首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ovipositional patterns of the heteronomous hyperparasitoid Encarsia pergandiella Howard (Hymenoptera: Aphelinidae) in the presence of its primary host Bemisia argentifolii Bellows & Perring (Hemiptera: Aleyrodidae), and in the presence or absence of conspecific and heterospecific secondary hosts (Encarsia formosa Gahan andEretmocerus mundus Mercet; Hymenoptera: Aphelinidae) were examined to assess host species preferences. Host preferences by heteronomous hyperparasitoids may affect the relative abundance of co-occurring parasitoid species and may influence host population suppression by the parasitoid community. Four combinations of hosts were tested: (1) B. argentifolii, E. mundus, and E. formosa, (2) B. argentifolii, E. formosa, and E. pergandiella, (3) B. argentifolii, E. mundus, and E. pergandiella, and, (4) B. argentifolii, E. mundus, E. formosa, and E. pergandiella. Arrays of hosts (24) were constructed in Petri dishes using leaf disks, each bearing one host. Thirty arrays of each host combination were exposed to single females for 6 h. All hosts were dissected to determine number of eggs per host. Encarsia pergandiella parasitized E. formosa hosts as frequently as E. mundus hosts. However, E. pergandiella parasitized either of these heterospecific hosts more frequently than conspecific hosts in treatments including two secondary host species. When a third parasitoid species was included in host arrays, E. pergandiella parasitized conspecific hosts as frequently as heterospecific hosts. Developmental stage of the hosts did not significantly influence host species selection by E. pergandiella. Our results indicate that host selection and oviposition by heteronomous hyperparasitoids like E. pergandiella, vary with the composition of hosts available for parasitization, and suggest a preference for heterospecific over conspecific secondary hosts.  相似文献   

2.
Endoparasitic Hymenoptera vary in the extent to which they provision their eggs and thus in the degree to which they appear to rely on their hosts for resources during embryonic development. In this study, developmental rates were examined in two congeneric parasitoid species, Encarsia formosa and E. pergandiella, that provision their eggs to different degrees. E. formosa eggs are much larger than E. pergandiella eggs. E. formosa eggs hatch significantly earlier than the eggs of E. pergandiella when deposited in 1st or 4th instar nymphs of a common whitefly host, Bemisia tabaci. Both species hatch earlier in 4th instar nymphs, but the delay in hatching in hosts parasitized as 1st instars is much greater in E. pergandiella. While E. formosa develops more rapidly to the 1st larval instar, E. pergandiella emerge as adults significantly earlier, though smaller, than E. formosa adults regardless of the host instar parasitized. These findings show that the extent of provisioning in the eggs of these wasps does not strictly determine their order of progression through different stages of development.  相似文献   

3.
Laboratory evaluations of five natural enemies of the silverleaf whitefly, Bemisia argentifolii Bellows and Perring, n. sp., were conducted to determine their potential as biological control agents in greenhouse poinsettia ranges. Adult longevity, prey consumption or host feeding and parasitism rates, and parasitoid emergence were measured for one predator, Delphastus pusillus LeConte, and four parasitoids, Encarsia formosa Gahan, Encarsia luteola Howard, Encarsia pergandiella Howard, and Encarsia transvena (Timberlake), as possible indicators of efficacy. Characterization of each parameter was performed on two poinsettia cultivars: the first, ′Annette Hegg Brilliant Diamond,′ has trichome densities on the leaf undersurfaces approximately 15% less than the trichome densities on the leaf undersurfaces of the second cultivar, ′Lilo.′ Adult longevity varied significantly between natural enemies (ranging from an average high of 85.2 days for female D. pusillus feeding on B. argentifolii nymphs to an average low of 2.8 days for the Canada colony of E. formosa), but not between cultivar. Prey consumption and oviposition by D. pusillus varied between prey type (nymphs consumed > eggs consumed) and poinsettia cultivar (′Annette Hegg Brilliant Diamond′ > ′Lilo′). Host feeding, parasitism and total number of B. argentifolii nymphs killed varied significantly among Encarsia spp., but no single wasp performed better than the rest across all three parameters. Host feeding, parasitism, and total number of nymphs killed were greater on ′Annette Hegg Brilliant Diamond′ than on ′Lilo′ and this difference was consistent among the four parasitoid species. Among parasitoid species differences in percentage emergence were consistent between the two poinsettia cultivars with emergence from parasitized nymphs on ′Lilo′ being greater than emergence on ′Annette Hegg Brilliant Diamond.′ Results from these evaluations suggest that the probability of achieving successful augmentative biological central will be greater on poinsettia cultivars with fewer trichomes. In addition, achieving biological control is likely to be difficult with releases of E. transvena, but a greater chance for success may be possible through releases of D. pusillus when whitefly densities are high or through releases of E. formosa (Beltsville colony) or mated E. pergandiella independent of whitefly densities.  相似文献   

