首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Berry diameter was monitored during dry-down and rewatering cycles and pressurization of the root system of Vitis vinifera (cv. Merlot) and Vitis labruscana (cv. Concord) to test changes in xylem functionality during grape ripening. Prior to veraison (onset of ripening), berries maintained their size under declining soil moisture until the plants had used 80% of the transpirable soil water, began to shrink thereafter, and recovered rapidly after rewatering. By contrast, berry diameter declined slowly but steadily during post-veraison water stress and did not recover after rewatering; irrigation merely prevented further shrinking. Preconditioning vines with a period of water stress after flowering did not influence the berries' reaction to subsequent changes in transpirable soil water. Pressurizing the root system led to concomitant changes in berry diameter only prior to veraison, although some post-veraison Concord, but not Merlot, berries cracked under root pressurization. The xylem-mobile dye basic fuchsin, infused via the shoot base, moved throughout the berry vasculature before veraison, but became gradually confined to the brush area during ripening. When the dye was infused through the stylar end of attached berries, it readily moved back to the plant both before and after veraison. Our work demonstrated that berry-xylem conduits retain their capacity for water and solute transport during ripening. It is proposed here that apoplastic phloem unloading coupled with solute accumulation in the berry apoplast may be responsible for the decline in xylem water influx into ripening grape berries. Instead, the xylem may serve to recycle excess phloem water back to the shoot.  相似文献   

2.
During grape berry (Vitis vinifera L.) ripening, sucrose transported from the leaves is accumulated in the berry vacuoles as glucose and fructose. To study the involvement of invertase in grape berry ripening, we have cloned two cDNAs (GIN1 and GIN2) from berries. The cDNAs encode translation products that are 62% identical to each other and both appear to be vacuolar forms of invertase. Both genes are expressed in a variety of tissues, including berries, leaves, roots, seeds, and flowers, but the two genes have distinct patterns of expression. In grape berries, hexose accumulation began 8 weeks postflowering and continued until the fruit was ripe at 16 weeks. Invertase activity increased from flowering, was maximal 8 weeks postflowering, and remained constant on a per berry basis throughout ripening. Expression of GIN1 and GIN2 in berries, which was high early in berry development, declined greatly at the commencement of hexose accumulation. The results suggest that although vacuolar invertases are involved in hexose accumulation in grape berries, the expression of the genes and the synthesis of the enzymes precedes the onset of hexose accumulation by some weeks, so other mechanisms must be involved in regulating this process.  相似文献   

3.
Grape berries (Vitis vinifera L fruit) exhibit a double-sigmoid pattern of development that results from two successive periods of vacuolar swelling during which the nature of accumulated solutes changes significantly. Throughout the first period, called green or herbaceous stage, berries accumulate high levels of organic acids, mainly malate and tartrate. At the cellular level fruit acidity comprises both metabolism and vacuolar storage. Malic acid compartmentation is critical for optimal functioning of cytosolic enzymes. Therefore, the identification and characterization of the carriers involved in malate transport across sub-cellular compartments is of great importance. The decrease in acid content during grape berry ripening has been mainly associated to mitochondrial malate oxidation. However, no Vitis vinifera mitochondrial carrier involved in malate transport has been reported to date. Here we describe the identification of three V. vinifera mitochondrial dicarboxylate/tricarboxylate carriers (VvDTC1-3) putatively involved in mitochondrial malate, citrate and other di/tricarboxylates transport. The three VvDTCs are very similar, sharing a percentage of identical residues of at least 83 %. Expression analysis of the encoding VvDTC genes in grape berries shows that they are differentially regulated exhibiting a developmental pattern of expression. The simultaneous high expression of both VvDTC2 and VvDTC3 in grape berry mesocarp close to the onset of ripening suggests that these carriers might be involved in the transport of malate into mitochondria.  相似文献   

4.
We tested the common assumption that fleshy fruits become dependent on phloem water supply because xylem inflow declines at the onset of ripening. Using two distinct grape genotypes exposed to drought stress, we found that a sink‐driven rise in phloem inflow at the beginning of ripening was sufficient to reverse drought‐induced berry shrinkage. Rewatering accelerated berry growth and sugar accumulation concurrently with leaf photosynthetic recovery. Interrupting phloem flow through the peduncle prevented the increase in berry growth after rewatering, but interrupting xylem flow did not. Nevertheless, xylem flow in ripening berries, but not berry size, remained responsive to root or shoot pressurization. A mass balance analysis on ripening berries sampled in the field suggested that phloem water inflow may exceed growth and transpiration water demands. Collecting apoplastic sap from ripening berries showed that osmotic pressure increased at distinct rates in berry vacuoles and apoplast. Our results indicate that the decrease in xylem inflow at the onset of ripening may be a consequence of the sink‐driven increase in phloem inflow. We propose a conceptual model in which surplus phloem water bypasses the fruit cells and partly evaporates from the berry surface and partly moves apoplastically to the xylem for outflow.  相似文献   

