首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Cell-free extracts prepared from soya-bean nodule bacteroids produced HD from D2 in the presence of dithionite, an ATP-generating system and nitrogen. 2. Crude extracts of bacteroids or of Azotobacter vinelandii showed some background D2 exchange when any one of these was omitted. 3. Partial purification of bacteroid extracts diminished this background activity and gave increased D2 exchange and nitrogen fixation. 4. Although increasing pN2 stimulated both reactions, the apparent Km (N2) for nitrogen fixation was much higher than the apparent Km (N2) for D2 exchange when partially purified bacteroid extracts were used. 5. Carbon monoxide was a competitive inhibitor of nitrogen fixation by partially purified bacteroid extracts, but D2 exchange was inhibited in a non-competitive fashion. 6. These results are discussed in relation to the possible existence of enzyme-bound intermediates of nitrogen fixation.  相似文献   

2.
3.
A comparison of the N2 fixers in the tall Spartina alterniflora and short S. alterniflora marsh soils was investigated. Zero-order kinetics and first-order kinetics of acetylene reduction were used to describe the activity of the N2 fixers in marsh soil slurries. It was found that the Vmax values were approximately 10 times greater for the N2 fixers in the tall Spartina than in the short Spartina marsh when raffinose was used as the energy source. In addition, the (Ks + Sn) values were approximately 4 to 15 times lower for the N2 fixers in the tall Spartina than in short Spartina marsh. First-order kinetics of nitrogen fixation for several substrates indicate that the N2 fixers in the tall Spartina marsh were two to seven times more active than those in the short Spartina marsh. Ammonium chloride (25 μg/ml) did not inhibit nitrogen fixation in the tall Spartina marsh, but there was a 50% inhibition in nitrogen fixation in the short Spartina marsh. On the other hand, sodium nitrate inhibited nitrogen fixation almost 100% at 25 μg/ml in both soil environments. Amino nitrogen (25 to 100 μg/ml) had little or no effect on nitrogen fixation. The results indicate that the N2 fixers in the tall Spartina marsh were physiologically more responsive to nutrient addition than those in the short Spartina marsh. This difference in the two populations may be related to the difference in daily tidal influence in the respective areas and thus provide another explanation for the enhanced S. alterniflora production in the creek bank soil system.  相似文献   

4.
The nitrogen status of endosymbiotic dinoflagellates (zooxanthellae) in the temperate coral Plesiastrea versipora (Lamarck) was determined by measuring the extent to which ammonium (40 μM NH4+) enhanced the rate of zooxanthellar dark carbon fixation above that seen in filtered seawater (FSW) alone; the enhancement ratio was expressed as [dark NH4+ rate/dark FSW rate]. VD′/VL, a further index of nitrogen status, was also calculated where VD′ = [dark NH4+ rate − dark FSW rate] and VL = rate of carbon fixation in the light. When corals were starved for 2-8 weeks, zooxanthellar nitrogen deficiency became apparent at ≥ 4 weeks, with NH4+/FSW and VD′/VL averaging up to 2.08 and 0.0061, respectively. A decrease in light-saturated photosynthesis per zooxanthella also occurred, with the photosynthetic rate after 4-6 weeks being just 81% of that seen prior to starvation. In comparison, when corals were fed 5 times per week for 8 weeks the addition of ammonium had little effect, indicating nitrogen sufficiency; NH4+/FSW and VD′/VL were 1.03 and 0.0003, respectively. Photosynthetic rates of zooxanthellae from well-fed corals were up to 1.7 times greater than those of zooxanthellae from starved corals. The nitrogen status of zooxanthellae from corals in the field exhibited seasonal differences. Autumn samples were nitrogen sufficient, with NH4+/FSW = 1.003 and VD′/VL = 0.0001. In contrast, a small degree of nitrogen deficiency was seen in winter and spring, when NH4+/FSW averaged 1.075 and 1.249, and VD′/VL averaged 0.0013 and 0.0014, respectively. The greatest degree of nitrogen deficiency was observed in summer, when NH4+/FSW averaged 1.318 and VD′/VL averaged 0.0036. Given the clear links between food supply and nitrogen status seen under experimental conditions, and the likelihood that the zooxanthellae are also able to take up nutrients directly from the seawater, the fluctuations in nitrogen status may reflect temporal fluctuations in seawater nutrient concentrations and plankton abundance. The nutrient status of these temperate zooxanthellae in the field is in contrast to the marked nitrogen deficiency seen in zooxanthellae from nutrient-poor coral reef waters, and raises the possibility that temperate zooxanthellae can store nitrogen for use when exogenous nutrients and food are less readily available. This, in turn, may contribute to the considerable stability of temperate zooxanthellar populations under highly variable environmental conditions.  相似文献   

