首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two hypotheses have prevailed to explain the evolution of viviparity in reptiles: the first proposed that viviparity evolved in response to cold-climates because the possibility of pregnant females to thermoregulate at higher temperatures than embryos could experience in a nest in nature. The second hypothesis posits that the advantage of viviparity is based on the possibility of females to maintain stable body temperatures during development, enhancing offspring fitness. With the aim to contribute to understanding the origins of viviparity in reptiles, we experimentally subjected pregnant females of the austral lizard Liolaemus sarmientoi to two temperature treatments until parturition: one that simulated environmental temperatures for a potential nest (17–25?°C) and another that allowed females to thermoregulate at their preferred body temperature (17–45?°C). Then, we analysed newborn body conditions and their locomotor performance to estimate their fitness. In addition, we measured the body temperature in the field and the preferred temperature in the laboratory of pregnant and non-pregnant females. Pregnant females thermoregulated to achieve higher temperatures than the environmental temperatures, and also thermoregulated within a narrower range than non-pregnant females. This could have allowed embryos to develop in higher and more stable temperatures than they would experience in a nest in nature. Thus, offspring developed at the female preferred temperature showed greater fitness and were born earlier in the season than those developed at lower environmental temperatures. Herein, we show that results are in agreement with the two hypotheses of the origin of viviparity for one of the southernmost lizards of the world.  相似文献   

2.
Pregnant squamate reptiles (i.e. lizards and snakes) often maintain higher and more stable body temperatures than their nonpregnant conspecifics, and this maternal thermophily enhances developmental rate and can lead to increased offspring quality. However, it is unclear when this behaviour evolved relative to the evolution of viviparity. A preadaptation hypothesis suggests that maternal thermophily was a preadaptation to viviparity. Oviparous squamates are unique among oviparous reptiles for generally retaining their eggs until the embryos achieve one fourth of their development. As a result, maternal thermophily by gravid squamates may provide the same thermoregulatory benefits, at least during early development, that have been associated with viviparity. Thus, the evolution of viviparity in squamates may reflect an expanded duration of a pre-existing maternal thermoregulatory behaviour. Despite its evolutionary relevance, thermoregulation during gravidity in oviparous squamates has not yet been explored in depth. In the present study, we examined whether gravidity was associated with thermoregulatory changes in the oviparous children's python, Antaresia childreni . First, we discovered that, compared to most snakes, A. childreni is at an advanced stage of embryonic development at oviposition. Second, using surgically implanted temperature loggers, we detected a significant influence of reproductive status on thermoregulation. Reproductive females maintained higher and less variable body temperatures than nonreproductive females and this difference was most pronounced during the last 3 weeks of gravidity. Overall, these results highlight the continuum between oviparity and viviparity in squamate reptiles and emphasize the importance of thermal control of early embryonic development independent of reproductive mode.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 499–508.  相似文献   

3.
The maternal manipulation hypothesis for the evolution of reptilian viviparity has been claimed to apply to any situation where gravid females are able to maintain body temperatures different from those available in external nests, but empirical data that support this hypothesis are very limited. Here, we tested this hypothesis using gravid females of a warm-climate lizard, Mabuya multifasciata, by subjecting them to five thermal regimes for the whole gestation period. We found gravid females selected lower body temperatures and thermoregulated more precisely than did nongravid females. Offspring produced in different treatments differed in head size, limb length and sprint speed, but not in overall body size or mass. Variation in morphological traits of offspring was induced primarily by extreme temperatures. Sprint speed of offspring was more likely affected by the mean but not by the variance of gestation temperatures. Gravid females maintained more stable body temperatures than did nongravid females not because these temperatures resulted in the optimization of offspring phenotypes but because the range of temperatures optimal for embryonic development was relatively narrow. Our data conform to the main predictions from the maternal manipulation hypothesis that females should adjust thermoregulation during pregnancy to provide optimal thermal conditions for developing embryos and that phenotypic traits forged by maternal thermoregulation should enhance offspring fitness.  相似文献   

