首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 299 毫秒
1.
Parasites in food webs: the ultimate missing links   总被引:2,自引:0,他引:2  
Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food‐web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food‐web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food‐web stability, interaction strength and energy flow. Food‐web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food‐web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food‐web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.  相似文献   

2.
3.
Parasites have the capacity to regulate host populations and may be important determinants of community structure, yet they are usually neglected in studies of food webs. Parasites can provide much of the information on host biology, such as diet and migration, that is necessary to construct accurate webs. Because many parasites have complex life cycles that involve several different hosts, and often depend on trophic interactions for transmission, parasites provide complementary views of web structure and dynamics. Incorporation of parasites in food webs can substantially after baste web properties, Including connectance, chain length and proportions of top and basal species, and can allow the testing of specific hypotheses related to food-web dynamics.  相似文献   

4.
  1. Almost all organisms grow in size during their lifetime and switch diets, trophic positions, and interacting partners as they grow. Such ontogenetic development introduces life‐history stages and flows of biomass between the stages through growth and reproduction. However, current research on complex food webs rarely considers life‐history stages. The few previously proposed methods do not take full advantage of the existing food web structural models that can produce realistic food web topologies.
  2. We extended the niche model developed by Williams and Martinez (Nature, 2000, 404, 180–183) to generate food webs that included trophic species with a life‐history stage structure. Our method aggregated trophic species based on niche overlap to form a life‐history structured population; therefore, it largely preserved the topological structure of food webs generated by the niche model. We applied the theory of allometric predator–prey body mass ratio and parameterized an allometric bioenergetic model augmented with biomass flow between stages via growth and reproduction to study the effects of a stage structure on the stability of food webs.
  3. When life‐history stages were linked via growth and reproduction, more food webs persisted, and persisting food webs tended to retain more trophic species. Topological differences between persisting linked and unlinked food webs were small to modest. The slopes of biomass spectra were lower, and weak interaction links were more prevalent in the linked food webs than the unlinked ones, suggesting that a life‐history stage structure promotes characteristics that can enhance stability of complex food webs.
  4. Our results suggest a positive relationship between the complexity and stability of complex food webs. A life‐history stage structure in food webs may play important roles in dynamics of and diversity in food webs.
  相似文献   

5.
6.
7.
Anderson TK  Sukhdeo MV 《PloS one》2011,6(10):e26798

Background

Parasites significantly alter topological metrics describing food web structure, yet few studies have explored the relationship between food web topology and parasite diversity.

Methods/Principal Findings

This study uses quantitative metrics describing network structure to investigate the relationship between the topology of the host food web and parasite diversity. Food webs were constructed for four restored brackish marshes that vary in species diversity, time post restoration and levels of parasitism. Our results show that the topology of the food web in each brackish marsh is highly nested, with clusters of generalists forming a distinct modular structure. The most consistent predictors of parasite diversity within a host were: trophic generality, and eigenvector centrality. These metrics indicate that parasites preferentially colonise host species that are highly connected, and within modules of tightly interacting species in the food web network.

Conclusions/Significance

These results suggest that highly connected free-living species within the food web may represent stable trophic relationships that allow for the persistence of complex parasite life cycles. Our data demonstrate that the structure of host food webs can have a significant effect on the establishment of parasites, and on the potential for evolution of complex parasite life cycles.  相似文献   

8.
Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites “dominate” food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites'' roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites'' feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic organization, identifies limitations of current food web models, and provides direction for future structural and dynamical models.  相似文献   

9.
Pierre Olivier  Benjamin Planque 《Oikos》2017,126(9):1339-1346
A food web topology describes the diversity of species and their trophic interactions, i.e. who eats whom, and structural analysis of food web topologies can provide insight into ecosystem structure and function. It appears simple, at first sight, to list all species and their trophic interactions. However, the very large number of species at low trophic levels and the impossibility to monitor all trophic interactions in the ocean makes it impossible to construct complete food web topologies. In practice, food web topologies are simplified by aggregating species into groups termed trophospecies. It is not clear though, how much simplified versions of food webs retain the structural properties of more detailed networks. Using the most comprehensive Barents Sea food web to date, we investigate the performance of methods to construct simplified food webs using three approaches: taxonomic, structural and regular clustering. We then evaluate how topological properties vary with the level of network simplification. Results show that alteration of food web structural properties due to aggregation are highly sensitive to the methodology used for grouping species and trophic links. In the specific case of the Barents Sea, we show that it is possible to preserve key structural properties of the original complex food web in simplified versions when using taxonomic or structural clustering combined with intermediate 25% linkage for trophic aggregation.  相似文献   