5.
Wada H  Shackel KA  Matthews MA 《Planta》2008,227(6):1351-1361
In Vitis vinifera L. berries, the onset of ripening (known as “veraison”) involves loss of turgor (P) in the mesocarp cells. We hypothesized that P loss was associated with an accumulation of apoplastic solutes in mesocarp tissue prior to veraison. Apoplastic sap was extracted from the mesocarp by centrifugation at the appropriate gravity to measure the apoplast solute potential (ΨsA) and assay the sap composition. The ΨsA was about −0.2 MPa early in development, decreased about 1.0 MPa by veraison, and continued to decrease during ripening to almost −4.0 MPa by the end of berry development. Potassium, malate, tartrate, proline, glucose, fructose, and sucrose were quantified in apoplastic sap. The calculated contribution of these solutes was about 50% of the total ΨsA preveraison, but increased to about 75% as fructose and glucose accumulated during ripening. The contribution of the estimated matric potential to apoplast water potential decreased during development and was only 1.5% postveraison. We conclude that high concentrations of solutes accumulated in the mesocarp apoplast prior to veraison, and that P loss was a direct result of decreased ΨsA. Because ΨsA decreased before veraison, our findings suggest that apoplast solutes play an important role in the events of cellular metabolism that lead to the onset of ripening.  相似文献   

6.
A number of studies have shown a transition from a primarily xylem to a primarily phloem flow of water as fleshy fruits develop, and the current hypothesis to explain this transition, particularly in grape (Vitis vinifera L.) berries, is that the vascular tissue (tracheids) become non-functional as a result of post-veraison berry growth. In most studies, pedicels have been dipped in a vial containing an apoplastic dye, which was taken up into the entire peripheral and axial xylem vasculature of pre-veraison, but not post-veraison berries. The pressure plate/pressure membrane apparatus that is commonly used to study soil moisture characteristics was adapted and the pre- to post-veraison change in xylem functionality in grape berries was re-evaluated by establishing a hydrostatic (tension) gradient between the pedicel and a cut surface at the stylar end of the berry. Under the influence of this applied hydrostatic gradient, movement of the apoplastic tracer dye, basic fuchsin, was found in the pedicel and throughout the axial and peripheral xylem of the berry mesocarp. A similar movement of dye could be obtained by simply adjoining the stylar cut surface to a dry, hydrophilic wicking material. Since both pre- and post-veraison berries hydrate when the pedicel is dipped in water, it is hypothesized that the absence of dye movement into the vasculature of post-veraison berries indicates not a loss of xylem function, but rather the loss of an appropriate driving force (hydrostatic gradient) in the berry apoplast. Based on this hypothesis, and the substantial decrease in xylem flows that occur in intact grape berries at veraison, it is suggested that there may be significant changes in the pattern of solute partitioning between the fruit symplast and apoplast at veraison. It is further suggested that diurnal patterns in symplast/apoplast solute partitioning in grapes and other fleshy fruit, may explain the observed minimal xylem contribution to the water budgets of these fruits.  相似文献   

7.
An in vivo experimental system-called the 'berry-cup' technique-was developed to study sugar phloem unloading and the accumulation of sugar in ripening grape berries. The berry-cup system consists of a single peeled grape berry immersed in a buffer solution in a cup prepared from a polypropylene syringe. A small cross-incision (2 mm in length) is made on the stylar remnant of a berry during its ripening phase, the skin of the berry then being easily peeled off, exposing the dorsal vascular bundles without damaging either these or the pulp tissue of the berry. The sites of sugar phloem unloading are thus made directly accessible and may be regulated by the buffer solution. In addition, the unloaded photoassimilates are easily transported into the buffer solution in the berry-cup. With the berry-cup technique, it takes 60 min to purge the sugar already present in the apoplast, after which the amount of sugar in the buffer solution is a direct measure of the sugar unloading from the grape berry phloem. The optimum times for sampling were 20 or 30 min, depending on the type of experiment. Sugar phloem unloading was significantly inhibited by the inclusion of either 7.5 mm NaF or 2.5 mm PCMB in the buffer solution. This study indicates that sugar phloem unloading in ripening grape berries is via the apoplastic network and that the process requires the input of energy. The system was shown to be an appropriate experimental system with which to study sugar phloem unloading in ripening grape berries, and was applied successfully to the study of berry sugar unloaded from grapevines subjected to water stress. The results showed that water deficiency inhibits sugar unloading in grape berries.  相似文献   

