the more fertile soil, protection within aggregates appeared to better preserve root-derived compounds.  相似文献   

2.
Cutin and suberin are the polymer matrices for lipophilic cell wall barriers. These barriers control the fluxes of gases, water and solutes, and also play roles in protecting plants from biotic and abiotic stresses and in controlling plant morphology. Although they are ubiquitous, cutin and suberin are the least understood of the major plant extracellular polymers. The use of forward and reverse genetic approaches in Arabidopsis has led to the identification of oxidoreductase and acyltransferase genes involved in the biosynthesis of these polymers. However, major questions about the underlying polymer structure, biochemistry, and intracellular versus extracellular assembly remain to be resolved. The analysis of plant lines with modified cutins and suberins has begun to reveal the inter-relationships between the composition and function of these polymers.  相似文献   

3.
Cutin and suberin are insoluble lipid polymers that provide critical barrier functions to the cell wall of certain plant tissues, including the epidermis, endodermis and periderm. Genes that are specific to the biosynthesis of cutins and/or aliphatic suberins have been identified, mainly in Arabidopsis thaliana. They notably encode acyltransferases, oxidases and transporters, which may have either well-defined or more debatable biochemical functions. However, despite these advances, important aspects of cutin and suberin synthesis remain obscure. Central questions include whether fatty acyl monomers or oligomers are exported, and the extent of extracellular assembly and attachment to the cell wall. These issues are reviewed. Greater emphasis on chemistry and biochemistry will be required to solve these unknowns and link structure with function.  相似文献   

4.
Glycerol derivatives of cutin and suberin monomers were synthesized by acid catalysis. Their dispersion in an aqueous solution was examined by phase contrast microscopy, neutron scattering, and solid state NMR. It is shown that the phase behavior strongly depends on the nature of the derivatives forming either lumps of aggregated membranes or well dispersed membranes.  相似文献   

5.
6.
Cutinized and suberized cell walls form physiological important plant-environment interfaces as they act as barriers limiting water and nutrient loss and protect from radiation and invasion by pathogens. Due to the lack of protocols for the isolation and analysis of cutin and suberin in Arabidopsis, the model plant for molecular biology, mutants and transgenic plants with a defined altered cutin or suberin composition are unavailable, causing that structure and function of these apoplastic barriers are still poorly understood. Transmission electron microscopy (TEM) revealed that Arabidopsis leaf cuticle thickness ranges from only 22 nm in leaf blades to 45 nm on petioles, causing the difficulty in cuticular membrane isolation. We report the use of polysaccharide hydrolases to isolate Arabidopsis cuticular membranes, suitable for depolymerization and subsequent compositional analysis. Although cutin characteristic omega-hydroxy acids (7%) and mid-chain hydroxylated fatty acids (8%) were detected, the discovery of alpha,omega-diacids (40%) and 2-hydroxy acids (14%) as major depolymerization products reveals a so far novel monomer composition in Arabidopsis cutin, but with chemical analogy to root suberin. Histochemical and TEM analysis revealed that suberin depositions were localized to the cell walls in the endodermis of primary roots and the periderm of mature roots of Arabidopsis. Enzyme digested and solvent extracted root cell walls when subjected to suberin depolymerization conditions released omega-hydroxy acids (43%) and alpha,omega-diacids (24%) as major components together with carboxylic acids (9%), alcohols (6%) and 2-hydroxyacids (0.1%). This similarity to suberin of other species indicates that Arabidopsis roots can serve as a model for suberized tissue in general.  相似文献   

7.
Summary The Cs-134/137 activities were measured from different tree organs of spruce, larch and sycamore maple. Two locations in South Bavaria were monitored during a period of 2.5 years following the Chernobyl accident. Samples taken in 1985 allow to determine the Cs-137 contamination before the accident. Increasing Cs-137 activities from older to younger needle years ofPicea abies caused by root-uptake of the global weapons' fallout are due to the high phloem mobility of this element and the remaining of the needles at the tree for about 6–7 years. In contrast, the Cs-137 activity was much smaller in leaves of larch and sycamore maple. After the Chernobyl accident, the higher contamination of spruce > larch > sycamore maple is dependent on the roughness of bark, absolute bark surface and the existence of leaves during the deposition of Chernobyl-derived radioactivity. The Cs-134/137 activity (Bq/kg d.w.) was about 25-times higher in bark compared to wood ofPicea abies and 1.5–4.7 times higher in directly contaminated twig-axes than in leaves. Till the end of the investigation the major contamination of the shoots was due to direct deposition of cesium on the trees. A maximum of 5–15% of the total activity of the directly contaminated branches of the plants was calculated to be part of root-uptake, depending on the amount of initial retention. 20% of the translocated cesium into new leaves of larch and about 50% into sycamore maple resulted from root-uptake 2.5 years after the accident.  相似文献   