10.
One of the key measures that have been used to describe the topological properties of complex networks is the “degree distribution”, which is a measure that describes the frequency distribution of number of links per node. Food webs are complex ecological networks that describe the trophic relationships among species in a community, and the topological properties of empirical food webs, including degree distributions, have been examined previously. Previously, the “niche model” has been shown to accurately predict degree distributions of empirical food webs, however, the niche model-generated food webs were referenced against empirical food webs that had their species grouped together based on their taxonomic and/or trophic relationships (aggregated food webs). Here, we explore the effects of species aggregation on the ability of the niche model to predict the total- (sum of prey and predator links per node), in- (number of predator links per node), and out- (number of prey links per node) degree distributions of empirical food webs by examining two food webs that can be aggregated at different levels of resolution. The results showed that (1) the cumulative total- and out-degree distributions were consistent with the niche model predictions when the species were aggregated, (2) when the species were disaggregated (i.e., higher resolution), there were mixed conclusions with regards to the niche model's ability to predict total- and out-degree distributions, (3) the model's ability to predict the in-degree distributions of the two food webs was generally inadequate. Although it has been argued that universal functional form based on the niche model could describe the degree distribution patterns of empirical food webs, we believe there are some limitations to the model's ability to accurately predict the structural properties of food webs.  相似文献   

11.
Hernandez AD  Sukhdeo MV 《Oecologia》2008,156(3):613-624
Relatively few published food webs have included parasites, and in this study we examined the animal community in a stream across eight contiguous seasons to test how inclusion of helminth parasites alters the topology or structure of the food web. Food webs constructed for each season and analyzed using common binary matrix measures show that species richness, linkage density, and the number of observed and possible links increased when parasites were included as individual species nodes. With parasite–parasite and predator–parasite links omitted, measures of community complexity, such as connectance (C), generally increased over multiple seasons. However, relative nestedness (n*) decreased when parasites were included, which may be a result of low resolution of basal resources inflating specialist-to-specialist links. Overall, adding parasites resulted in moderate changes in food web measures when compared to those of four other published food webs representing different ecosystems. In addition, including parasites in the food web revealed consistent pathways of energy flow, and the association of parasite life histories along these pathways suggest stable evolutionary groups of interacting species within the community. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
While the recent inclusion of parasites into food‐web studies has highlighted the role of parasites as consumers, there is accumulating evidence that parasites can also serve as prey for predators. Here we investigated empirical patterns of predation on parasites and their relationships with parasite transmission in eight topological food webs representing marine and freshwater ecosystems. Within each food web, we examined links in the typical predator–prey sub web as well as the predator–parasite sub web, i.e. the quadrant of the food web indicating which predators eat parasites. Most predator– parasite links represented ‘concomitant predation’ (consumption and death of a parasite along with the prey/host; 58–72%), followed by ‘trophic transmission’ (predator feeds on infected prey and becomes infected; 8–32%) and predation on free‐living parasite life‐cycle stages (4–30%). Parasite life‐cycle stages had, on average, between 4.2 and 14.2 predators. Among the food webs, as predator richness increased, the number of links exploited by trophically transmitted parasites increased at about the same rate as did the number of links where these stages serve as prey. On the whole, our analyses suggest that predation on parasites has important consequences for both predators and parasites, and food web structure. Because our analysis is solely based on topological webs, determining the strength of these interactions is a promising avenue for future research.  相似文献   

