首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
阔叶红松林是我国东北地区地带性顶级森林群落,对维持区域生态系统稳定性具有重要作用。对阔叶红松林内主要树种凋落叶分解过程及影响因素进行研究,有助于增加长白山阔叶红松林生态系统的基础数据,为明确阔叶红松林的养分循环和物质流动提供依据。选取了长白山阔叶红松林内30个常见乔灌树种和16个凋落叶性状,采用野外分解袋法和室内样品分析等方法研究了长白山阔叶红松林内主要树种凋落叶分解速率及其与凋落叶性状的关系。1年的野外分解实验表明,30个树种的凋落叶重量损失率表现出较大差异。不同树种凋落叶的重量损失率在20.56%—92.11%之间,以红松(Pinus koraiensis)质量损失率最低,东北山梅花(Philadelphus schrenkii)质量损失率最高。不同生活型树种的凋落叶在质量损失率上存在显著差异,以灌木树种凋落叶的质量损失率最高,小乔木次之,乔木树种质量损失率最低。Olson模型拟合结果表明,不同树种凋落叶的分解速率k以红松最低,瘤枝卫矛(Euonymus verrucosus)最高,分别为0.24和1.64。不同树种分解50%和95%所需的时间分别在0.43—2.86年,1.83—...  相似文献   

3.
Forest fragmentation is a component of global change, with substantial impact on biodiversity and ecosystem functioning. Despite extensive evidence of forest fragmentation effects on above‐ground ecological processes, little is understood about its below‐ground effects. Abundance and richness of leaf litter fauna can be affected by forest fragmentation, and this can have cascading effects on the decomposition process. Here, we examine how fragmentation of a subtropical dry forest affects aspects of ecosystem structure and functioning, by unravel area and edge effects on leaf litter fauna and decomposition rates and testing whether changes in abundance or richness of litter fauna mediated fragment area and edge effects on litter decomposition. We incubated litterbags filled with a common substrate, at the edge and interior of 12 fragments of Chaco Serrano forest in Central Argentina, for 180 days. We found that invertebrate abundance was higher at the forest edge but independent of fragment area, whereas decomposition declined with fragment size independently of edge or interior location. According to our results, the effect of forest size on decomposition was not mediated by changes in abundance or richness of leaf litter fauna, suggesting independent changes in ecosystem structure and functioning.  相似文献   

4.
Background: In Southern Brazil, large areas of grassland have been replaced by Eucalyptus plantations. Vegetation is scarce under plantations which may be associated with Eucalyptus releasing of allelochemicals.

Aims: To investigate effects of Eucalyptus saligna leaf litter on the colonisation and development of the ground layer by grassland species and if these effects were related to allelopathy.

Methods: We assessed the effects of Eucalyptus litter on the establishment of species of the native grassland community and on seeded test species (Paspalum notatum and Lotus corniculatus – introduced). We tested the impact of the addition of E. saligna leaf litter, artificial leaves (shading and mechanical impediment) and shading. We also tested the phytotoxicity of the soil from E. saligna plantations.

Results: Species richness, diversity, plant height, cover and biomass were lower in E. saligna leaves and artificial leaves treatments than in the control (absence of litter). The test species showed lower biomass and higher mortality in treatment plots with E. saligna leaves, artificial leaves and shading treatments than in the control. Allelochemicals did not accumulate in soil at phytotoxic levels.

Conclusions: Eucalyptus saligna leaf litter suppresses the establishment of grassland vegetation, but the effects are mainly physical. Field evaluations with appropriate controls should be more extensively used in allelopathy investigations.  相似文献   


5.
The leaf litter environment (single species versus mixed species), and interactions between litter diversity and macrofauna are thought to be important in influencing decomposition rates. However, the role of soil macrofauna in the breakdown of different species of leaf litter is poorly understood. In this study we examine the multiple biotic controls of decomposition – litter quality, soil macrofauna and litter environment and their interactions. The influence of soil macrofauna and litter environment on the decomposition of six deciduous tree species (Fraxinus excelsior L., Acer pseudoplatanus L., Acer campestre L., Corylus avellana L., Quercus robur L., Fagus sylvatica L.) was investigated in a temperate forest, Wytham Woods, Southern England. We used litterbags that selectively excluded macrofauna to assess the relative importance of macrofauna versus microbial, micro and mesofauna decomposition, and placed single species bags in either conspecific single species or mixed species litter environments. The study was designed to separate plant species composition effects on litter decomposition rates, allowing us to evaluate whether mixed species litter environments affect decomposition rates compared to single species litter environments, and if so whether the effects vary among litter species, over time, and with regard to the presence of soil macrofauna. All species had faster rates of decomposition when macrofauna were present, with 22–41% of the total mass loss attributed to macrofauna. Macrofauna were most important for easily decomposable species as soon as the leaves were placed on the ground, but were most important for recalcitrant species after nine months in the field. The mass loss rates did not differ between mixed and single species litter environments, indicating that observed differences between single species and mixed species litterbags in previous field studies are due to the direct contact of neighbouring species inside the litterbag rather than the litter environment in which they are placed.  相似文献   