4.
Studies were conducted to compare preference among Bemisia tabaci Gennadius, biotype B instars for parasitization by Eretmocerus mundus Mercet and Encarsia pergandiella Howard when provided one instar only, two different instars, and four different instars simultaneously. In the single‐instar no choice treatment, Er. mundus was more successful in parasitizing the younger host instars, while En. pergandiella parasitized a greater proportion of the older instars. Similar results were observed when parasitoids were provided a choice of two instars in six different pair combinations. When all four instars were provided simultaneously, the numbers of first, second, and third instars parasitized by Er. mundus were not significantly different from each other (range 10.3–16.4%), but all were significantly higher than parasitism of fourth instar nymphs (2.1%). The highest percentage parasitization by En. pergandiella was in third instar (17.2%), and the lowest in first instar (2.8%).  相似文献   

5.
《Biological Control》2001,20(2):122-131
The compatibility of five insect growth regulators (IGRs), buprofezin, pyriproxyfen, fenoxycarb, pymetrozine, and kinoprene, were tested in the laboratory for compatibility with the whitefly parasitoid Eretmocerus eremicus Rose and Zolnerowich (Hymenoptera: Aphelinidae). The survivorship of adult parasitoids foraging on poinsettia leaves with residues 6, 24, and 96 h of age was determined. The toxicity of Bemisia argentifolii Bellows and Perring (Homoptera: Aleyrodidae) patches treated with IGRs presented to female parasitoids 24 and 96 h posttreatment was quantified. Survivorship of immature E. eremicus developing within B. argentifolii nymphs was determined by treating whitefly nymphs with IGRs 5 and 13 days postoviposition by female parasitoids. Finally, behavioral observations of female parasitoids foraging on IGR-treated and untreated B. argentifolii patches presented simultaneously were quantified to determine whether IGR residues had a repellant effect toward E. eremicus. Averaging ranks for IGRs based on their compatibility with E. eremicus and their ability to kill B. argentifolii nymphs produced the following parasitoid compatibility order: buprofezin > fenoxycarb > pymetrozine = pyriproxyfen > kinoprene. Further work in greenhouses assessing the efficacy of buprofezin with E. eremicus for B. argentifolii control on poinsettias is recommended.  相似文献   

6.
Encarsia bimaculata was recently described from India as a potentially useful parasitoid of Bemisia tabaci. Its developmental biology was studied in the laboratory at 25–30 °C and 70–75% RH. Results showed that E. bimaculata is a solitary, arrhenotokous, heteronomous, autoparasitoid. Mated females laid eggs internally in B. tabaci nymphs that developed as primary parasitoids. Males developed as hyperparasitoids, either in females of their own species or in other primary aphelinid parasitoids. Superparasitism was common under cage conditions. Both sexes have an egg, three larval instars, prepupal, and pupal stages. Development from egg to adult took 12.70 ± 2.10 days for females and 14.48 ± 2.60 days for males. Individual B. tabaci nymphs were examined for E. bimaculata parasitization using three isozymes: esterase, malate dehydrogenase, and xanthine dehydrogenase. All three isozymes showed differential banding patterns that identified E. bimaculata parasitized or unparasitized B. tabaci nymphs.  相似文献   

7.
Autoparasitoids are species of parasitic wasps in the family Aphelinidae which produce females as solitary primary endoparasitoids of homopterans such as whitefly and scale insects (primary hosts), and males as solitary hyperparasitoids. Males generally develop on immature conspecific females or on individuals of other primary parasitoid species (secondary hosts). Encarsia pergandiella is an autoparasitoid that has been introduced to Italy for control of greenhouse whitefly Trialeurodes vaporariorum, in greenhouses and field crops. In this study we examined the secondary host selection behaviour of this species with regard to conspecific females and females of two thelytokous species, E. formosa and E. meritoria. Encarsia formosa has been used successfully for greenhouse whitefly control in Northern Europe, but has not been effective in Southern Italy in winter crops in unheated greenhouses. E. meritoria has recently spread in Italy, and may have potential for biological control of whitefly in the greenhouse environment. In the first experiment, female E. pergandiella were exposed to one of three pair-wise combinations of the three species in petri dish arenas. Parasitism was determined by dissection of the hosts. The number of hosts parasitized by E. pergandiella females did not differ with host species. However, significantly greater numbers of eggs were laid in E. meritoria in both treatments in which it was present; these hosts were more likely to be superparasitized. In a second experiment, observations of females in arenas with equal numbers of all three host species indicated that females encountered and parasitized all host species with approximately equal frequency, although the length of time females spent in the oviposition posture differed with host species.  相似文献   

