首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potato virus Y (PVY) strains are transmitted by different aphid species in a non‐persistent, non‐circulative manner. Green peach aphid (GPA), Myzus persicae Sulzer, is the most efficient vector in laboratory studies, but potato aphid (PA), Macrosiphum euphorbiae Thomas (both Hemiptera: Aphididae, Macrosiphini), and bird cherry‐oat aphid (BCOA), Rhopalosiphum padi L. (Hemiptera: Aphididae, Aphidini), also contribute to PVY transmission. Studies were conducted with GPA, PA, and BCOA to assess PVY transmission efficiency for various isolates of the same strain. Treatments included three PVY strains (PVYO, PVYN:O, PVYNTN) and two isolates of each strain (Oz and NY090031 for PVYO; Alt and NY090004 for PVYN:O; N4 and NY090029 for PVYNTN), using each of three aphid species as well as a sham inoculation. Virus‐free tissue‐cultured plantlets of potato cv. Russet Burbank were used as virus source and recipient plants. Five weeks post inoculation, recipient plants were tested with quantitative DAS‐ELISA to assess infection percentage and virus titer. ELISA‐positive recipient plants were assayed with RT‐PCR to confirm presence of the expected strains. Transmission efficiency (percentage infection of plants) was highest for GPA, intermediate for BCOA, and lowest for PA. For all aphid species, transmission efficiency did not differ significantly between isolates within each strain. No correlations were found among source plant titer, infection percentage, and recipient plant titer. For both GPA and BCOA, isolates of PVYNTN were transmitted with greatest efficiency followed by isolates of PVYO and PVYN:O, which might help explain the increasing prevalence of necrotic strains in potato‐growing regions. Bird cherry‐oat aphid transmitted PVY with higher efficiency than previously reported, suggesting that this species is more important to PVY epidemiology than has been considered.  相似文献   

2.
The study was carried out to investigate the ability of three aphids, Myzus persicae, Aphis gossypii and Aphis spiraecola, to acquire and retain the Potato Virus Y (PVY) isolate, PVYNTN. Tobacco plants, Nicotiana tabacum var. Xanthi, were used as test plant for the virus inoculation and aphid acquisition. The serological test double-antibody sandwich enzyme-linked immunosorbent assay was applied for virus detection on the test plants and aphids. Furthermore, virus retention by aphids was also assessed using a monoclonal anti-PVYN. Although a duration of 2 min was enough for the virus acquisition, the three tested aphids showed different capacities to retain PVYNTN. The retention of PVYNTN was 3 h for M. persicae and A. spiraecola, and 2 h for A. gossypii. This study provides basic information of the virus retention by potato-colonizing aphid species, which may increase our understanding of PVY epidemiology in Tunisia.  相似文献   

3.
Potato virus Y (PVY, genus Potyvirus, family Potyviridae) causes high economic losses worldwide, especially in the production of seed potatoes (Solanum tuberosum). PVY control systems rely on measuring virus pressure and vector pressure in the field. Calculation of the vector pressure is based on the relative efficiency factors (REFs) of aphid species. These REFs express the transmission efficiency of aphid species in relation to the transmission efficiency of Myzus persicae, the most efficient vector of PVY. In this paper, we report on the determination of aphids' relative transmission efficiency factors (REFs) for isolates of the PVY strains PVYN, PVYNTN and PVYN-Wi. Biotype Mp2 of M. persicae was tested for its transmission efficiency for six PVY isolates (one PVYN, three PVYNTN and two PVYN-Wi isolates) and showed comparable average transmission efficiencies for all isolates. The transmission rate of this biotype for the six PVY isolates was set to 1 and Mp2 was used as an internal control in transmission experiments to determine the REFs of three other biotypes of M. persicae and 16 other aphid species (three biotypes per species when available) for the six PVY isolates. Comparing the calculated REFs for PVYN with the REFs reported in the previous century for PVYN, we observe overall comparable REFs, except for Aphis fabae, Aphis spp., Hyperomyzus lactucae, Macrosiphum euphorbiae and Rhopalosiphum padi, which have a lower REF in our experiments, and Aphis frangulae and Phorodon humuli, which have now a higher REF. Comparing the new REFs found for the PVYNTN strains with the new REFs for PVYN, we observe that they are overall comparable, except for A. frangulae (0.17 compared with 0.53) and Schizaphis graminum (0.05 compared with 0.00). Comparing the REFs calculated for PVYN-Wi with those calculated for PVYN, we can observe six aphid species with higher REFs (Acyrthosiphon pisum, A. fabae, Aphis nasturtii, Aphis spp., P. humuli and R. padi). Only the species A. frangulae shows a lower REF for PVYN-Wi compared with the transmission efficiency of PVYN. Three aphid species (Aulacorthum solani, Myzus ascalonicus and S. graminum) for which no REF was determined earlier were found to be capable to transmit PVY and their REFs were determined.  相似文献   