5.
The origin of cell nitrogen and amino acid nitrogen during growth of ruminal cellulolytic bacteria in different growth media was investigated by using 15NH3. At high concentrations of peptides (Trypticase, 10 g/liter) and amino acids (15.5 g/liter), significant amounts of cell nitrogen of Fibrobacter succinogenes BL2 (51%), Ruminococcus flavefaciens 17 (43%), and Ruminococcus albus SY3 (46%) were derived from non-NH3-N. With peptides at 1 g/liter, a mean of 80% of cell nitrogen was from NH3. More cell nitrogen was formed from NH3 during growth on cellobiose compared with growth on cellulose in all media. Phenylalanine was essential for F. succinogenes, and its 15N enrichment declined more than that of other amino acids in all species when amino acids were added to the medium.  相似文献   

6.
The goal of this study was to investigate whether increased nitrogen use efficiency found in Populus nigra L. (Jean Pourtet) under elevated CO2 would correlate with changes in the production of carbon-based secondary compounds (CBSCs). Using Free-Air CO2 Enrichment (FACE) technology, a poplar plantation was exposed to either ambient (about 370 μmol mol−1 CO2) or elevated (about 550 μmol mol−1 CO2) [CO2] for 5 years. After three growing seasons, the plantation was coppiced and half of the experimental plots were fertilized with nitrogen. CBSCs, total nitrogen and lignin-bound nitrogen were quantified in secondary sprouts in seasons of active growth and dormancy during 2 years after coppicing. Neither elevated CO2 nor nitrogen fertilisation alone or in combination influenced lignin concentrations in wood. Soluble phenolics and soluble proteins in wood decreased slightly in response to elevated CO2. Higher nitrogen supply stimulated formation of CBSCs and increased protein concentrations. Lignin-bound nitrogen in wood ranged from 0.37–1.01 mg N g−1 dry mass accounting for 17–26% of total nitrogen in wood, thus, forming a sizeable nitrogen fraction resistant to chemical degradation. The concentration of this nitrogen fraction was significantly decreased by elevated CO2, increased in response to nitrogen fertilisation and showed a significant CO2 × fertilisation interaction. Seasonal changes markedly affected the internal nitrogen pools. Soluble proteins in wood were 52–143% higher in the dormant than in the growth season. Positive correlations existed between the biosynthesis of proteins and CBSCs. The limited responses to elevated CO2 and nitrogen fertilisation indicate that growth and defence are well orchestrated in P. nigra and that changes in the balance of both resources—nitrogen and C—have only marginal effects on wood chemistry. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Mature-embryo derived primary calli of the basmati rice (Oryza sativa L.) cv Karnal Local showed significant enhancement in in vitro green-plantlet regeneration efficiency through modification of nitrogen content of the callusing medium. Using KNO3 as the source of nitrate nitrogen and (NH4)2SO4 as the source of ammonium nitrogen, forty-five media combinations involving 9 levels of KNO3 (0–40 mM) and 5 concentrations (0–6.5 mM) of (NH4)2SO4 were examined. The highest frequency of plantlet regeneration (100%) and a maximum number of green-plantlets (~ 7) per embryo-derived primary callus was obtained in calli derived from the medium having 35 mM KNO3 and 5 mM (NH4)2SO4. Higher concentrations of KNO3 and/or (NH4)2SO4 showed a decline in the regeneration efficiency. It was also observed that although the nitrogen content of the callus induction medium had a profound effect on the regenerability of the callus, the nitrogen composition of the regeneration medium also affected it significantly.  相似文献   