8.
Abstract Thelyotokous biotype of Eretmocerus mundus Mercet (Hymenoptera: Aphelinidae), a parasitoid of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), was recently recorded in northern Iran. Reproductive biology of this biotype was studied as part of an evaluation of its potential for biological control of B. tabaci. The parasitoid deposited more eggs under 2nd and 3rd nymphal instars than 1st or 4th instars. Adult females fed honey, with no access to whitefly nymphs, lived significantly longer (13.6 ± 4.7 d) than those given access to nymphs, but not fed honey (7.6 ± 2.21 d). Lifetime fecundity averaged 81.7 ± 26.9 female progeny per female parasitoid, ranging from 11–132. Daily fecundity, measured as the number of whitefly nymphs parasitized by per female each day for 10 d, averaged 18.06 ± 3.95 for the first 6 d of life, and then declined to < 11. Developmental time from oviposition to parasitoid emergence was significantly shorter in the 3rd instar of the host (15.9 ± 1.06 d) than in the 1st instar (18.7 ± 2.3 d), but not in the 2nd instar (16.4 ± 1.3 d).  相似文献   

9.
The tiny parasitoid wasp, Encarsia formosa, has been used successfully to control greenhouse whiteflies (GHWFs) in greenhouses in many countries throughout the world. Therefore, there has been considerable interest in developing methods for artificially rearing this wasp. However, little information is available concerning the regulation of its development including the host-parasitoid interactions that are required for the parasitoid to complete its life cycle. Here we confirm that parasitoid developmental rates differ significantly based upon the host instar parasitized. Development was faster when 3rd and 4th instar GHWFs were offered for parasitization than when 1st or 2nd instars were used. Our results show that it is primarily the embryo and the first two parasitoid instars that exhibit prolonged developmental times when 1st and 2nd instar whiteflies are parasitized. Although percent emergence was not affected by host age at the time of parasitization, adult longevity as well as adult emergence pattern varied greatly depending upon the instar parasitized. When 3rd and 4th instar GHWFs were selected for oviposition, adult wasps lived significantly longer than when 1st or 2nd instars were used; also, there was a sharp emergence peak on the 2nd day after emergence was first observed (reduced or absent when 1st or 2nd instar GHWFs were parasitized) and the emergence period was reduced from between 8 and 11 days to 5 days. In general, the younger the host instar parasitized, the less synchronous was parasitoid development. Previous reports that E. formosa will not molt to the 2nd instar until the host has reached its 4th instar were not confirmed. When 1st instar host nymphs were parasitized, 2nd instar parasitoids were detected in 3rd instar hosts. Importantly, however, no matter which instar was parasitized, the parasitoid never molted to its last instar until the host had reached Stage 5 of its last instar, a stage in which host pharate adult formation has been initiated. It appears, then, that a condition(s) associated with host pharate adult formation is required for the parasitoid's final larval molt. Results reported here should facilitate the development of in vitro rearing systems for E. formosa.  相似文献   

10.
Using histological techniques, we have simultaneously examined the co-development of the Aphelinid parasitoid Encarsia formosa and its host the greenhouse whitefly, Trialeurodes vaporariorum. Previously we have determined that regardless of the whitefly instar parasitized, parasitoid larvae would not molt to their final instar until the whitefly reaches its maximum dimensions. In unparasitized T. vaporariorum, this point in development corresponds to the initiation of the adult molt. In part, this study was conducted to determine the developmental state of parasitized whiteflies at the time they achieve their maximum dimensions. It was found that parasitized final instar T. vaporariorum do, in fact, undergo a final molt and that E. formosa larvae will not molt to their final instar until this has occurred. The timing of the final whitefly molt appears unaffected by parasitization. The commonly observed melanization of parasitized whiteflies appears to be a consequence of this molt. In addition, we have discovered that the adult wasp oviposits within the ventral ganglion of the whitefly, and that major organ systems of the whitefly persist very late into parasitoid development. We also report the presence of possible endosymbiotic bacteria residing in the fatbody of E. formosa.  相似文献   