4.
The potato cv. Igor is susceptible to infection with Potato virus Y (PVY) and in Slovenia it has been so severely affected with NTN isolates of PVY causing potato tuber necrotic ringspot disease (PTNRD) that its cultivation has ceased. Plants of cv. Igor were transformed with two transgenes that contained coat protein gene sequence of PVYNTN. Both transgenes used PVY sequence in a sense (+) orientation, one in native translational context (N‐CP), and one with a frame‐shift mutation (FS‐CP). Although most transgenic lines were susceptible to infection with PVYNTN and PVYO, several lines showed resistance that could be classified into two types. Following manual or graft inoculation, plants of partially resistant lines developed some symptoms in foliage and tubers, and virus titre in the foliage, estimated by ELISA, was low or undetectable. In highly resistant (R) lines, symptoms did not develop in foliage and on tubers, and virus could not be detected in foliage by ELISA or infectivity assay. Four lines from 34 tested (two N‐CP and two FS‐CP) were R to PVYNTN and PVYO and one additional line was R to PVYO. When cv. Spey was transformed with the same constructs, they did not confer strong resistance to PVYO.  相似文献   

5.
6.
Interspecific interactions between insect herbivores predominantly involve asymmetric competition. By contrast, facilitation, whereby herbivory by one insect benefits another via induced plant susceptibility, is uncommon. Positive reciprocal interactions between insect herbivores are even rarer. Here, we reveal a novel case of reciprocal feeding facilitation between above-ground aphids (Amphorophora idaei) and root-feeding vine weevil larvae (Otiorhynchus sulcatus), attacking red raspberry (Rubus idaeus). Using two raspberry cultivars with varying resistance to these herbivores, we further demonstrate that feeding facilitation occurred regardless of host plant resistance. This positive reciprocal interaction operates via an, as yet, unreported mechanism. Specifically, the aphid induces compensatory growth, possibly as a prelude to greater resistance/tolerance, whereas the root herbivore causes the plant to abandon this strategy. Both herbivores may ultimately benefit from this facilitative interaction.  相似文献   

7.
Vector-borne plant pathogens often change host traits to manipulate vector behavior in a way that favors their spread. By contrast, infection by opportunistic fungi does not depend on vectors, although damage caused by an herbivore may facilitate infection. Manipulation of hosts and vectors, such as insect herbivores, has not been demonstrated in interactions with fungal pathogens. Herein, we establish a new paradigm for the plant-insect-fungus association in sugarcane. It has long been assumed that Fusarium verticillioides is an opportunistic fungus, where it takes advantage of the openings left by Diatraea saccharalis caterpillar attack to infect the plant. In this work, we show that volatile emissions from F. verticillioides attract D. saccharalis caterpillars. Once they become adults, the fungus is transmitted vertically to their offspring, which continues the cycle by inoculating the fungus into healthy plants. Females not carrying the fungus prefer to lay their eggs on fungus-infected plants than mock plants, while females carrying the fungus prefer to lay their eggs on mock plants than fungus-infected plants. Even though the fungus impacts D. saccharalis sex behavior, larval weight and reproduction rate, most individuals complete their development. Our data demonstrate that the fungus manipulates both the host plant and insect herbivore across life cycle to promote its infection and dissemination.Subject terms: Molecular ecology, Molecular ecology  相似文献   