13.
Integrating ecosystem engineering and food webs   总被引:1,自引:0,他引:1  
Ecosystem engineering, the physical modification of the environment by organisms, is a common and often influential process whose significance to food web structure and dynamics is largely unknown. In the light of recent calls to expand food web studies to include non‐trophic interactions, we explore how we might best integrate ecosystem engineering and food webs. We provide rationales justifying their integration and present a provisional framework identifying how ecosystem engineering can affect the nodes and links of food webs and overall organization; how trophic interactions with the engineer can affect the engineering; and how feedbacks between engineering and trophic interactions can affect food web structure and dynamics. We use a simple integrative food chain model to illustrate how feedbacks between the engineer and the food web can alter 1) engineering effects on food web dynamics, and 2) food web responses to extrinsic environmental perturbations. We identify four general challenges to integration that we argue can readily be met, and call for studies that can achieve this integration and help pave the way to a more general understanding of interaction webs in nature. Synthesis All species are affected by their physical environment. Because ecosystem engineering species modify the physical environment and belong to food webs, such species are potentially one of the most important bridges between the trophic and non‐trophic. We examine how to integrate the so far, largely independent research areas of ecosystem engineering and food webs. We present a conceptual framework for understanding how engineering can affect food webs and vice versa, and how feedbacks between the two alter ecosystem dynamics. With appropriate empirical studies and models, integration is achievable, paving the way to a more general understanding of interaction webs in nature.  相似文献   

14.
Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13C as compared to plant litter. This ‘detrital shift’ likely reflects preferential uptake of 13C‐enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15N and 13C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15N resulting in overlap in isotope ratios between soil‐dwelling detritivores and litter‐dwelling predators. By contrast, 13C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non‐vascular plants may play an important role in fuelling soil food webs. The trophic niche of most high‐rank animal taxa spans at least two trophic levels, implying the use of a wide range of resources. Therefore, to identify trophic species and links in food webs, low‐rank taxonomic identification is required. Despite overlap in feeding strategies, stable isotope composition of the high‐rank taxonomic groups reflects differences in trophic level and in the use of basal resources. Different taxonomic groups of predators and decomposers are likely linked to different pools of organic matter in soil, suggesting different functional roles and indicating that trophic niches in soil animal communities are phylogenetically structured. During last two decades studies using stable isotope analysis have elucidated the trophic structure of soil communities, clarified basal food resources of the soil food web and revealed links between above‐ and belowground ecosystem compartments. Extending the use of stable isotope analysis to a wider range of soil‐dwelling organisms, including microfauna, and a larger array of ecosystems provides the perspective of a comprehensive understanding of the structure and functioning of soil food webs.  相似文献   

15.
Introduced species can alter the topology of food webs. For instance, an introduction can aid the arrival of free-living consumers using the new species as a resource, while new parasites may also arrive with the introduced species. Food-web responses to species additions can thus be far more complex than anticipated. In a subarctic pelagic food web with free-living and parasitic species, two fish species (arctic charr Salvelinus alpinus and three-spined stickleback Gasterosteus aculeatus) have known histories as deliberate introductions. The effects of these introductions on the food web were explored by comparing the current pelagic web with a heuristic reconstruction of the pre-introduction web. Extinctions caused by these introductions could not be evaluated by this approach. The introduced fish species have become important hubs in the trophic network, interacting with numerous parasites, predators and prey. In particular, five parasite species and four predatory bird species depend on the two introduced species as obligate trophic resources in the pelagic web and could therefore not have been present in the pre-introduction network. The presence of the two introduced fish species and the arrival of their associated parasites and predators increased biodiversity, mean trophic level, linkage density, and nestedness; altering both the network structure and functioning of the pelagic web. Parasites, in particular trophically transmitted species, had a prominent role in the network alterations that followed the introductions.  相似文献   

16.
The directionality of asymmetric interactions between predators (definitive hosts) and prey (intermediate hosts) should impact trophic transmission in parasites. This study tests the prediction that trophically transmitted parasites are funneled towards asymmetric predator–prey interactions where intermediate hosts have few predators and definitive hosts feed upon many prey (‘downward asymmetry’). The distribution of trophically transmitted parasites was examined in four published food webs in relation to mismatch asymmetry of predator–prey interactions. We found that trophically transmitted parasites exploit downwardly asymmetric interactions in a nonrandom manner, and particular predator–prey pairs contain more trophically transmitted parasites than would be expected by random chance alone. These findings suggest that food web topology has great bearing on the ecology of trophically transmitted parasites, and that consideration of parasite life cycles in the context of food web organization can provide insights into the forces affecting the evolution of trophic transmission.  相似文献   