8.
In grasslands, sustained nitrogen loading would increase the proportion of assimilated carbon allocated to shoot growth (A shoot), because it would decrease allocation to roots and also encourage the contribution of species with inherently high A shoot. However, in situ measurements of carbon allocation are scarce. Therefore, it is unclear to what extent species that coexist in grasslands actually differ in their allocation strategy or in their response to nitrogen. We used a mobile facility to perform steady-state 13C-labeling of field stands to quantify, in winter and autumn, the daily relative photosynthesis rate (RPR~tracer assimilated over one light-period) and A shoot (~tracer remaining in shoots after a 100 degree days chase period) in four individual species with contrasting morpho-physiological characteristics coexisting in a temperate grassland of Argentina, either fertilized or not with nitrogen, and either cut intermittently or grazed continuously. Plasticity in response to nitrogen was substantial in most species, as indicated by positive correlations between A shoot and shoot nitrogen concentration. There was a notable interspecific difference: productive species with higher RPR, enhanced by fertilization and characterized by faster leaf turnover rate, allocated ~20 % less of the assimilated carbon to shoot growth than species of lower productivity (and quality) characterized by longer leaf life spans and phyllochrons. These results imply that, opposite to the expected response, sustained nitrogen loading would change little the A shoot of grassland communities if increases at the species-level are offset by decreases associated with replacement of ‘low RPR-high A shoot’ species by ‘high RPR-low A shoot’ species.  相似文献   

9.
The effect of oxygen on N2-dependent growth of two Azospirillum strains and two diazotrophic rods closely associated with roots of Kallar grass (Leptochloa fusca) was studied. To enable precise comparison, bacteria were grown in dissolved-oxygen-controlled batch and continuous cultures. Steady states were obtained from about 1 to 30 μM O2, some of them being carbon limited. All strains needed a minimum amount of oxygen for N2-dependent growth. Nitrogen contents between 10 and 13% of cell dry weight were observed. The response of steady-state cultures to increasing O2 concentrations suggested that carbon limitation shifted to internal nitrogen limitation when N2 fixation became so low that the bacteria could no longer meet their requirements for fixed nitrogen. For Azospirillum lipoferum Rp5, increase of the dilution rate resulted in decreased N2 fixation in steady-state cultures with internal nitrogen limitation. Oxygen tolerance was found to be strain specific in A. lipoferum with strain Sp59b as a reference organism. Oxygen tolerance of strains from Kallar grass was found to be root zone specific. A. halopraeferens Au 4 and A. lipoferum Rp5, predominating on the rhizoplane of Kallar grass, and strains H6a2 and BH72, predominating in the endorhizosphere, differed in their oxygen tolerance profiles. Strains H6a2 and BH72 still grew and fixed nitrogen in steady-state cultures at O2 concentrations exceeding those which absolutely inhibited nitrogen fixation of both Azospirillum strains. It is proposed that root-zone-specific oxygen tolerance reflects an adaptation of the isolates to the microenvironments provided by the host plant.  相似文献   

10.
The paper mainly studied the short-term influences of experimental warming, nitrogen addition, and their combination on physiological performance of P. tabulaeformis seedlings. Free air temperature increase system of infrared heaters was used to raise monthly average soil and air temperature by 2.6 and 2.1?°C above the ambient. NH4NO3 solution was added for a total equivalent to 25?g?N?m?2?a?1. Experimental warming and nitrogen addition induced a significant increase in leaf nitrogen concentration, A max, ??, antioxidant enzymes activities, ASA and free proline contents, but both of them sharply decreased AOS and MDA level. Interestingly, the interaction of warming and nitrogen fertilization further improved leaf nitrogen concentration, A max, ??, and antioxidant compounds accumulation, and also resulted in lower rate of O2 ? production than either single warming or fertilization. Obviously, the beneficial effects of warming and N fertilization alone on leaf physiology of P. tabulaeformis seedlings were magnified by the combination.  相似文献   