8.
Analysis of apoplastic solutes in the cortex of soybean nodules   总被引:3,自引:0,他引:3  
Various techniques were used to extract solutes from the free space of intact soybean [ Glycine max (L.) Merr.] nodules. A variety of solutes (carbohydrates, amino acids, organic acids, ions) was found, but the major solute obtained with all methods was allantoic acid. Most work was done with a technique involving vacuum infiltration of intact detached nodules with water. This approach provided rapid sampling of the apoplastic solutes, and the results indicated that solutes were not derived from the xylem and phloem of ruptured vascular bundles. Infiltration of intact nodules with Fast Green showed dye penetration only to the barrier in the inner cortex, indicating that infected tissues did not contribute to solute composition. Although allantoic acid was the only ureide which could be detected in solute samples, no evidence was obtained for the presence of allantoinase in the cortical apoplast. The results suggest the transport of allantoic acid by an apoplastic route in nodules or the release of allantoic acid to the cortical apoplast in response to treatments which disrupt ureide export. Calculated values for solute concentrations in the cortical apoplast were in the hundred millimolar range, suggesting that apoplastic solutes may represent a significant osmotic component in the nodule cortex.  相似文献   

9.
Apoplastic pH and ionic conditions exert strong influence on cell wall metabolism of many plant tissues; however, the nature of the apoplastic environment of ripening fruit has been the subject of relatively few studies. In this report, a pressure-bomb technique was used to extract apoplastic fluid from tomato fruit ( Lycopersicon esculentum Mill.) pericarp at several developmental stages. pH and the levels of K+, Na+, Ca2+, Mg2+, Cl and P were determined and compared with the values for the bulk pericarp and locule tissues. The pH of the apoplastic fluid from pericarp tissue decreased from 6.7 in immature and mature-green fruits to 4.4 in fully-ripe fruit. During the same period, the K+ concentration increased from 13 to 37 m M . The levels of Na+ and divalent cations did not change, whereas the anions P and Cl increased in ripe fruit. Ca2+ levels remained relatively constant during ripening at 4–5 m M , concentrations that effectively limit pectin solubilization. The electrical conductivity of the apoplastic liquid increased 3-fold during ripening, whereas osmotically active solutes increased 2-fold. Pressure-treated fruit retained the capacity to ripen. The decline in apoplastic pH and increase in ionic strength during tomato fruit ripening may regulate the activity of cell wall hydrolases. The potential role of apoplastic changes in fruit ripening and softening is discussed.  相似文献   

10.
11.
Resveratrol is a stilbene with well-known health-promoting effects in humans that is produced constitutively or accumulates as a phytoalexin in several plant species including grape (Vitis sp.). Grape berries accumulate stilbenes in the exocarp as cis- and trans-isomers of resveratrol, together with their respective 3-O-monoglucosides. An enzyme glucosylating cis- and trans-resveratrol was purified to apparent homogeneity from Concord (Vitis labrusca) grape berries, and peptide sequencing associated it to an uncharacterized Vitis vinifera full-length clone (TC38971, tigr database). A corresponding gene from Vitis labrusca (VLRSgt) had 98% sequence identity to clone TC38971 and 92% sequence identity to a Vitis viniferap-hydroxybenzoic acid glucosyltransferase that produces glucose esters. The recombinant enzyme was active over a broad pH range (5.5-10), producing glucosides of stilbenes, flavonoids and coumarins at higher pH and glucose esters of several hydroxybenzoic and hydroxycinnamic acids at low pH. Vitis labrusca grape berries accumulated both stilbene glucosides and hydroxycinnamic acid glucose esters, consistent with the bi-functional role of VLRSgt in stilbene and hydroxycinnamic acid modification. While phylogenetic analysis of VLRSgt and other functionally characterized glucosyltransferases places it with other glucose ester-producing enzymes, the present results indicate broader biochemical activities for this class of enzymes.  相似文献   