11.
Development time, mummification, pupal mortality, host feeding and sex ratio of a Norwegian strain of Aphelinus varipes Förster parasitizing the cotton aphid, Aphis gossypii Glover were studied at 20, 25 and 30°C in controlled climate cabinets. Petri dishes with cucumber ( Cucumis sativus L) leaves on agar were used as experimental units. Cotton aphids in different larval instars and as adults, reared at the three different temperatures, were presented to A. varipes in a `no-choice' situation for 6 h. These presentations were done at 25°C in each experiment to avoid an influence of temperature on parasitization rate. More first instar aphids were parasitized than third and fourth instars among the aphids reared at 20°C. Pupal mortality of the parasitoid was not influenced by temperature. It was lower in aphids parasitized as adults than in aphids parasitized in second instar. The sex ratio of A. varipes was female-biased, and varied between 92% females developed from aphids reared at 25°C and 70% from aphids reared at 20°C. The sex ratio was not significantly influenced by host stage. The development time of A. varipes ranged from 17.5 days at 20°C to 9.8 days at 30°C.  相似文献   

12.
《Biological Control》2001,20(2):132-146
The efficacy and cost of reduced release rates of the parasitoid Eretmocerus eremicus Rose and Zolnerowich (Hymenoptera: Aphelinidae) when combined with application of the insect growth regulator buprofezin were compared to those of a higher parasitoid release rate used alone for whitefly control (Homoptera: Aleyrodidae) on poinsettia (Euphorbia pulcherrima Willd. ex Koltz.). The trial was conducted in seven greenhouses in Methuen, Massachusetts from August through December 1997 and employed commercial poinsettia production practices. Two whiteflies species, Trialeurodes vaporariorum (Westwood) and Bemisia argentifolii Bellows and Perring (= Bemisia tabaci [Gennadius] strain B), were present. Three treatments were examined: (1) E. eremicus used alone at a release rate of three females per plant per week (two greenhouses); (2) E. eremicus at an intermediate release rate of two females per plant per week, combined with mid-season use of buprofezin (two applications, spaced 1 week apart, applied in weeks 9 and 10) (two greenhouses); and (3) E. eremicus at a low release rate of one female per plant per week, combined with mid-season use of buprofezin, applied as in treatment 2 (two greenhouses). In addition, observations were made in one additional greenhouse at the site, in which the grower used pesticides for whitefly control. Prior to the start of the trial, cuttings used for all treatments experienced some pesticide use, first abamectinduring rooting and later buprofezin at potting to reduce whitefly numbers, which were initially very high. At harvest, densities of live whitefly nymphs were not statistically different among the biological control treatments, indicating that a low parasitoid release rate combined with buprofezin was as effective as a higher release rate of the parasitoid used alone. Nymphal densities in separate market samples (based on smaller sample sizes) showed differences among treatments, but all treatments, including the low parasitoid release rate + buprofezin maintained densities of live nymphs + pupae at or below approximately two per leaf, a level commercially acceptable in local markets. Control costs per single-stemmed poinsettia plant were $1.18 for the high parasitoid release treatment, $0.75 for the treatment of weekly releases of two female parasitoids per plant per week + buprofezin, $0.38 for the treatment of releases of one female parasitoid per plant per week + buprofezin, and $0.14 for the chemical control greenhouse.  相似文献   

13.
The host instar preferences of Encarsia bimaculata and Eretmocerus sp. nr. furuhashii parasitizing Bemisia tabaci and their development on four host plants, collard, eggplant, cucumber and tomato, were studied in the laboratory. Both of the parasitoids accepted all nymphal stages of B. tabaci, but E. bimaculata preferred third and fourth instars while Er. sp. nr. furuhashii preferred second and third instars under both choice and no choice conditions. Regardless of host stage parasitized, adults of parasitoids emerged only from fourth instars. When given the simultaneous choice of all instars, E. bimaculata reduced parasitization of first and second instars (3.73 and 4.76%, respectively) while increasing parasitization of third and fourth instars (5.44 and 6.93%, respectively), in contrast Er. sp. nr. furuhashii increased its parasitization of second and third instar nymphs (1.27 and 3.17%, respectively) and decreased that of first and fourth instars (7.0 and 3.06%, respectively). Host plants did not significantly influence instar preference for either parasitoid. Developmental periods of both the parasitoids from egg to adult emergence were longest when first instars were parasitized and shortest when fourth instars were selected. Parasitoid developmental time was generally shorter on glabrous plants than on hirsute plants.  相似文献   