4.
Richard Shine 《Oecologia》1983,57(3):397-405
Viviparity (live-bearing) in reptiles often is interpreted as an adaptation to cold climates. This hypothesis relies on (i) body temperatures of gravid females being higher than soil (nest) temperatures; (ii) embryonic development being accelerated by this temperature difference; and (iii) survivorship of hatchlings being increased if eggs hatch before the advent of cold weather in autumn. I gathered data to test these assumptions, using eight species of scincid lizards in a high-elevation area of southeastern Australia. Due to behavioural thermoregulation, body temperatures of gravid lizards average ca. 7°C higher than soil (nest) temperatures. Oviparous female lizards retain eggs in utero for ca. 50% of development. Laboratory studies show that a temperature increase from 17°C (mean nest temperature) to 24°C (mean lizard temperature) reduces incubation periods of eggs by >40 days in heliothermic species, and <20 days in a thigmothermic species. In the field, soil temperatures drop to lethally low levels shortly after the usual time of hatching. Simple calculations show that without the acceleration of development caused by uterine retention, eggs could not hatch prior to the onset of these low temperatures in the field. These results support the major assumptions of the “cold climate hypothesis” for the evolution of reptilian viviparity.  相似文献   

5.
The evolution of reptilian viviparity is favoured, according to the cold‐climate hypothesis, at high latitudes or altitudes, where egg retention would entail thermal benefits for embryogenesis because of maternal thermoregulation. According to this hypothesis, and considering that viviparity would have evolved through a gradual increase in the extent of intrauterine egg retention, highland oviparous populations are expected to exhibit more advanced embryo development at oviposition than lowland populations. We tested for possible differences in the level of egg retention, embryo development time and thermal biology of oviparous Zootoca vivipara near the extreme altitudinal limits of the species distribution in the north of Spain (mean altitude for lowland populations, 235 m asl.; for highland populations, 1895 m asl.). Altitude influenced neither temperature of active lizards in the field nor temperature selected by lizards in a laboratory thermal gradient, and pregnant females selected lower temperatures in the thermal gradient than did males and nonpregnant females across altitudinal levels. Eggs from highland populations contained embryos more developed at the time of oviposition (Dufaure and Hubert's stages 33–35) than eggs of highland populations (stages 30–34) and partly because of this difference incubation time was shorter for highland embryos. When analysed for clutches from both altitudinal extremes at the same embryonic stage at oviposition (stage 33), again incubation time was shorter for highland populations, indicating genuine countergradient variation in developmental rate. Our results indicate that temperature is an environmental factor affecting the geographical distribution of different levels of egg retention in Z. vivipara, as predicted by the cold‐climate hypothesis on the evolution of viviparity.  相似文献   

6.
To understand the role of sea temperature on the population biology of the crown-of-thorns sea star Acanthaster planci, the thermal window for embryonic and larval development was investigated. In two experiments, the response of embryos and larvae across 12 temperatures from 19.4 to 36.5 °C was quantified as the percentage of individuals reaching cleavage stage embryos, blastula, gastrula, early-bipinnaria, late-bipinnaria larvae or abnormal. Measurements were made at 7 times up to 72 h post-fertilisation, with the morphometrics of larvae measured in the 72-h sample. Acanthaster planci developed at temperatures between 19.4 and 33.2 °C, with a thermal window for development to the late-bipinnaria stage between 25.6 and 31.6 °C. Development rate, normal development and larval size were optimal at 28.7 °C, with development rates remaining relatively constant up to 31.6 °C. Rates of abnormality increased steadily (early embryonic stages) above 28.7 °C and was 100 % at temperatures approaching 33 °C. These experiments provide a more detailed insight into the response of A. planci developmental stages to temperature. The present day distribution of the species in eastern Australia overlap with the optimal thermal window for development to the late-bipinnaria stage (≈25–32 °C), implying a role of temperature in controlling population distributions and abundances. Despite this, short- or long-term temperature increases may not be a major modulator of the crown-of-thorns recruitment success, population dynamics and distribution in the future as no significant change in development rates, larval survival and growth occurred within this thermal window. Therefore, moderate (1–2 °C) increases in sea temperatures caused by El Niño or near-future ocean warming may not drive an increase in developmental and settlement success. Indeed, without any acclimation to warmer temperatures expected under near-future warming (+2 to 4 °C), climate change could ultimately reduce larval survival due to elevated mortality above the optimal development temperature.  相似文献   