12.
Grapevine (Vitis vinifera L.) is an economically important fruit crop. Quality-determining grape components, such as sugars, acids, flavours, anthocyanins, tannins, etc., are accumulated during the different grape berry development stages. Thus, correlating the proteomic profiles with the biochemical and physiological changes occurring in grape is of paramount importance to advance the understanding of the berry development and ripening processes. Here, the developmental analysis of V. vinifera cv. Muscat Hamburg berries is reported at protein level, from fruit set to full ripening. A top-down proteomic approach based on differential in-gel electrophoresis (DIGE) followed by tandem mass spectrometry led to identification and quantification of 156 and 61 differentially expressed proteins in green and ripening phases, respectively. Two key points in development, with respect to changes in protein level, were detected: end of green development and beginning of ripening. The profiles of carbohydrate metabolism enzymes were consistent with a net conversion of sucrose to malate during green development. Pyrophosphate-dependent phosphofructokinase is likely to play a key role to allow an unrestricted carbon flow. The well-known change of imported sucrose fate at the beginning of ripening from accumulation of organic acid (malate) to hexoses (glucose and fructose) was well correlated with a switch in abundance between sucrose synthase and soluble acid invertase. The role of the identified proteins is discussed in relation to their biological function, grape berry development, and to quality traits. Another DIGE experiment comparing fully ripe berries from two vintages showed very few spots changing, thus indicating that protein changes detected throughout development are specific.  相似文献   

13.
Findlay, N., Oliver, K. J., Nii, N. and Coombe, B. G. 1987.Solute accumulation by grape pericarp cells. IV. Perfusion ofpericarp apoplast via the pedicel and evidence for xylem malfunctionin ripening berries.—J. exp. Bot. 38: 668–679. 14C-labelled sucrose was applied to freshly-cut pedicels ofexcised unripe and ripening grape berries and let perfuse fordifferent periods; skin and flesh tissues were then extractedand the radioactivity partitioned and measured. Accumulationof radioactivity in a compartmented fraction was greatest inthe skin of unripe berries at the stage when sugar accumulationin vivo was slow. Total radioactivity of parts of berries showedthat activity spread rapidly throughout when the berry was unripebut slowed once ripening commenced. The perfusion of eosin from pedicels was also rapid in unripeberries but in ripe berries it was blocked beyond the pedicelat the outer edge of the 'brush' where the pericarp is aerenchymatousand tanniniferous. The failure of movement through the vascularbundles beyond the brush could not be associated with the developmentof tyloses in tracheary elements; it appeared to be associatedwith stretched tracheids in the network of dorsal vascular bundlesevidenced by irregularities in the spacing of wall thickeningsand breaks in the bounding membranes. This physical disruptionof the tracheary elements of the vascular bundles occurred whenthe berry expands suddenly, about a week after the inceptionof rapid sugar accumulation. The different rates of perfusion limit the utility of the pedicelroute for studies of compartmentation and metabolism in grapeberries at different developmental stages. Nevertheless, therapid compartmentation of radioactivity after pedicel perfusionof unripe skin with l4C-labelled sucrose discounts the hypothesisthat the slow rate in skin in situ is due to an apoplastic inhibitor. Key words: Grape berry, accumulation, xylem malfunction  相似文献   

14.
Fluorescein diacetate (FDA) was used as a vital stain to assaymembrane integrity (cell viability) in mesocarp tissue of thedeveloping grape (Vitis vinifera L.) berry in order to testthe hypothesis that there is a substantial loss of compartmentationin these cells during ripening. This technique was also usedto determine whether loss of viability was associated with symptomsof a ripening disorder known as berry shrivel. FDA fluorescenceof berry cells was rapid, bright, and stable for over 1 h atroom temperature. Confocal microscopy detected FDA stainingthrough two to three intact surface cell layers (300–400µm) of bisected berries, and showed that the fluorescencewas confined to the cytoplasm, indicating the maintenance ofintegrity in both cytoplasmic as well as vacuolar membranes,and the presence of active cytoplasmic esterases. FDA clearlydiscriminated between living cells and freeze-killed cells,and exhibited little, if any, non-specific staining. Propidiumiodide and DAPI, both widely used to assess cell viability,were unable to discriminate between living and freeze-killedcells, and did not specifically stain the nuclei of dead cells.For normally developing berries under field conditions therewas no evidence of viability loss until about 40 d after veraison,and the majority (80%) of mesocarp cells remained viable pastcommercial harvest (26 °Brix). These results are inconsistentwith current models of grape berry development which hypothesizethat veraison is associated with a general loss of compartmentationin mesocarp cells. The observed viability loss was primarilyin the locule area around the seeds, suggesting that a localizedloss of viability and compartmentation may occur as part ofnormal fruit development. The cell viability of berry shrivel-affectedberries was similar to that of normally developing berries untilthe onset of visible symptoms (i.e. shrivelling), at which timeviability declined in visibly shrivelled berries. Berries withextensive shrivelling exhibited very low cell viability (15%). Key words: Apoplast, berry shrivel, compartmentation, DAPI, FDA, fluorescence, fruit ripening, locule, propidium iodide Received 19 September 2007; Revised 16 December 2007 Accepted 26 December 2007  相似文献   