14.
The interaction between the entomopathogenic fungusAschersonia aleyrodis and the parasitoidEncarsia formosa on greenhouse whitefly as a host organism was studied, in particular, the survival of the parasitoid after treatment of parasitized hosts with fungal spores. The mean number of parasitized black pupae per parasitoid produced at 25°C was significantly reduced after spore treatment in the first three days following parasitization. Spore treatment four, seven or ten days after parasitization resulted in a mean number of parasitized pupae not significantly different from the number of black pupae in the control. The rather sudden change from low to high survival of parasitized hosts when treated with spores four days after parasitization in spite of high numbers of infected unparasitized larvae, coincided with the hatching of the parasitoid larva from the egg inside the host. Possible reasons for this decrease in susceptibility to infection after parasitoid egg hatch, such as induced changes in host cuticle or haemolymph, are discussed. Parasitoids emerged from treated hosts did not show differences in reproduction compared with parasitoids emerging from untreated hosts. Both natural enemeies of whitefly are compatible to a great extent.  相似文献   

15.
Relative effects of parasitism by Microplitis rufiventris on the development of the third instar Spodoptera littoralis (preferable, optimal host) with the development of penultimate (5th) and last (6th) instars (suboptimal hosts) were investigated. Newly molted 6th instar hosts were more acceptable for parasitization by the wasp female than older hosts. In singly parasitized 3rd instar hosts, 82.0 +/- 3.9% of the parasitoid eggs developed to full-grown instar wasp larvae. However, parasitoid eggs deposited singly in 73.9 +/- 3.3% of 5th and 100% of 6th instar hosts failed to develop. Superparasitization in the 3rd instar hosts reduced the production of pseudoparasitized larvae and, conversely, all parasitized hosts yielded viable parasitoid offspring. In suboptimal hosts, the development interaction between the parasitoid and its host larvae was highly influenced by the age of hosts at parasitism, load of deposited eggs, and other parasitoid factors. The latter factors, e.g., mainly calyx fluid particles, might be involved in establishing parasitoid eggs in the suboptimal hosts. In the last two host instars, superparasitization significantly increased the number of parasitoid larvae successfully reaching their final instar. Variation in host quality, e.g., physiological status, might be attributed, in part, to the partial breakdown of the solitary habit observed in the earlier instars. More parasitoid eggs developed to mature parasitoid larvae in hosts superparasitized as 6th instar than parasitoid eggs laid in 5th instar hosts. Superparasitization significantly lengthened the developmental period of 5th and 6th host instars and inhibited their development to the pupal stage. Studying parasitoid development in suboptimal instars of its habitual host provided physiological insight, as shown here. The results may have implication for biological control and in vitro mass rearing programs with solitary parasitoids.  相似文献   

16.
Although most polistine wasp species are found in the Neotropical region, mainly in Brazil, only a very limited number of South American parasitoids or parasites are known to exist. We assessed the frequency of a hymenopterous parasitoid, Pachysomoides sp. (Ichneumonidae, Cryptinae), in the nests of the Brazilian independent‐founding wasp Polistes satan and compared the rates of the parasitization of P. satan by Pachysomoides sp. between the dry (winter) and wet (summer) seasons. Pachysomoides sp. larvae were seen to feed on P. satan pupa and were found in both the upper and lower parts of the host pupal cell (ca. 10 individuals in each host pupal cell). Approximately one‐third of the pupal cells in the P. satan colonies were parasitized in the dry season, whereas there were no parasitized pupal cells in the wet season. Consequently, the rates of parasitization by Pachysomoides sp. were significantly greater during the dry season than during the wet season due to unknown reasons.  相似文献   