6.
《植物生态学报》2017,41(8):894
Atmospheric nitrogen deposition has increased in the last several decades due to anthropogenic activities and global changes. Increasing nitrogen deposition has become an important factor regulating carbon cycle in grassland ecosystems. Litter decomposition, a key process of carbon and nutrient cycling in terrestrial ecosystems, is the main source of soil carbon pool and the basis of soil fertility maintenance. Elevated nitrogen deposition could affect litter decomposition by raising soil nitrogen availability, increasing the quantity and quality of litter inputs, and altering soil microorganism and soil conditions. Litter decomposition are complex biological, physical and chemical processes, which were affected by abiotic, biological factors and their interactions. The effects of nitrogen deposition on litter decomposition and the underlying mechanisms were discussed in this paper, including the aspactes of soil nitrogen availability, litter production, litter quality, microclimate, soil microorganism and enzyme activities. The main research contents, directions, methods and existing problems of litter decomposition in grasslands were discussed. We also discussed the prospect of future directions to study the interaction and feedback between nitrogen deposition and grassland ecosystem carbon cycling process.  相似文献   

7.
Decomposition of litter is greatly influenced not only by its chemical composition but also by activities of soil decomposers. By using leaf litter from 15 plant species collected from semi-natural and improved grasslands, we examined (1) how interspecific differences in the chemical composition of litter influence the abundance and composition of soil bacterial and fungal communities and (2) how such changes in microbial communities are related to the processes of decomposition. The litter from each species was incubated in soil of a standard composition for 60 days under controlled conditions. After incubation, the structure of bacterial and fungal communities in the soil was examined using phospholipid fatty-acid analysis and denaturing gradient gel electrophoresis. Species from improved grasslands had significantly higher rates of nitrogen mineralization and decomposition than those from semi-natural grasslands because the former were richer in nitrogen. Litter from improved grasslands was also richer in Gram-positive bacteria, whereas that from semi-natural grasslands was richer in actinomycetes and fungi. Nitrogen content of litter also influenced the composition of the fungal community. Changes in the composition of both bacterial and fungal communities were closely related to the rate of litter decomposition. These results suggest that plant species greatly influence litter decomposition not only through influencing the quality of substrate but also through changing the composition of soil microbial communities.  相似文献   

8.
亚热带不同树种凋落叶分解对氮添加的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
为探究不同质量凋落物对氮(N)沉降的响应, 该研究采用尼龙网袋分解法, 在亚热带福建三明格氏栲(Castanopsis kawakamii)自然保护区的米槠(Castanopsis carlesii)天然林, 选取4种本区常见的具有不同初始化学性质的树种凋落叶进行模拟N沉降(N添加)分解实验(施N水平为对照0和50 kg·hm -2·a -1)。研究结果表明: 在2年的分解期内, 对照处理的各树种凋落叶的分解速率依次为观光木(Michelia odora, 0.557 a -1)、米槠(0.440 a -1)、台湾相思(Acacia confusa, 0.357 a -1)、杉木(Cunninghamia lanceolata, 0.354 a -1); N添加处理凋落叶分解速率依次为观光木(0.447 a -1)、米槠(0.354 a -1)、杉木(0.291 a -1)、台湾相思(0.230 a -1), 除杉木凋落叶外, N添加显著降低了其他3种凋落叶分解速率。N添加不仅使4种树木凋落叶分解过程中的N释放减慢, 同时还抑制凋落叶化学组成中木质素和纤维素的降解; N添加在凋落叶分解过程中总体上提高β-葡萄糖苷酶(βG)和酸性磷酸酶活性, 对纤维素水解酶的活性影响不一致, 而降低β-N-乙酰氨基葡萄糖苷酶活性和酚氧化酶活性。凋落叶分解速率与凋落叶中的碳获取酶(βG)活性以及其化学组分中的可萃取物含量极显著正相关, 与初始碳浓度、纤维素和木质素含量极显著负相关, 与初始N含量没有显著相关性。凋落物类型和N添加的交互作用虽未影响干质量损失速率, 但对木质素和纤维素的降解具有显著效应。综上所述, 化学组分比初始N含量能更好地预测凋落叶分解速率, 而N添加主要通过抑制分解木质素的氧化酶(如PHO)来降低凋落叶分解速率。  相似文献   