7.
Female reptiles with viviparous reproduction should leave space for their eggs that reach the maximum mass and volume in the oviducts. Is the evolution of viviparity accompanied by a relative increase in maternal abdomen size, thus allowing viviparous females to increase the amount of space for eggs? To answer this question, we compared morphology and reproductive output between oviparous and viviparous species using three pairs of lizards, which included two Eremias, two Eutropis and two Phrynocephalus species with different reproductive modes. The two lizards in each pair differed morphologically, but were similar in the patterns of sexual dimorphism in abdomen and head sizes and the rates at which reproductive output increased with maternal body and abdomen sizes. Postpartum females were heavier in viviparous species, suggesting that the strategy adopted by females to allocate energy towards competing demands differs between oviparous and viviparous species. Reproductive output was increased in one viviparous species, but decreased in the other two, as compared with congeneric oviparous species. The space requirement for eggs did not differ between oviparous and viviparous females in one species pair, but was greater in viviparous females in the other two pairs greater in relative clutch mass and relative litter mass. In the two Phrynocephalus species, viviparous females produced heavier clutches than did oviparous females not by increasing the relative size of the abdomen, but by being more full of eggs. In none of the three species pairs was the maternal abdomen size greater in the viviparous species after accounting for body size. Our data show that the evolution of viviparity is not accompanied by a relative increase in maternal abdomen size in lizards. Future work could usefully investigate other lineages of lizards to determine whether our results are generalisable to all lizards.  相似文献   

8.
Environmental conditions play a major role in shaping reptilian embryonic development, but studies addressing the impact of interactions between chronic and acute environmental stressors on embryonic systems are lacking. In the present study, we investigated thermal dependence of cholinergic and adrenergic cardiovascular tone in embryonic American alligators (Alligator mississippiensis) and assessed possible phenotypic plasticity in a chronic hypoxic incubation treatment. We compared changes in heart rate (f H) and mean arterial blood pressure (P M) for chronically hypoxic and normoxic-incubated embryos after cholinergic and adrenergic blockade following three different acute temperature treatments: (1) 30 °C (control incubation temperature), (2) acute, progressive decrease 30–24 °C then held at 24 °C, and (3) acute, progressive increase 30–36 °C then held at 36 °C. f H progressively fell in response to decreasing temperature and rose in response to increasing temperature. P M did not significantly change with decreasing temperature, but was lowered significantly with increasing acute temperature in the normoxic group at 90 % of development only. Propranolol administration (β adrenergic antagonist) produced a significant f H decrease at 24, 30, and 36 °C that was similar at all temperatures for all groups. For normoxic-incubated embryos at 90 % of development, atropine administration (cholinergic antagonist) significantly increased f H in both 24 and 36 °C treatments, but not in the 30 °C control treatment. This atropine response at 24 and 36 °C demonstrated acute thermally dependent cholinergic tone on f H late in development for normoxic-incubated, but not chronically hypoxic-incubated embryos. Collectively, data indicated that cardiovascular control mechanisms in embryonic alligators may be activated by thermal extremes, and the maturation of control mechanisms was delayed by chronic hypoxia.  相似文献   

9.
Behavioural thermoregulation is important for the success of cool‐climate lizards, and a basis of the cold‐climate hypothesis for the evolution of viviparity in squamate reptiles. The temperature (Tsel) selected by pregnant females in a thermal gradient is considered to be optimal for embryonic development; however, exposure to Tsel throughout pregnancy has been difficult to estimate in small‐bodied lizards as temperature‐sensitive telemetry is impractical. In addition, the value of maternal thermophily during pregnancy is controversial: some studies have shown elevated Tsel, whereas others have found lowered Tsel or no change during pregnancy. We estimated indirectly the overall exposure to Tsel during the 4–5 months of pregnancy of the cool‐climate, sub‐alpine species Oligosoma maccanni (McCann's skink, 3–6 g) from southern New Zealand. The thermal environment available to skinks was modelled using temperature loggers inside validated copper models in basking and retreat sites. Pregnant skinks were able to achieve mean Tsel (28.9 °C) in the field very infrequently (4–15% of each month during the final 4 months of pregnancy). In field thermoregulatory studies, pregnant females did not bask more frequently and did not show altered field body temperature compared with non‐pregnant adults, suggesting that all skinks (whether pregnant or not) thermoregulate maximally whenever conditions allow. Further research on cool‐climate lizards should address the significance for offspring phenotypes of low and variable exposure to Tsel during pregnancy, as well as the significance of temperatures for embryos in maternal bodies (viviparity) versus nest sites (oviparity) arising from differences in maternal body size. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96 , 541–552.  相似文献   