17.
Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web.  相似文献   

18.
How species richness is distributed across trophic levels determines several dimensions of ecosystem functioning, including herbivory, predation, and decomposition rates. We perform a meta‐analysis of 72 large published food webs to investigate their trophic diversity structure and possible endogenous, exogenous, and methodological causal variables. Consistent with classic theory, we found that published food webs can generally be described as ‘pyramids of species richness’. The food webs were more predator‐poor, prey‐rich and hierarchical than is expected by chance or by the niche or cascade models. The trophic species richness distribution also depended on centrality, latitude, ecosystem‐type and methodological bias. Although trophic diversity structure is generally pyramidal, under many conditions the structure is consistently uniform or inverse‐pyramidal. Our meta‐analysis adds nuance to classic assumptions about food web structure: diversity decreases with trophic level, but not under all conditions, and the decrease may be scale‐dependent. Synthesis The distribution of species richness across trophic levels has not been evaluated in recent decades, despite improvement in food web resolution and the relevance of biodiversity distribution to ecosystem function. Our meta‐analysis of 72 large, recent food webs, illustrates that published food webs can generally be described as basal‐rich, top‐poor ‘pyramids of species richness’, consistent with classic theory. Although trophic diversity structure is generally pyramidal, under some environmental and ecological conditions the structure is uniform or inverse‐pyramidal. Our meta‐analysis confirms classic theory about food web structure, while adding nuance by describing conditions under which classic pyramid structure is not observed.  相似文献   

19.
The niche model has been widely used to model the structure of complex food webs, and yet the ecological meaning of the single niche dimension has not been explored. In the niche model, each species has three traits, niche position, diet position and feeding range. Here, a new probabilistic niche model, which allows the maximum likelihood set of trait values to be estimated for each species, is applied to the food web of the Benguela fishery. We also developed the allometric niche model, in which body size is used as the niche dimension. About 80% of the links in the empirical data are predicted by the probabilistic niche model, a significant improvement over recent models. As in the niche model, species are uniformly distributed on the niche axis. Feeding ranges are exponentially distributed, but diet positions are not uniformly distributed below the predator. Species traits are strongly correlated with body size, but the allometric niche model performs significantly worse than the probabilistic niche model. The best-fit parameter set provides a significantly better model of the structure of the Benguela food web than was previously available. The methodology allows the identification of a number of taxa that stand out as outliers either in the model''s poor performance at predicting their predators or prey or in their parameter values. While important, body size alone does not explain the structure of the one-dimensional niche.  相似文献   

20.
Synthesis Metacommunity theory aims to elucidate the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity research has focused largely on assemblages of competing organisms within a single trophic level. Here, we test the ability of metacommunity models to predict the network structure of the aquatic food web found in the leaves of the northern pitcher plant Sarracenia purpurea. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions play an important role in structuring Sarracenia food webs. Our approach can be applied to any well‐resolved food web for which data are available from multiple locations. The metacommunity framework explores the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity models and empirical studies have focused mostly on assemblages of competing organisms within a single trophic level. Studies of multi‐trophic metacommunities are predominantly restricted to simplified trophic motifs and rarely consider entire food webs. We tested the ability of the patch‐dynamics, species‐sorting, mass‐effects, and neutral metacommunity models, as well as three hybrid models, to reproduce empirical patterns of food web structure and composition in the complex aquatic food web found in the northern pitcher plant Sarracenia purpurea. We used empirical data to determine regional species pools and estimate dispersal probabilities, simulated local food‐web dynamics, dispersed species from regional pools into local food webs at rates based on the assumptions of each metacommunity model, and tested their relative fits to empirical data on food‐web structure. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions were important in structuring Sarracenia food webs. However, differences in dispersal abilities were also important in models that accurately reproduced empirical food web properties. Although the models were tested using pitcher‐plant food webs, the approach we have developed can be applied to any well‐resolved food web for which data are available from multiple locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号