11.
Needle nitrogen partitioning and photosynthesis of Norway spruce were studied in a forest chronosequence in Järvselja Experimental Forest, Estonia. Current- and previous-year shoots were sampled from upper and lower canopy positions in four stands, ranging in age from 13 to 82 years. A/c i curves were determined to obtain maximum carboxylation rate (V cmax) and maximum rate of electron transport (J max), whereas needle nitrogen partitioning into carboxylation (P R), bioenergetics associated with electron transport (P B) and thylakoid light harvesting components (P L) was calculated from the values of V cmax, J max and leaf chlorophyll concentration. The greatest changes in studied needle characteristics took place between tree ages of 13 and 26 years, and this pattern was independent of needle age and canopy position. Needle mass per projected area (LMA) was lowest in the 13-year-old stand and mass-based nitrogen concentration (NM) was generally highest in that stand. The values of LMA were significantly higher and those of NM lower in the 26-year-old stand. Mass-based V cmax and J max were highest in the 13-year-old stand. Area-based photosynthetic capacity was independent of tree age. The proportion of photosynthetic nitrogen (P R, P B and P L) was highest and that of non-photosynthetic nitrogen lowest in the 13-year-old stand. Current-year needles had lower LMA and P L, but higher photosynthetic capacity compared to 1-year-old foliage. Needles from lower canopy positions exhibited lower LMA, area-based nitrogen concentration and photosynthetic capacity than needles from upper canopy. The period of substantial reductions in needle photosynthetic capacity and changes in nitrogen partitioning coincides with the onset of reproductive phase during tree ontogeny.  相似文献   

12.
13.
The in vitro ribulose-1,5-bisphosphate (RuBP) carboxylase activity per unit of leaf nitrogen was found to be 30% greater in Triticum aestivum than in T. monococcum. This was due to a higher specific activity of the enzyme from T. aestivum, as the amount of RuBP carboxylase protein per unit of total leaf nitrogen did not differ between the genotypes. The occurrence of higher specific activity of RuBP carboxylase is shown to correlate with possession of the large subunit derived from the B genome of wheat.

Despite the greater RuBP carboxylase activity per unit of leaf nitrogen in T. aestivum, the initial slopes of curves relating rate of CO2 assimilation to intercellular p(CO2) are similar in T. aestivum and T. monococcum for the same nitrogen content per unit leaf area. The similarity of the initial slopes is the result of a greater resistance to CO2 transfer between the intercellular spaces and the site of carboxylation in T. aestivum than in T. monococcum.

  相似文献   

14.
Soybean (Glycine max [L.] Merr.) germplasm, isogenic except for loci controlling male sterility (ms1) and nodulation (rj1), was used to investigate the effects of reproductive tissue development and source of nitrogen nutrition on accumulation, transport, and partitioning of nitrogen in a greenhouse experiment. Nodulated plants were supplied nitrogen-free nutrient solution, and nonnodulated plants were supplied nutrient solution containing 20 millimolar KNO3. Plants were sampled from flowering until maturity (77 to 147 days after transplanting).

Accumulation rates of nitrogen in whole plants during reproductive growth were not significantly different among the four plant types. Nitrogen accumulation in the sterile, nonnodulated plants, however, ceased 2 weeks earlier than in fertile, nonnodulated or fertile and sterile, nodulated plants. This early cessation in nitrogen accumulation resulted in sterile, nonnodulated plants accumulating significantly less whole plant nitrogen by 133 days after transplanting (DAT) than fertile, nonnodulated plants. Thus, changing the site of nitrogen assimilation from nodules (N2-fixing plants) to roots and leaves (NO3-fed plants) resulted in similar whole-plant nitrogen accumulation rates in fertile and sterile plants, despite the absence of seed in the latter.

Leaflet and stem plus petiole tissues of both types of sterile plants had significantly higher nitrogen concentrations after 119 DAT than both types of fertile plants. Significantly higher concentrations and exudation rates of nonureide, reduced-nitrogen in xylem sap of sterile than of fertile plants after 105 DAT were observed. These latter results indicated possible cycling of nonureide, reduced-nitrogen from the downward phloem translocation stream to the upward xylem translocation stream in roots of sterile plants. Collectively, these results suggest a lack of sinks for nitrogen utilization in the shoots of sterile plants. Hence, comparison of nitrogen accumulation rates for sterile and fertile plants does not provide a definitive test of the hypothesis that reproductive tissue development limits photosynthate availability for support of N2 fixation and nitrate assimilation in determinate soybeans.

Nitrogen assimilation during reproductive growth met a larger proportion of the reproductive-tissue nitrogen requirement of nitrate-dependent plants (73%) than of N2-fixing plants (63%). Hence, vegetative-tissue nitrogen mobilization to reproductive tissue was a more prominent process in N2-fixing than in nitrate-dependent plants. N2-fixing plants partitioned nitrogen to reproductive tissue more efficiently than nitrate-dependent plants as the reproductive tissues of the former and latter contained 65 and 55%, respectively, of the whole-plant nitrogen at the time that nitrogen accumulation in reproductive parts had ceased (133 DAT).