8.
Jing  Hang  Liu  Ying  Wang  Guoliang  Liu  Guobin 《Plant and Soil》2021,463(1-2):447-459
Plant and Soil - Nitrogen (N) addition had differential effects on root respiration. However, the reasons and mechanism have not yet been analyzed. We speculated that the differential effects of N...  相似文献   

9.
10.
11.
Plant biotechnology can be used to conserve the germplasm of natural forests, and to increase the productivity and sustainability of plantations. Both goals imply working with mature trees, which are often recalcitrant to micropropagation. Conventional in vitro culture uses closed containers and gelled medium with sugar supplementation. Bioreactor culture uses liquid medium and usually incorporates aeration. The increased absorption of nutrients via the liquid medium together with the renewal of the air inside the bioreactors may improve the physiological state of the explants. In this review, we will explore the feasibility of using bioreactors to overcome the recalcitrance of many trees to micropropagation and/or to decrease the cost of large‐scale propagation. We will focus on the recent use of bioreactors during the multiplication, rooting (plant conversion in the case of somatic embryos), and acclimation stages of the micropropagation of axillary shoots and somatic embryos of forest trees (including some shrubs of commercial interest), in both temporary and continuous immersion systems. We will discuss the advantages and the main obstacles limiting the widespread implementation of bioreactor systems in woody plant culture, considering published scientific reports and contributions from the business sector.  相似文献   

12.
Oxygenated fatty acids such as ricinoleic acid and vernolic acid can serve in the industry as synthons for the synthesis of a wide range of chemicals and polymers traditionally produced by chemical conversion of petroleum derivatives. Oxygenated fatty acids can also be useful to synthesize specialty chemicals such as cosmetics and aromas. There is thus a strong interest in producing these fatty acids in seed oils (triacylglycerols) of crop species. In the last 15 years or so, much effort has been devoted to isolate key genes encoding proteins involved in the synthesis of oxygenated fatty acids and to express them in the seeds of the model plant Arabidopsis thaliana or crop species. An often overlooked but rich source of enzymes catalyzing the synthesis of oxygenated fatty acids and their esterification to glycerol is the biosynthetic pathways of the plant lipid polyesters cutin and suberin. These protective polymers found in specific tissues of all higher plants are composed of a wide variety of oxygenated fatty acids, many of which have not been reported in seed oils (e.g. saturated ω-hydroxy fatty acids and α,ω-diacids). The purpose of this mini-review is to give an overview of the recent advances in the biosynthesis of cutin and suberin and discuss their potential utility in producing specific oxygenated fatty acids for specialty chemicals. Special emphasis is given to the role played by specific acyltransferases and P450 fatty acid oxidases. The use of plant surfaces as possible sinks for the accumulation of high value-added lipids is also highlighted.  相似文献   

13.
Ozone and forest trees   总被引:3,自引:1,他引:2  
  相似文献   

14.
Effects of altered water regimes on forest root systems   总被引:21,自引:0,他引:21  
  相似文献   

15.
Summary A multilocus mixed mating model was used to analyze the mating systems of two tropical canopy trees in the Bombacaceae that differ in successional status and overall abundance. One population of each species was studied on Barro Colorado Island, Republic of Panama. Population outcrossing estimates of 0.57 and 0.35 from two years indicate a mixed-mating system with intermediate outcrossing levels for the gap-specialist Cavanillesia platanifolia, a relatively rare component of the island flora. Population and individual outcrossing estimates were associated with flowering tree density or degree of spatial isolation. Trees within clusters of flowering individuals have a higher degree of outcrossing than isolated trees. Annual estimates of individual tree outcrossing rates varied greatly as a function of flowering in its nearest neighbors. In contrast to C. platanifolia, Quararibea asterolepis was completely outcrossed and may be self incompatible. Maternal trees of both species had significantly heterogeneous pollen pools indicating non-random outcrossing. Apomixis by sporophytic agamospermy was rejected in C. platanifolia as contributing to the apparent selfing rate.  相似文献   