9.
Litter decomposition, a fundamental process of nutrient cycling and energy flow in freshwater ecosystems, is driven by a diverse array of decomposers. As an important component of the heterotrophic food web, meiofauna can provide a trophic link between leaf‐associated microbes (i.e., bacteria and fungi)/plant detritus and macroinvertebrates, though their contribution to litter decomposition is not well understood. To investigate the role of different decomposer communities in litter decomposition, especially meiofauna, we compared the litter decomposition of three leaf species with different lignin to nitrogen ratios in litter bags with different mesh sizes (0.05, 0.25, and 2 mm) in a forested stream, in China for 78 days. The meiofauna significantly enhanced the decomposition of leaves of high‐and medium‐ quality, while decreasing (negative effect) or increasing (positive effect) the fungal biomass and diversity. Macrofauna and meiofauna together contributed to the decomposition of low‐quality leaf species. The presence of meiofauna and macrofauna triggered different aspects of the microbial community, with their effects on litter decomposition varying as a function of leaf quality. This study reveals that the meiofauna increased the trophic complexity and modulated their interactions with microbes, highlighting the important yet underestimated role of meiofauna in detritus‐based ecosystems.  相似文献   

10.
路颖  李坤  梁强  李传荣  张彩虹 《生态学报》2019,39(9):3175-3186
为研究泰山不同造林树种凋落物叶分解对细菌群落的影响。以泰山4种主要优势造林树种刺槐(Robinia pseucdoacacia)、麻栎(Quercus acutissima)、油松(Pinus tabulaeformis)和赤松(Pinus densiflora)为研究对象,采用凋落物分解袋法及Illumina Miseq测序平台对细菌16S rDNA V4—V5区扩增产物进行双端测序,分析了4种树种叶片凋落物分解对细菌群落结构及多样性的影响。结果表明:(1)4种树种叶片分解速率差异显著(P0.05),刺槐分解速率显著高于其他3个树种(P0.05),表现为刺槐赤松油松麻栎。(2)4种叶凋落物分解一年后化学元素含量与初始化学元素相比均存在显著差异。C、木质素含量均显著降低(P0.05);N、P含量显著升高(P0.05)。(3)所有样品一共获得643440条有效序列,分属于35门,92纲,121目,246科,410属,206种。细菌群落NMDSβ-多样性分析显示除油松和赤松间差异较小外,其他树种间差异程度均较大。其中,细菌群落相对丰度在5%以上的优势类群是变形菌门、放线菌门、拟杆菌门、酸杆菌门,且在4种处理之间差异显著(PSymbol|@@0.05)。在纲水平上,α-变形菌纲、β-变形菌纲、不明放线菌纲、鞘脂杆菌纲、γ-变形菌纲、δ-变形菌纲为主要的优势纲,其中不明放线菌纲和鞘脂杆菌纲差异显著(PSymbol|@@0.05)。在种水平上,Bradyrhizobium elkanii和Luteibacter rhizovicinus在4个处理中都为优势种,每个处理也都有自己所特有的优势种。(4)4个处理细菌丰富度(OUT、观测到的物种数和ACE指数)和系统发育多样性(PD指数)之间差异显著(PSymbol|@@0.05),且阔叶树种刺槐和麻栎显著高于针叶树种赤松和油松。(5)叶片凋落物性状和细菌群落NMDS分析表明,细菌群落多样性受到凋落物化学性质的影响,尤其是凋落物初始C/N比和木质素/N比。此外,在细菌群落多样性和叶片凋落物化学性质两个因素中,分解速率与凋落物化学性质相关性更大。研究结果有助于理解细菌群落结构和多样性对森林生态系统叶片凋落物分解的影响。  相似文献   

11.
栾历历  刘恩媛  顾新  孙建新 《生态学报》2020,40(24):9220-9233
全球变化会引起凋落物质量和数量的变化以及氮沉降增加,从而影响土壤养分循环。土壤生态酶化学计量可以揭示微生物生长和代谢过程的养分限制,但目前温带混交林土壤生态酶化学计量对凋落物输入和氮添加同时改变的响应还不清楚。通过凋落物处理和氮添加实验设计,探讨温带松栎混交林生态酶化学计量的响应以及影响生态酶化学计量的主要因子。结果表明:(1)凋落物处理和氮添加无显著交互作用,土壤生态酶化学计量在氮添加处理下差异不显著,在凋落物处理下差异显著,表现为叶凋落物加倍(L)和混合凋落物加倍(LB)处理高于枝果凋落物加倍(B)和去除凋落物处理(N)。不同凋落物和氮添加处理下,土壤生态酶化学计量均未明显偏离1∶1∶1的关系。(2)土壤微生物碳利用效率(CUEC∶N和CUEC∶P)表现为叶凋落物加倍和混合凋落物加倍处理低于枝果凋落物加倍和去除凋落物处理,在氮添加处理下差异不显著。土壤微生物氮利用效率(NUEN∶C)和微生物磷利用效率(PUEP∶C)在不同凋落物和氮添加处理下差异均不显著。TERC∶N在不同...  相似文献   