  相似文献   

15.
We studied acclimation patterns in leaf dry mass per area (MA), nitrogen (NA) and chlorophyll (ζA) content per area, and chlorophyll to nitrogen ratio (ζ/N) along vertical light gradients in natural temperate mixed herbaceous canopy and deciduous tree canopy. In the deciduous tree canopy, all leaves are formed at approximately the same time, and the light gradient during the rest of the growing season reflects the differences in light availability during leaf development, whereas in the herbaceous canopy, leaf production continues during most of the growing season and major changes in light conditions occur after leaf maturation. MA and NA increased strongly with increasing current light availability (ID) in the tree canopy. In the herbaceous canopy, MA and NA were generally unrelated to ID. Depending on species, the correlation between chlorophyll content per leaf area (ζA) and ID was positive, negative, or non-significant. Path analyses revealed two opposite effects of ID on the amount of leaf chlorophyll. In the tree canopy, increasing ID enhanced ζA through changes in MA and NA, whereas the direct effect of light was negative in both canopies. The overall correlation network between foliage structural and chemical traits and the relationships with ID were significantly stronger in the tree canopy, suggesting limited re-acclimation potential in the mixed herbaceous canopy. Within-species acclimation patterns reflected the patterns within the main functional types. These data demonstrate that the relationships of current light availability vs. leaf dry mass per area, leaf nitrogen and chlorophyll contents, and chlorophyll to nitrogen ratio differ among multi-species herbaceous canopies and deciduous tree canopies due to contrasting canopy development.  相似文献   

16.
The amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), total chlorophyll (Chl), and total leaf nitrogen were measured in fully expanded, young leaves of wheat (Triticum aestivum L.), rice (Oryza sativa L.), spinach (Spinacia oleracea L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.). In addition, the activities of whole-chain electron transport and carbonic anhydrase were measured. All plants were grown hydroponically at different nitrogen concentrations. Although a greater than proportional increase in Rubisco content relative to leaf nitrogen content and Chl was found with increasing nitrogen supply for rice, spinach, bean, and pea, the ratio of Rubisco to total leaf nitrogen or Chl in wheat was essentially independent of nitrogen treatment. In addition, the ratio of Rubisco to electron transport activities remained constant only in wheat. Nevertheless, gas-exchange analysis showed that the in vivo balance between the capacities of Rubisco and electron transport in wheat, rice, and spinach remained almost constant, irrespective of nitrogen treatment. The in vitro carbonic anhydrase activity in wheat was very low and strongly responsive to increasing nitrogen content. Such a response was not found for the other C3 plants examined, which had 10- to 30-fold higher carbonic anhydrase activity than wheat at any leaf-nitrogen content. These distinctive responses of carbonic anhydrase activity in wheat were discussed in relation to CO2-transfer resistance and the in vivo balance between the capacities of Rubisco and electron transport.  相似文献   

17.
Plants exhibit higher leaf-to-root ratios (L/R) and lower leaf nitrogen content (N area) in low-light than in high-light environments, but an ecological significance of this trait has not been explained from a whole-plant perspective. This study aimed to theoretically and experimentally demonstrate whether these observed L/R and N area are explained as optimal biomass allocation that maximize whole-plant relative growth rate (RGR). We developed a model which predicts optimal L/R and N area in response to nitrogen and light availability. In the model, net assimilation rate (NAR) was determined by light-photosynthesis curve, light availability measured during experiments, and leaf temperature affecting the photosynthesis and leaf dark respiration rate in high and low-light environments. Two pioneer trees, Morus bombycis and Acer buergerianum, were grown in various light and nitrogen availabilities in an experimental garden and used for parameterizing and testing the model predictions. They were grouped into four treatment groups (relative photosynthetic photon flux density, RPPFD 100% or 10%×nitrogen-rich or nitrogen-poor conditions) and grown in an experimental garden for 60 to 100 days. The model predicted that optimal L/R is higher and N area is lower in low-light than high-light environments when compared in the same soil nitrogen availability. Observed L/R and N area of the two pioneer trees were close to the predicted optimums. From the model predictions and pot experiments, we conclude that the pioneer trees, M. bombycis and A. buergerianum, regulated L/R and N area to maximize RGR in response to nitrogen and light availability.  相似文献   