8.
Glucanases are enzymes regulating the size exclusion limit and permeability of plasmodesmata and play a role in biotic stress. In plant genomes, they are encoded as relatively large gene families divided into four classes. Most studies of plant virus interactions have focused on glucanases from classes I and II. In our study, we have evaluated the role of the β-1,3-glucanase class III (Glu-III) gene in the potato–potato virus YNTN (PVYNTN) interaction and implemented the findings to plant biotechnology application. Potato cultivars Désirée and Santé, which are tolerant and extremely resistant to PVYNTN, respectively, were stably transformed with Agrobacterium tumefaciens harbouring constructs for Glu-III overexpression. Localization of Glu-III protein in patches within the cell wall was determined by tagging the Glu-III protein with green fluorescent protein. Transgenic and non-transgenic plants were challenged with PVYNTN and its multiplication and spreading was followed. Differences in viral spread were observed between transgenic lines overexpressing Glu-III and non-transgenic lines, with stronger and faster viral spread in transgenic Désirée, and some multiplication in transgenic Santé. In addition, the ability of Glu-III to improve in planta protein production after agroinfiltration was tested. The results have shown that Glu-III overexpression enables faster spreading of vectors between cells and better protein production, which could be beneficial in improving in planta protein production system using viral vectors.  相似文献   

9.
The negative cross-talk between induced plant defences against pathogens and arthropod herbivores is exploited by vectors of plant pathogens: a plant challenged by pathogens reduces investment in defences that would otherwise be elicited by herbivores. This negative cross-talk may also be exploited by non-vector herbivores which elicit similar anti-herbivore defences in the plant. We studied how damage by the thrips Frankliniella occidentalis and/or infection with Tomato spotted wilt virus (TSWV) affect the performance of a non-vector arthropod: the two-spotted spider mite Tetranychus urticae, a parenchym feeder just like F. occidentalis. Juvenile survival of spider mites on plants inoculated with TSWV by thrips was higher than on control and on thrips-damaged plants. However, thrips damage did not reduce spider-mite survival as compared to the control, suggesting that the positive effect of TSWV on spider-mite survival is independent of anti-thrips defence. Developmental and oviposition rates were enhanced on plants inoculated with TSWV by thrips and on plants with thrips damage. Therefore, spider mites benefit from TSWV-infection of pepper plants, but also from the response of plants to thrips damage. We suggest that the positive effects of TSWV on this non-vector species cannot be explained exclusively by cross-talk between anti-herbivore and anti-pathogen plant defences.  相似文献   

10.
Zhou  Y.H.  Peng  Y.H.  Lei  J.L.  Zou  L.Y.  Zheng  J.H.  Yu  J.Q. 《Photosynthetica》2004,42(3):417-423
Photosynthetic responses of potato (Solanum tuberosum L. cv. Chunzao) were examined during potato virus Y (PVYNTN) infection. PVYNTN infection significantly reduced net photosynthetic rate and stomatal conductance, but had little influence on intercellular CO2 concentration. As the disease developed, the maximum carboxylation velocity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the maximum electron transport rate contributing to ribulose-1,5-bisphosphate regeneration gradually decreased, followed by substantial reductions in the relative quantum efficiency of photosystem 2 (PS2) electron transport, the efficiency of excitation energy capture by open PS2 reaction centres, and photochemical quenching, but not in sustained photoinhibition. Thus PVYNTN depressed photosynthesis mainly by interfering with the enzymatic processes in the Calvin cycle which resulted in a down-regulation of electron transport.  相似文献   

11.
Understanding the interactions among plants, hemipterans, and ants has provided numerous insights into a range of ecological and evolutionary processes. In these systems, however, studies concerning the isolated direct and indirect effects of aphid colonies on host plant and other herbivores remain rare at best. The aphid Uroleucon erigeronensis forms dense colonies on the apical shoots of the host plant Baccharis dracunculilfolia (Asteraceae). The honeydew produced by these aphids attracts several species of ants that might interfere with other herbivores. Four hypotheses were tested in this system: (1) ants tending aphids reduce the abundance of other herbivores; (2) the effects of ants and aphids upon herbivores differ between chewing and fluid-sucking herbivores; (3) aphids alone reduce the abundance of other herbivores; and (4), the aphid presence negatively affects B. dracunculifolia shoot growth. The hypotheses were evaluated with ant and aphid exclusion experiments, on isolated plant shoots, along six consecutive months. We adjusted linear mixed-effects models for longitudinal data (repeated measures), with nested spatial random effect. The results showed that: (1) herbivore abundance was lower on shoots with aphids than on shoots without aphids, and even lower on shoots with aphids and ants; (2) both chewing and fluid-sucking insects responded similarly to the treatment, and (3) aphid presence affected negatively B. dracunculifolia shoot growth. Thus, since aphids alone changed plant growth and the abundance of insect herbivores, we suggest that the ant–aphid association is important to the organization of the system B. dracunculifolia-herbivorous insects.  相似文献   