15.
A concept is suggested, which supposes that assimilates are transferred within the plant downward through phloem sieve tubes and, after entering the stem apoplast, are carried up with the ascending flow of transpiration water. After entering the apoplast of fully expanded leaves, these solutes are reexported through the phloem. Thus, a common pool of assimilates with uniform concentration is formed in the plant apoplast. According to this concept, the mechanism of assimilate demand represents a response of photosynthetic apparatus to changes in the apoplastic level of metabolites consumed by sink organs. The ratios of labeled photoassimilates differ between the apoplast and mesophyll cells. Most of the apoplastic labeled carbon is contained in sucrose, less in amino acids, and even less in hexoses. The 14C-labeling of amino acids increases and the sucrose/hexose labeling ratio decreased under conditions of enhanced nitrate supply. The well-known effect of relative inhibition of assimilate export from leaves under conditions of enhanced nitrogen supply is explained by an enhanced hydrolysis of apoplast-derived sucrose due to the increase in invertase activity, rather than by diversion of primary photosynthetic products from sucrose synthesis to other pathways required for activated growth processes in leaves. This notion is based on observations that the sucrose/hexose ratio is reduced to a greater extent in the apoplast than in the symplast. The last assumption was supported by data obtained after artificial changes in the apoplastic pH. In these experiments intact plants were placed in the atmosphere of NH3 or HCl vapors, which induced opposite changes in relative content of labeled assimilates in the apoplast and in the photosynthetic rate.  相似文献   

16.
Summary Usual immersion protocols in aldehyde solutions fail to fully preserve the fine structure of both exocarp and mesocarp cells of grape berries, especially for theveraison (onset of ripening) and post-veraison stages. In exocarp cells, fixative diffusion is hampered by the thick polysaccharide cell walls. In mesocarp cells, plasma membrane and tonoplast are disrupted before aldehyde crosslinking occurs, owing to the high osmotic pressure and cell wall texture. The fixative was therefore injected under pressure as small droplets in the outer and inner parts of the fruit, with limited changes in the steady-state organization of fruit tissues. Compared to a selective range of immersion protocols, a striking improvement in cell preservation was observed for all berry tissues, allowing new information on various compartments of grape berry cells. The preservation of organ integrity and local concentration of aldehyde molecules are the most critical parameters of improved fixation. This technique may be applicable to a large array of fleshy fruits containing mainly cells comprising a high volumetric proportion of vacuoles accumulating large amounts of organic acids and sugars and bounded by thick-walled exocarp cells.  相似文献   

17.
18.
19.
20.
The apoplast of developing soybean (Glycine max cv Hodgson) embryos and seed coats was analyzed for sucrose, amino acids, ureides, nitrate, and ammonia. The apoplast concentration of amino acids and nitrate peaked during the most rapid stage of seed filling and declined sharply as the seed attained its maximum dry weight. Amino acids and nitrate accounted for 80 to 95% of the total nitrogen, with allantoin and allantoic acid either absent or present in only very small amounts. Aspartate, asparagine, glutamate, glutamine, serine, alanine, and γ-aminobutyric acid were the major amino acids, accounting for over 70% of the total amino acids present. There was a nearly quantitative conversion of glutamine to glutamate between the seed coat and embryo, most likely resulting from the activity of glutamate synthase found to be present in the seed coat tissue. This processing of glutamine suggests a partly symplastic route for solutes moving from the site of phloem unloading in the seed coat to the embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号