10.
Pregnant female Zootoca vivipara select lower body temperatures than males or nonpregnant females, and this shift in the thermal preferendum is believed to be related to optimising the conditions for embryogenesis. Thus, subjecting embryos to the higher temperature selected by males and non-gravid females might have detrimental effects on embryonic development and on hatchling fitness, according to predictions of the “maternal manipulation” hypothesis on the evolution of viviparity. To test the role of gestation environment on embryonic development in oviparous Z. vivipara, we kept a number of gravid females at the temperature selected by non-gravid females in a laboratory thermal gradient, whereas control females were allowed to regulate their body temperature without restrictions. Developmental stage at oviposition was more advanced for embryos of the experimental clutches, which were heavier than those of the control group. Forced gestation temperature also affected hatching success (58.62% in the experimental treatment vs. 97.37% in the control group). In addition, hatchlings from females subjected to high temperatures during pregnancy were smaller, had shorter head length and performed worse in running trials. Our results fulfil the prediction of the “maternal manipulation” hypothesis, and suggest that the shift in female body temperature during pregnancy optimizes embryogenesis and hatchling phenotype by avoiding the negative effects of the high incubation temperatures preferred by non-gravid females.  相似文献   

11.
The effect of thermal environments during embryonic development as a proximate source of variation in the fitness of offspring has been examined in a wide variety of taxa, and reptiles have been proved to be excellent mode systems for research in this field. Here, we describe a study revealing the effects of ambient temperature and thermoregulation on locomotor performance of newborn ovoviviparous lizards. A 2 (background temperatures set at 18 °C or 22 °C) × 2 (allowing thermoregulation for 14 h or 10 h daily) factorial design experiment was carried out to examine the effects of ambient temperature and thermoregulation on the locomotor performance of newborn Guide toad-headed lizards (Phrynocephalus putjatia; Agamidae). Gravid females were collected in May 2010 from a population in Guide, Qinghai, northwestern China, and were transported to our laboratory in Hangzhou. Ten to fifteen females were housed together in 1200 mm × 600 mm × 700 mm (length × width × height) communal cages, which were placed in AAPS (artificial atmospheric phenomena simulator) rooms, and contained a substrate of sand (~400 mm depth), with rocks and pieces of clay tiles provided as shelter and basking sites. One light bulb (200 W) was suspended above one end of the cage to create a thermal gradient ranging from room temperature to 60 °C for 14 h or 10 h daily, and overnight temperatures followed AAPS temperatures (18 °C or 22 °C). Food (mealworms and house crickets) dusted with multivitamins and minerals and water were provided daily. Cages were checked twice daily for neonates after the first female gave birth, and neonates were immediately collected and weighed after birth.Twenty neonates from single litters of each testament were measured at birth for locomotor performance. All running trials were conducted at a body temperature of 30 °C, which was achieved by placing the newborns in an incubator at 30 °C for 30 min prior to testing. Locomotor performance was assessed by chasing the neonates along a 2-m-long racetrack, which was placed in a room at constant 30 °C, with one side of the racetrack transparent, allowing videoing with a Panasonic NV-DS77 digital video camera. The tapes were later examined with a computer using MGI VideoWave III software for PC (MGI Software Co., Toronto, Canada) for sprint speed in the fastest 250-mm interval and the maximal length. Each individual was measured five times after birth, at 15-day intervals, until 60 days.We found that locomotor performance of neonates was affected by thermoregulating opportunity, but not by background temperature. Neonates produced by females thermoregulated for 14 h daily performed better (both sprint speed and the maximal length) in the racetrack than those produced by females thermoregulated for 10 h daily. However, the interaction between background temperature and thermoregulating opportunity was not a significant source of variation in locomotor performance. Moreover, sprint speed was positively correlated to the maximal length in newborn P. putjatia. In summary, locomotor performance is a highly fitness-related trait, and this study implies that viviparity allows female P. putjatia to provide optimal temperatures for embryo development through thermoregulation, thereby producing well-performed offspring.  相似文献   