12.
毛竹凋落叶组成对叶凋落物分解的影响   总被引:1,自引:0,他引:1  
毛竹混交林具有较高的生产力和较好的生态功能,可能与混合凋落物的养分归还特征有关。本研究采用凋落物分解袋法对不同混合比例毛竹凋落叶分解特征进行了为期1年的研究,共设置5个处理,分别为Ⅰ(毛竹纯叶)、Ⅱ(毛竹、楠木叶比例为8:2);Ⅲ(毛竹、杉木叶比例8:2)、Ⅳ(毛竹、楠木叶比例5:5)和Ⅴ(毛竹、杉木叶比例5:5)。结果表明,不同处理凋落物分解速率符合Olson指数分解模型,R2均高于0.92。5个处理分解系数的排列顺序为Ⅱ>Ⅰ>Ⅲ>Ⅴ>Ⅳ,分别为0.68、0.66、0.58、0.55和0.49。处理Ⅰ和Ⅱ的分解速度显著高于其他处理,说明并非所有类型毛竹混合凋落叶均会促进凋落物分解,只有合适的比例和树种会促进凋落物分解。其中,竹阔混合凋落叶的分解速度高于竹针混合凋落叶的分解速度,竹阔混交可能更有利于竹林持续生产力的维持。N、P、K3种元素养分释放模式不同,N元素表现为净富集与净释放交替出现;P元素在经过4个月的快速富集后,4—5个月有短暂的净释放过程,其后呈富集状态;K元素浓度先升高后降低,在放置的前3个月净释放,随后呈富集状态。竹林凋落叶的养分含量对凋落物养分归还有重要影响,尤其是C/N和P可能作为竹林凋落...  相似文献   

13.
The involvement of ligninolytic and cellulolytic enzymes, such as laccase, lignin peroxidase, manganese peroxidase, carboxymethylcellulase (CMCase), and filter paper activity (FPA), in the decomposition process of leaf litter driven by 6 soil-inhabiting fungi imperfecti was studied under solid-state fermentations. All the tested fungi exhibited varied production profiles of lignocellulolytic enzymes and each caused different losses in total organic matter (TOM) during decomposition. Based on the results, the 6 fungi could be divided into 2 functional groups: Group 1 includes Alternaria sp., Penicillium sp., Acremonium sp., and Trichoderma sp., and Group 2 includes Pestalotiopsis sp. and Aspergillus fumigatus. Group 1, with higher CMCase and FPA activities, showed a higher decomposition rate than the fungi of Group 2 over the first 16 d, and thereafter the cellulolytic activities and decomposition rate slowed down. Group 2 showed the maximum and significantly higher CMCase and FPA activities than those of the Group 1 fungi during the later days. This, combined with the much higher laccase activity, produced a synergistic reaction that led to a much faster average mass loss rate. These results suggest that the fungi of Group 1 are efficient decomposers of cellulose and that the fungi of Group 2 are efficient decomposers of lignocellulose. During cultivation, Pestalotiopsis sp. produced an appreciable amount of laccase activity (0.56+/-0.09 U/ml) without the addition of inducers and caused a loss in TOM of 38.2%+/-3.0%, suggesting that it has high potential to be a new efficient laccase-producing fungus.  相似文献   

14.
Wang  Yuzhe  Zheng  Junqiang  Boyd  Sue E.  Xu  Zhihong  Zhou  Qixing 《Plant and Soil》2019,434(1-2):65-78
Plant and Soil - Phosphorus (P) recovery from specific waste streams is necessary to develop environmentally sustainable and efficient fertilizers, achieving maximum productivity with minimum...  相似文献   