12.
Sex is an ecologically important form of genetic variation in dioecious plants, with males and females generally differing in constitutive resistance to herbivores. Yet little is known about sexual dimorphism with respect to induced or indirect defense, or whether sex-based differences are underlain by trade-offs among modes of defense. We compared male and female Valeriana edulis plants for constitutive and induced direct resistance to two herbivores, an early-season caterpillar and a late-season aphid, and for constitutive and induced indirect resistance in terms of abundance of natural enemies and aphid-tending ants. No sexual dimorphism was found in constitutive direct plant resistance, yet the sexes differed for constitutive indirect resistance, with 78?% more natural enemies and 117?% more ants present on females than males. Past feeding damage by caterpillars induced direct and indirect resistance in both males and females, increasing caterpillar development time by 26?% and the abundance of natural enemies by 147?%. Caterpillar feeding did not induce direct resistance with respect to caterpillar final mass or aphid performance. In all cases, there were no interactions between the effects of caterpillar damage and plant sex. In summary, plant sexual dimorphism and induced responses to herbivore damage independently influenced herbivore performance and the composition of arthropod communities at higher trophic levels.  相似文献   

13.
Potato production is one of the most important agricultural sectors, and it is challenged by various detrimental factors, including virus infections. To control losses in potato production, knowledge about the virus—plant interactions is crucial. Here, we investigated the molecular processes in potato plants as a result of Potato virus Y (PVY) infection, the most economically important potato viral pathogen. We performed an integrative study that links changes in the metabolome and gene expression in potato leaves inoculated with the mild PVYN and aggressive PVYNTN isolates, for different times through disease development. At the beginning of infection (1 day post-inoculation), virus-infected plants showed an initial decrease in the concentrations of metabolites connected to sugar and amino-acid metabolism, the TCA cycle, the GABA shunt, ROS scavangers, and phenylpropanoids, relative to the control plants. A pronounced increase in those metabolites was detected at the start of the strong viral multiplication in infected leaves. The alterations in these metabolic pathways were also seen at the gene expression level, as analysed by quantitative PCR. In addition, the systemic response in the metabolome to PVY infection was analysed. Systemic leaves showed a less-pronounced response with fewer metabolites altered, while phenylpropanoid-associated metabolites were strongly accumulated. There was a more rapid onset of accumulation of ROS scavengers in leaves inoculated with PVYN than those inoculated with PVYNTN. This appears to be related to the lower damage observed for leaves of potato infected with the milder PVYN strain, and at least partially explains the differences between the phenotypes observed.  相似文献   

14.
Phytophagous insects have to contend with a wide variation in food quality brought about by a variety of factors intrinsic and extrinsic to the plant. One of the most important factors is infection by plant pathogenic fungi. Necrotrophic and biotrophic plant pathogenic fungi may have contrasting effects on insect herbivores due to their different infection mechanisms and induction of different resistance pathways, although this has been little studied and there has been no study of their combined effect. We studied the effect of the biotrophic rust fungus Uromyces viciae‐fabae (Pers.) Schroet (Basidiomycota: Uredinales: Pucciniaceae) and the necrotrophic fungus Botrytis cinerea Pers. (Ascomycota: Helotiales: Sclerotiniaceae) singly and together on the performance of the aphid Aphis fabae Scopoli (Hemiptera: Aphididae) on Vicia faba (L.) (Fabaceae). Alone, botrytis had an inhibitory effect on individual A. fabae development, survival, and fecundity, whereas rust infection consistently enhanced individual aphids' performance. These effects varied in linear relation to lesion or pustule density. However, whole‐plant infection by either pathogen resulted in a smaller aphid population of smaller aphids than on uninfected plants, indicating a lowering of aphid carrying capacity with infection. When both fungi were applied simultaneously to a leaf they generally cancelled the effect of each other out, resulting in most performance parameters being similar to the controls, although fecundity was reduced. However, sequential plant infection (pathogens applied 5 days apart) led to a 70% decrease in fecundity and 50% reduction in intrinsic rate of increase. The application of rust before botrytis had a greater inhibitory effect on aphids than applying botrytis before rust. Rust infection increased leaf total nitrogen concentration by 30%, whereas infection by botrytis with or without rust led to a 38% decrease. The aphids' responses to the two plant pathogens individually is consistent with the alteration in plant nutrient content by infection and also the induction of different plant defence pathways and the possible cross‐talk between them. This is the first demonstration of the complex effects of the dual infection of a plant by contrasting pathogens on insect herbivores.  相似文献   