12.
We studied, at 2200 m altitude, the thermal biology of the Pyrenean rock lizard, Iberolacerta bonnali, in the glacial cirque of Cotatuero (National Park of Ordesa, Huesca, Spain). The preferred thermal range (PTR) of I. bonnali indicates that it is a cold-adapted ectotherm with a narrow PTR (29.20–32.77 °C). However, its PTR (3.57 °C) is twice as wide as other Iberolacerta lizards, which may be explained by its broader historical distribution. The studied area is formed by a mosaic of microhabitats which offer different operative temperatures, so that lizards have, throughout their entire daily period of activity, the opportunity to choose the most thermally suitable substrates. I. bonnali achieves an effectiveness of thermoregulation of 0.95, which makes it the highest value found to date among the Lacertidae, and one of the highest among lizards. Their relatively wide distribution, their wider PTR, and their excellent ability of thermoregulation, would make I. bonnali lizards less vulnerable to climate change than other species of Iberolacerta. Thanks to its difficult access, the studied area is not visited by a large number of tourists, as are other areas of the National Park. Thus, it is a key area for the conservation of the Pyrenean rock lizard. By shuttling between suitable microhabitats, lizards achieve suitable body temperatures during all day. However, such thermally suitable microhabitats should vary in other traits than thermal quality, such as prey availability or predation risk. Hence, it seems that these not-thermal traits are not constraining habitat selection and thermoregulation in this population. Therefore, future research in this population may study the causes that would lead lizards to prioritize thermoregulation to such extent in this population.  相似文献   

13.
Pregnancy is a challenging period for egg laying squamates. Carrying eggs can encumber females and decrease their locomotor performance, potentially increasing their risk of predation. Pregnant females can potentially reduce this handicap by selecting higher temperatures to increase their sprint speed and ability to escape from predators, or to speed up embryonic development and reduce the period during which they are burdened with eggs (‘selfish mother’ hypothesis). Alternatively, females might select more stable body temperatures during pregnancy to enhance offspring fitness (‘maternal manipulation hypothesis’), even if the maintenance of such temperatures compromises a female's locomotor performance. We investigated whether pregnancy affects the preferred body temperatures and locomotor performance of female velvet geckos Amalosia lesueurii. We measured running speed of females during late pregnancy, and one week after they laid eggs at four temperatures (20°, 25°, 30° and 35 °C). Preferred body temperatures of females were measured in a cost-free thermal gradient during late pregnancy and one week after egg-laying. Females selected higher and more stable set-point temperatures when they were pregnant (mean =29.0 °C, Tset =27.8–30.5 °C) than when they were non-pregnant (mean =26.2 °C, Tset =23.7–28.7 °C). Pregnancy was also associated with impaired performance; females sprinted more slowly at all four test temperatures when burdened with eggs. Although females selected higher body temperatures during late pregnancy, this increase in temperature did not compensate for their impaired running performance. Hence, our results suggest that females select higher temperatures during pregnancy to speed up embryogenesis and reduce the period during which they have reduced performance. This strategy may decrease a female's probability of encountering predatory snakes that use the same microhabitats for thermoregulation. Selection of stable temperatures by pregnant females may also benefit embryos, but manipulative experiments are necessary to test this hypothesis.  相似文献   

14.
The thermal environment can induce substantial variation in important life-history traits. Experimental manipulation of the thermal environment can help researchers determine the contribution of this factor to phenotypic variation in life-history traits. During the reproductive season, we kept female northern grass lizards, Takydromus septentrionalis (Lacertidae), in three temperature-controlled rooms (25, 28 and 32 °C) to measure the effect of the maternal thermal environment on reproductive traits. Maternal thermal environment remarkably affected reproductive frequency and thereby seasonal reproductive output, but had little effect on reproductive traits per clutch or hatchling traits. Females kept at 32 °C produced more clutches and thus had shorter clutch intervals than females from 28 to 25 °C. Clutch size, clutch mass, relative clutch mass, egg size and hatchling traits did not vary among the three treatments. The eggs produced by the females were incubated at 27 °C and the traits of hatchlings were measured. The result that egg (offspring) size was independent of maternal thermal environments is consistent with the prediction of the optimal egg size (offspring) theory. The eggs produced by low temperature females (28 and 25 °C) took longer time to complete their post-oviposition development than did eggs produced by high temperature females (32 °C). This suggests that the eggs from low temperatures might have been laid when the embryos were at relatively early stages. Therefore, maternal thermal environment prior to oviposition could affect post-oviposition development in T. septentrionalis.  相似文献   