17.
Field cage experiments were conducted in Riverside, California to quantify the impact of releases of the parasitoid Amitus bennetti Viggiani & Evans on mortality of the whitefly Bemisia argentifolii Bellows & Perring. Single-row 50-m-long plots were planted with either cotton or bean. Cages were erected over the plants in each row, and adult whiteflies were released into the cages. Approximately 10 days later, adult parasitoids were released. Marked individual whiteflies were scored every 4 days for 6 weeks. Paired life tables were then constructed from census data from release and control cages over a single whitefly generation. Total whitefly mortality in release cages (71% in bean, 61% in cotton) was significantly greater than in control cages (25% in bean, 34% in cotton). The marginal rate for mortality attributable directly to the parasitism was 0.535 in the bean plots and 0.201 in the cotton plots. In addition, other mortality was greater in the release plots, possibly reflecting death of parasitized hosts before larval parasitoids could complete development. Parasitism was the greatest mortality factor in the study.  相似文献   

18.
Martha S. Hunter 《Oecologia》1993,93(3):421-428
Autoparasitoid wasps lay fertilized eggs in homopteran nymphs, and these eggs develop into female primary parasitoids. Unfertilized, male-producing eggs are laid in immatures of the wasps' own or another primary parasitoid species; males then develop as secondary or hyperparasitoids. In the population of Encarsia pergandiella studied in Ithaca, NY, fertilized eggs were laid in the nymphs of the whitefly Trialeurodes packardi (primary hosts) and unfertilized eggs were laid almost exclusively in pupal females of their own species (secondary hosts). In the two years the population was studied, secondary hosts were always much less abundant than primary hosts at both sites. However, secondary hosts were parasitized at a significantly greater rate than primary hosts. In a laboratory experiment, the encounter rate of females with primary and secondary hosts was not significantly different. Moreover, there was no evidence from the field that wasps found leaves bearing secondary hosts more frequently than leaves without secondary hosts. Dissections of field-collected females showed them to be mated, and thus capable of laying both unfertilized and fertilized eggs. These results suggest that wasps did not encounter secondary hosts at a greater rate, nor were they constrained to lay unfertilized eggs, but rather secondary hosts were preferred. The oviposition sex ratios were influenced by the proportion of secondary hosts, but were less female-biased than would be predicted from the proportion of secondary hosts alone. The results do not support the predictions of Godray and Waage (1990) for either strictly host-limited autoparasitoids (sex ratio should reflect the proportion of secondary hosts) or for egg-limited autoparasitoids (sex ratio should be equal, and independent of the proportion of secondary hosts).  相似文献   

19.
The solitary parasitoid Microplitis tuberculifer (Wesmael) is an important biological control agent of various lepidopteran pests in Asia. We examined the preference of M. tuberculifer for different instars of its common host, Mythimna separata (Walker), host instar effects on parasitoid development, and the consequences of parasitism in different stages for growth and consumption of host larvae. The wasp successfully parasitized the first four larval instars of M. separata, but not the fifth, which appeared to be behaviorally resistant. First and second instars were parasitized at higher rates compared to thirds and fourths in no-choice situations, ostensibly due to longer handling times for the latter, but second instars were most preferred in a choice test that presented all stages simultaneously. Although later instar hosts yielded heavier cocoons, the fastest parasitoid development was obtained in second instars. Lower sex ratios were obtained from first instars as females appeared to lay a smaller proportion of fertilized eggs in small hosts. Both weight gain and food consumption of parasitized larvae were reduced significantly within 24 h of parasitism, regardless of the stage parasitized, and final body weights were less than 10% those of unparasitized larvae. Thus, M. tuberculifer has good potential as a biological control agent of M. separata, successfully parasitizing the first four larval instars and dramatically reducing plant consumption by the host in all cases.  相似文献   

20.
The parasitoidEphedrus cerasicola Stary oviposited in the 4 nymphal instars and in newly moulted apterous adults ofMyzus persicae (Sulzer). Development and reproduction of unparasitized and parasitized aphids at 21°C were compared. Unparasitized aphids developed to adults in 6.5 days and started to reproduce after 7 days. Longevity varied between 7 and 42 days. Net reproductive rate (R0) was 40.7. In contrast to older nymphs, aphids parasitized in the 1 st instar almost never reached the adult stage before mummification. Aphids parasitized in 2nd, 3rd and 4th instar and as newly moulted adults produced respectively 0.07 %, 2 %, 23 % and 32 % of offspring produced by unparasitized aphids. Corresponding reproductive periods were 1, 1.4, 3 and 4 days. Host age at parasitization had a slight effect on the parasitoid's developmental rate and had no effect on egg or pupal survival, or on the sex ratio of the emerging parasitoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号