15.
Host‐associated differentiation (HAD) is the formation of genetically divergent host‐associated sub‐populations. Evidence of HAD has been reported for multiple insect herbivores to date, but published studies testing more than one herbivore for any given host‐plant species pair is limited to herbivores on goldenrods. This limits the number of pair‐wise comparisons that can be made about insect life‐history traits that might facilitate or inhibit host‐race development in general. Two traits previously proposed to facilitate HAD include endophagy and parthenogenesis. We tested for HAD in two herbivores, a quasi‐endophagous caterpillar and a parthenogenetic aphid, feeding on two closely related species of hickories. We found that the quasi‐endophage is panmictic, whereas the parthenogen exhibits HAD on their sympatric host plants, pecan and water hickory, at a geographic mesoscale. This is an important first step in the characterization of HAD in multiple insect herbivores using North American hickories, a host‐plant system with many shared parthenogens.  相似文献   

16.
Neotyphodium coenophialum, an endophytic fungus that infects shoots of tall fescue (Festuca arundinacea), may protect its host from herbivory through production of alkaloids. Yet, the fungus can also modify plant resource allocation, regrowth dynamics, and drought tolerance, and these changes may also influence herbivores. We tested if N. coenophialum infection interacted with stress (drought or simulated herbivory) to modify plant resistance to insects. We assigned greenhouse plants to one of four treatments: 1) clipping at 3 cm above the soil surface, 2) drought stress during insect bioassays, 3) drought stress prior to insect bioassays, or 4) daily watering. Treatments were crossed with presence or absence of endophyte to give eight treatment combinations, and we assessed the performance of bird cherry‐oat aphid (Rhopalosiphum padi) and fall armyworm (Spodoptera frugiperda) feeding on plants in two separate experiments from each of the eight treatments. Aphids were placed into clip bags on leaf blades and allowed to reproduce parthenogenetically. Plant tissue was fed to third instar fall armyworm caterpillars until they molted into the fifth instar. Developmental time was recorded and larval growth was obtained gravimetrically. We also assessed total protein nitrogen (N) and loline alkaloids in plants.
Total protein N was unaffected by endophyte infection. In contrast, stress influenced total protein N, but its effect varied with endophyte infection. Uninfected plants that were clipped had higher total protein N; this trend was absent in infected plants. Plants in drought stress had lower N, but only if they were infected. Lolines were nearly absent from uninfected plants. In infected plants they tended to be higher in clipped plants. The effect of endophyte infection differed between the two insects: aphid reproduction was reduced by the endophyte, but endophyte infection enhanced caterpillar performance. Both insects were affected by interactions between the endophyte and stress. Aphids were negatively affected by drought stress, but only when feeding on uninfected plants, while caterpillars showed the opposite response, displaying lower performance on drought stressed plants only if they were infected. Aphids reproduced faster on regrowth tissue (following damage by clipping) of uninfected plants, but endophyte infection cancelled this effect. In contrast, performance of caterpillars was not influenced by an interaction between damage and infection. We conclude that N. coenophialum does not provide universal resistance to insects. Endophyte‐mediated resistance varies with insect species and will be a complex function of environmental stress, including drought and prior damage.  相似文献   

17.
Plants are often attacked by many herbivorous insects and pathogens at the same time. Two important suites of responses to attack are mediated by plant hormones, jasmonate and salicylate, which independently provide resistance to herbivorous insects and pathogens, respectively. Several lines of evidence suggest that there is negative cross-talk between the jasmonate and salicylate response pathways. This biochemical link between general plant defense strategies means that deploying defenses against one attacker can positively or negatively affect other attackers. In this study, we tested for cross-talk in the jasmonate and salicylate signaling pathways in a wild tomato and examined the effects of cross-talk on an array of herbivores of cultivated tomato plants. In the wild cultivar, induction of defenses signaled by salicylate reduced biochemical expression of the jasmonate pathway but did not influence performance of S. exigua caterpillars. This indicates that the signal interaction is not a result of agricultural selection. In cultivated tomato, biochemical attenuation of the activity of a defense protein (polyphenol oxidase) in dual-elicited plants resulted in increased of performance of cabbage looper caterpillars, but not thrips, spider mites, hornworm caterpillars or the bacteria Pseudomonas syringae pv. tomato. In addition, we tested the effects of jasmonate-induced resistance on the ability of thrips to vector tomato spotted wilt virus. Although thrips fed less on induced plants, this did not affect the level of disease. Thus, the negative interaction between jasmonate and salicylate signaling had biological consequences for two lepidopteran larvae but not for several other herbivores tested or on the spread of a disease.  相似文献   