15.
Rising environmental temperatures have become a global threat for ectotherms, with the increasing risk of overheating promoting population declines. Flexible thermoregulatory behavior might be a plausible mechanism to mitigate the effects of extreme temperatures. We experimentally evaluated thermoregulatory behavior in the bunchgrass lizard, Sceloporus aeneus, at three different environmental temperatures (25, 35 and 45 °C) both with and without a thermal refuge. We recorded themoregulatory behaviors (body posture and movement between hot and cold patches) and compared individual lizards across all experimental temperature and shelter combinations. Behavioral thermoregulation in S. aeneus was characterized by the expression of five body postures, whose frequencies varied based on environmental temperature and microthermal conditions. Behavioral responses allowed lizards to maintain a mean body temperature <40 °C, the critical thermal maximum for temperate species, even at extreme environmental temperatures (45 °C). Although S. aeneus express an array of behavioral postures that provide an effective mechanism to cope with elevating temperatures, the presence of a thermal refuge was important to better achieve this. Together, our study offers a novel method to evaluate microhabitat preference that encompasses both behavioral observations and time-space analysis based on the ambient thermal distribution, a consideration that can aid in the formulation of more accurate predictions on ectotherm vulnerability related to increasing global environmental temperatures.  相似文献   

16.
Females of several lizard species modify their body temperature during pregnancy, probably in connection with the optimisation of hatchling phenotypes. We studied variations in the temperature selected by gravid females compared with those selected by males and non-gravid females in an oviparous population of Zootoca vivipara (Jacquin, 1797) (Squamata: Lacertidae) of Northern Spain and examined the effects of incubation temperature on the phenotypic variation of hatchlings. Cloacal temperatures of gravid females active in the field were lower than those of males and non-gravid females, as well as the temperatures selected in a thermal gradient created in the laboratory (mean±s.d.: 32.33±1.27 °C for gravid females; 34.05±1.07 °C for males and non-gravid females). Effects of temperature were assessed by incubating eggs at five constant temperatures (21, 25, 29, 32 and 34 °C). Incubation time decreased as temperature increased, following a negative exponential function. Incubation temperatures also affected the hatchlings’ morphology: hatchlings incubated at 34 °C had shorter heads than those from other temperatures. Survival at 34 °C (58%) was significantly lower than at the other temperatures (mean 93%). Pregnant females select lower body temperature, approaching the temperatures that optimise hatchling phenotypes, according to predictions of the maternal manipulation hypothesis on the evolution of viviparity. The shift in preferred temperature by pregnant females would result in only a very short delay, if any, of hatching time and, because the temperature selected by pregnant females is much higher than average temperatures recorded in natural nests of Z. vivipara, egg retention considerably shortens incubation time, according to predictions of the cold-climate hypothesis. Our experimental results indicate that the two main hypotheses on the evolution of viviparity are compatible in our study model.  相似文献   

17.
Cold-climate reptiles show three kinds of adaptation to provide warmer incubation regimes for their developing embryos: maternal selection of hot nest sites; prolonged uterine retention of eggs; and increased maternal basking during pregnancy. These traits may evolve sequentially as an oviparous lineage invades colder climates. To compare the thermal consequences of these adaptations, I measured microhabitat temperatures of potential nest sites and actual nests of oviparous scincid lizards ( Bassiana duperreyi ), and body temperatures of pregnant and non-pregnant viviparous scincid lizards ( Eulamprus heatwolei ). These comparisons were made at a site where both species occur, but close to the upper elevational limit for oviparous reptiles in south-eastern Australia. Viviparity and maternal basking effort had less effect on mean incubation temperature than did maternal nest-site selection. Eggs retained in utero experienced bimodal rather than unimodal diel thermal distributions, but similar mean incubation temperatures. Often the published literature emphasizes the ability of heliothermic (basking) reptiles to maintain high body temperatures despite unfavourable ambient weather conditions; this putative ability is central to many hypotheses on selective forces for the evolution of viviparity. In cold climates, however, opportunities for maternal thermoregulation to elevate mean body temperatures (and thus, incubation temperatures) above ambient levels may be severely limited. Hence, at least over the broad elevational range in which oviparous and viviparous species live in sympatry, maternal selection of 'hot' nests may be as effective as is viviparity in providing favourable incubation regimes.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 145–155.  相似文献   