16.
17.
The relationship between functional traits and environmental factors contribute to understanding community structure and predicting which species will be able to elude environmental filters in different habitats. We selected 10 functional traits related to morphology, demography and regeneration niche in 54 subtropical premontane tree species to describe their main axes of functional differentiation. We derived species traits, environmental variables and species abundance data from 20 1-ha permanent plots established in a seasonal subtropical premontane forest in northwestern Argentina. We analyzed the relationship between species functional traits and environmental factors through RLQ and fourth-corner analyzes. We found an axis of structural differentiation that segregates understory from canopy species, and an axis of functional differentiation that segregates species that maximize resource acquisition from those that promote resource conservation. Environmental and forest use gradients operate hierarchically over subtropical premontane tree species influencing the distribution of demographic and morphological traits. The interaction between climatic and topographic factors influences the distribution of species functional traits at the regional scale. In addition, the history of forest use seems to operate at the landscape scale and explains the distribution of species traits reflecting a trade-off between resource acquisition and resource conservation strategies in secondary forests across different successional stages. Our results support the idea that functional traits may be used to analyze community structure and dynamics through niche differentiation and environmental filtering processes.  相似文献   

18.
Root and soil water distribution was studied in a mature drip-irrigated apricot (Prunus armeniaca L. cv. Búlida) orchard with different soil tillage practices, in a loamy textured soil with a 7% slope, located in Murcia (SE Spain). Three treatments were applied between tree rows:control (no-tillage), whereby, following the common practice in the area, weeds were cut back to ground level by a blade attached to a tractor; perforated treatment, where the soil surface was mechanically perforated with an adapted-plough; and mini-catchment treatment, consisting of mini-catchments with low banks manually raised perpendicular to the line of emitters. Almost all of the apricot root system was located in the first 0.75 m of soil depth, with 91% in the first 0.50 m. More than 75% of the roots corresponded to thin roots, with a diameter less than 0.2 mm. Both tillage treatments decreased runoff compared with the control treatment, while the mini-catchment treatment showed the highest change in soil water content after rainfall events. The mini-catchment treatment was performed in an attempt to reduce the rainwater running down the slope, leaving the accumulated water near plant roots, an effect which was responsible for the higher root length density (RLD) values found in this treatment. In addition, roots were distributed over a wider area, providing higher RLD values up to 1 m from the emitter, meaning that a higher soil volume was explored. For these reasons, the mini-catchment treatment was seen to be the most beneficial soil tillage treatment for optimising water use in semiarid conditions.  相似文献   

19.
New methods using different physical principles have been successfully applied in studies of root systems of large trees. The ground-penetrating radar technique provides 3D images of coarse roots (starting with a diameter of about 20 mm) from the soil surface down to a depth of several metres. This can even be done under layers of undisturbed materials such as concrete, asphalt and water. Fine roots cannot be visualized by this method, but the total rooted volume of soil can be determined. The differential electric conductance method has been used for fast measurement of conducting (absorbing) root surfaces. However, more testing is needed. Both these methods are non-invasive. The results can be verified by an almost harmless excavation of whole root systems, including fine roots, using the ultrasonic air-stream (air-spade) method. This method is suitable for all studies, as well as practical operations on roots or objects in their vicinity, where a gentle approach is required. Sap flow measurements on their own or in tandem with soil moisture monitoring play a leading role in studying root function and hydraulic redistribution of flow in the soil. The water absorption function of roots can be studied by measuring sap flow on individual root branches directly (as on crown branches) and also indirectly, by measuring the radial pattern of sap flow in different sapwood depths at the base of a stem. Root zone architecture can also be estimated indirectly by studying its functionality. The heat field deformation method with multi-point sensors has been found to be very convenient for this purpose. A combination of several such methods is recommended whenever possible, in order to obtain detailed information about the root systems of trees.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号