18.
The involvement of plant hormones in the very early response of plants to virus infection was studied in potato plants (Solanum tuberosum L.) infected with potato virus YNTN (PVYNTN). Endogenous plant hormones and compounds mediating a stress response (JA-jasmonic acid, OPDA-12-oxo phytodienoic acid, SA-salicylic acid, IAA-indole-3-acetic acid, ABA-abscisic acid) were simultaneously quantified in susceptible cv. Désirée and resistant cv. Santé, one and three hours after inoculation. Of the hormones analysed, only the contents of endogenous JA and its precursor OPDA changed in a way that could be clearly connected with the early resistant response. In comparison to susceptible cultivar, a much more pronounced increase of JA was detected in virus-inoculated leaves of resistant cultivar at both time points. The same trend of changes was also observed with OPDA. However, there were no significant changes of JA and its precursor in upper intact systemic leaves and roots, at either time point. These findings implicate the jasmonate signalling pathway in a very early local but not systemic resistant defence of potato to PVYNTN.  相似文献   

19.
Bt-transgenic cotton has proven to be highly efficient in controlling key lepidopteran pests. One concern with the deployment of Bt cotton varieties is the potential proliferation of non-target pests. We previously showed that Bt cotton contained lower concentrations of insecticidal terpenoids as a result of reduced caterpillar damage, which benefited the aphid Aphis gossypii. It is thus important that non-target herbivores are under biological control in Bt cotton fields. The induction or lack of induction of terpenoids could also influence the quality of aphid honeydew, an important food source for beneficial insects. We therefore screened A. gossypii honeydew for cotton terpenoids, that are induced by caterpillars but not the aphids. We then tested the influence of induced insect-resistance of cotton on honeydew nutritional quality for the aphid parasitoid Lysiphlebus testaceipes and the whitefly parasitoid Eretmocerus eremicus. We detected the cotton terpenoids gossypol and hemigossypolone in A. gossypii honeydew. Although a feeding assay demonstrated that gossypol reduced the longevity of both parasitoid species in a non-linear, dose-dependent manner, the honeydew was capable of sustaining parasitoid longevity and reproduction. The level of caterpillar damage to Bt and non-Bt cotton had no impact on the quality of honeydew for the parasitoids.These results indicate that the nutritional quality of honeydew is maintained in Bt cotton and is not influenced by induced insect resistance.  相似文献   

20.
Symbiotic bacteria in herbivorous insects can have strong beneficial impacts on their host's survival, including conferring resistance to natural enemies such as parasitoid wasps or pathogens, while also imposing energetic costs on the host, resulting in cost‐benefit trade‐offs. Whether these trade‐offs favour the hosting of symbionts depends on the growth environment of the herbivore. Long‐term experimental grassland studies have shown that increasing plant species richness leads to an increased diversity of associated herbivores and their natural enemies. Such a change in natural enemy diversity, related to changes in plant diversity, could also drive changes in the community of symbionts hosted by the herbivorous insects. Aphids are one model system for studying symbionts in insects, and effects of host‐plant species and diversity on aphid‐symbiont interactions have been documented. Yet, we still understand little of the mechanisms underlying such effects. We review the current state of knowledge of how biodiversity can impact aphid‐symbiont communities and the underlying drivers. Then, we discuss this in the framework of sustainable agriculture, where increased plant biodiversity, in the form of wildflower strips, is used to recruit natural enemies to crop fields for their pest control services. Although aphid symbionts have the potential to reduce biological control effectiveness through conferring protection for the host insect, we discuss how increasing plant and natural enemy biodiversity can mitigate these effects and identify future research opportunities. Understanding how to promote beneficial interactions in ecological systems can help in the development of more sustainable agricultural management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号