18.
Temperature influences the geographic range, physiology, and behavior of many ectothermic species, including the invasive lionfish Pterois sp. Thermal parameters were experimentally determined for wild-caught lionfish at different acclimation temperatures (13, 20, 25 and 32 °C). Preferences and avoidance were evaluated using a videographic shuttlebox system, while critical thermal methodology evaluated tolerance. The lionfish thermal niche was compared experimentally to two co-occurring reef fishes (graysby Cephalopholis cruentata and schoolmaster Lutjanus apodus) also acclimated to 25 °C. The physiologically optimal temperature for lionfish is likely 28.7 ± 1 °C. Lionfish behavioral thermoregulation was generally linked to acclimation history; tolerance and avoidance increased significantly at higher acclimation temperatures, but final preference did not. The tolerance polygon of lionfish shows a strong correlation between thermal limits and acclimation temperature, with the highest CTmax at 39.5 °C and the lowest CTmin at 9.5 °C. The tolerance range of invasive lionfish (24.61 °C) is narrower than those of native graysby (25.25 °C) and schoolmaster (26.87 °C), mostly because of lower thermal maxima in the former. Results show that lionfish display “acquired” thermal tolerance at higher and lower acclimation temperatures, but are no more eurythermal than other tropical fishes. Collectively, these results suggest that while lionfish range expansion in the western Atlantic is likely over the next century from rising winter sea temperatures due to climate change, the magnitude of poleward radiation of this invasive species is limited and will likely be equivalent to native tropical and subtropical fishes with similar thermal minima.  相似文献   

19.
Life table and predation of the predatory mite Neoseiulus longispinosus (Evans) on the red spider mite (RSM), Oligonychus coffeae (Nietner), a major pest of tea in India, were studied in the laboratory. Developmental time from egg to adult varied from 4 to 14 days at 30 to 15 °C, respectively; at 35 °C no larva survived. Survival of immature stages was more than 94 % at all temperatures. Threshold temperature for development of immature stages of females and males was 10 and 9.9 °C, respectively, and thermal constant was 84.03 degree-days for females and 80 for males. Sex ratio was female biased and temperature (20–30 °C) had no clear effect on sex determination. Egg hatchability was 73 % at 35 °C and >97 % at lower temperatures. Average number of eggs laid per female/day was higher at 30 °C than at 20 or 25 °C. The highest net reproductive rate (R 0) was 40.7, at 20 °C. Mean generation time (T) decreased from 28 to 13 days with temperature increasing from 20 to 30 °C. Weekly multiplication (6.5) and intrinsic rate of natural increase (r m ) (0.268) were highest at 30 °C. Males lived longer than females at every temperature tested. Longevity was highest at 20 °C (50 days for females and 55 for males). Survival and longevity were adversely affected by temperature above 30 °C. Daily consumption of prey increased with the advancement of predator’s life stages; adult females consumed the highest numbers of prey items, preferably larvae and nymphs.  相似文献   

20.
Bactrocera latifrons (Hendel) is believed to have originated in Southeast Asia but has invaded Hawaii and most recently East Africa. This insect has also been recorded on Okinawa Island, the far south of Kyushu Island, Japan. To assess the overwintering ability of B. latifrons adults, survival at constant temperatures (8, 10, 12, 14, 15 °C) and under fluctuating thermal regimes (FTRs) was investigated. At 14 or 15 °C, more than 30 % of females survived for 90 days. Time required to kill 95 % of B. latifrons at 8 °C was estimated to be 13 days; at 10 °C, 29 days; and at 12 °C, 38 days for females, and 8, 17, and 24 days at the same above temperatures, respectively, for males, suggesting low cold tolerance of this species. The results show that females survive cold temperatures better than males. Under an FTR of 11 °C (22 h)/20 °C (2 h) (average 11.8 °C) survival of females drastically increased compared to that at a constant temperature of 12 °C, whereas the survival of males increased slightly. Survival under FTRs indicates that adult B. latifrons may not overwinter in the north of Tanegashima Island, located 30 km south of Kyushu Island, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号