18.
When the fungus Gibberella fujikuroi ATCC 12616 was grown in fermentor cultures, both intracellular kaurene biosynthetic activities and extracellular GA3 accumulation reached high levels when exogenous nitrogen was depleted in the culture. Similar patterns were exhibited by several nonrelated enzymatic activities, such as formamidase and urease, suggesting that all are subject to nitrogen regulation. The behavior of the enzymes involved in nitrogen assimilation (glutamine synthetase, glutamate dehydrogenase, and glutamate synthase) during fungal growth in different nitrogen sources suggests that glutamine is the final product of nitrogen assimilation in G. fujikuroi. When ammonium or glutamine was added to hormone-producing cultures, extracellular GA3 did not accumulate. However, when the conversion of ammonium into glutamine was inhibited by L-methionine-DL-sulfoximine, only glutamine maintained this effect. These results suggest that glutamine may well be the metabolite effector in nitrogen repression of GA3 synthesis, as well as in other nonrelated enzymatic activities in G. fujikuroi.  相似文献   

19.
A Comparison of Dark Respiration between C(3) and C(4) Plants   总被引:2,自引:2,他引:0       下载免费PDF全文
Byrd GT  Sage RF  Brown RH 《Plant physiology》1992,100(1):191-198
Lower respiratory costs were hypothesized as providing an additional benefit in C4 plants compared to C3 plants due to less investment in proteins in C4 leaves. Therefore, photosynthesis and dark respiration of mature leaves were compared between a number of C4 and C3 species. Although photosynthetic rates were generally greater in C4 when compared to C3 species, no differences were found in dark respiration rates of individual leaves at either the beginning or after 16 h of the dark period. The effects of nitrogen on photosynthesis and respiration of individual leaves and whole plants were also investigated in two species that occupy similar habitats, Amaranthus retroflexus (C4) and Chenopodium album (C3). For mature leaves of both species, there was no relationship between leaf nitrogen and leaf respiration, with leaves of both species exhibiting a similar rate of decline after 16 h of darkness. In contrast, leaf photosynthesis increased with increasing leaf nitrogen in both species, with the C4 species displaying a greater photosynthetic response to leaf nitrogen. For whole plants of both species grown at different nitrogen levels, there was a clear linear relationship between net CO2 uptake and CO2 efflux in the dark. The dependence of nightly CO2 efflux on CO2 uptake was similar for both species, although the response of CO2 uptake to leaf nitrogen was much steeper in the C4 species, Amaranthus retroflexus. Rates of growth and maintenance respiration by whole plants of both species were similar, with both species displaying higher rates at higher leaf nitrogen. There were no significant differences in leaf or whole plant maintenance respiration between species at any temperature between 18 and 42°C. The data suggest no obvious differences in respiratory costs in C4 and C3 plants.  相似文献   

20.
A mutant strain of Cellulomonas sp. CS1-17 was compared with Cellulomonas gelida 2480 as the cellulolytic component of a mixed culture which was responsible for the breakdown of wheat straw to support asymbiotic nitrogen fixation by Azospirillum brasilense Sp7 (ATCC 29145). Cellulomonas sp. strain CSI-17 was more efficient than was C. gelida in cellulose breakdown at lower oxygen concentrations and, in mixed culture with A. brasilense, it supported higher nitrogenase activity (C2H2 reduction) and nitrogen fixation with straw as the carbon source. Based on gravimetric determinations of straw breakdown and total N determinations, the efficiency of nitrogen fixation was 72 and 63 mg of N per g of straw utilized for the mixtures containing Cellulomonas sp. and C. gelida, respectively. Both Cellulomonas spp. and Azospirillum spp. exhibited a wide range of pH tolerance. When introduced into sterilized soil, the Cellulomonas sp.-Azospirillum brasilense association was more effective in nitrogen fixation at a pH of 7.0 than at the native soil pH (5.6). This was also true of the indigenous diazotrophic microflora of this soil. The potential implications of this work to the field situation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号