15.
Altered surface ultraviolet‐B (UV‐B) radiation resulting from a combination of factors that include changes in stratospheric ozone concentrations, cloud cover, and aerosol conditions may affect litter decomposition and, thus, terrestrial nutrient cycling on a global scale. Although litter decomposition rates vary across biomes, patterns of decomposition suggest that UV‐B radiation accelerates litter decay in xeric environments where precipitation is infrequent. However, under more frequent precipitation regimes where litter decay rates are characteristically high, the effect of UV‐B radiation on litter decomposition has not been fully elucidated. To evaluate this association between moisture regime and UV‐B exposure, a litter decomposition experiment was designed for aspen (Populus tremuloides) leaf litter, where conditions that influence both abiotic (photodegradation) and biotic (microbial) processes could be manipulated quantitatively. We found that experimentally increasing UV‐B exposure (0, 7.4, and 11.2 kJ m?2 day?1, respectively) did not consistently increase litter decomposition rates across simulated precipitation frequencies of 4, 12, and 24 days. Instead, a UV‐B exposure of 11.2 kJ m?2 day?1 resulted in a 13% decrease in decomposition rates under the 4‐day precipitation frequency, but an increase of 80% under the 24‐day frequency. Furthermore, the same UV‐B dose increased litter decomposition rates under the 24‐day precipitation frequency by 78% even in conditions where microbial activity was suppressed. Therefore, under more xeric conditions, greater exposure to UV‐B radiation increased decomposition rates, presumably through photodegradation. In contrast, when decomposition was not moisture‐limited, greater UV‐B exposure slowed decomposition rates, most likely from the resulting inhibition of microbial activity. Ultimately, these experimental results highlight UV‐B radiation as a potential driver of decomposition, as well as indicate that both the direction and magnitude of the UV‐B effect is dependent on moisture availability, a factor that may change according to future patterns in global precipitation.  相似文献   

16.
The amount of litter and its nutrient composition have been measured at seven sites on various lateritic soils within the jarrah (Eucalyptus marginata Donn ex Sm.) forest near Dwellingup, Western Australia. The weight of litter accumulated during 6 years ranges from 9 tonnes/ha for forest growing on yellow sand to 18 tonnes/ha for forest on reddish gravels. The litter on the reddish gravels contains more than twice the amounts of N, P, K and S in litter on yellow sand and grey and yellow gravels. The proportion of fine material in the forest floor litter increases with total litter weight. Phosphorus, which is less mobile than other nutrients tends to accumulate in this fine component. There are large differences between the foliar nutrient levels of jarrah and Banksia grandis Willd. (e.g. P: 0.041%, 0.025%; K: 0.57%, 0.34%; Mg: 0.43%, 0.21%; Mn: 177 μg/g. 730 μg/g). However, these differences are not reflected in the litter from sites with and without B. grandis understorey. Soil differences and the predominant contribution of the overstorey to the litter appear to be the main factors affecting the litter composition.  相似文献   

17.
In order to observe the effect of forest loss on the leaf litter ant fauna in Ghana, West Africa, samples were taken in primary forest, secondary forest and in cocoa plots. Ants were extracted from the leaf litter by sieving followed by suspension in Winkler bags. The species composition and species richness in the three different habitats were compared and no significant difference was found between them. It was concluded that most primary forest leaf litter ant species continue to survive in parts of the agricultural landscape which has largely replaced their original habitat.  相似文献   

18.
Decomposition of leaf litter and its incorporation into the mineral soil are key components of the C cycle in forest soils. In a 13C tracer experiment, we quantified the pathways of C from decomposing leaf litter in calcareous soils of a mixed beech forest in the Swiss Jura. Moreover, we assessed how important the cold season is for the decomposition of freshly fallen leaves. The annual C loss from the litter layer of 69–77% resulted mainly from the C mineralization (29–34% of the initial litter C) and from the transfer of litter material to the deeper mineral soil (>4 cm) by soil fauna (30%). Although only 4–5% of the initial litter C was leached as dissolved organic carbon (DOC), this pathway could be important for the C sequestration in soils in the long term: The DOC leached from the litter layer was mostly retained (95%) in the first 5 cm of the mineral soil by both physico-chemical sorption and biodegradation and, thus, it might have contributed significantly to the litter-derived C recovered in the heavy fraction (>1.6 g cm?3) at 0–4 cm depth (4% of the initial litter C). About 80% of the annual DOC leaching from the litter layer occurred during the cold season (Nov–April) due to an initial DOC flush of water-soluble substances. In contrast, the litter mineralization in winter accounted for only 25% of the annual C losses through CO2 release from the labelled litter. Nevertheless, the highest contributions (45–60%) of litter decay to the heterotrophic soil respiration were observed on warm winter days when the mineral soil was still cold and the labile litter pool only partly mineralized. Our 13C tracing also revealed that: (1) the fresh litter C only marginally primed the mineralization of older SOM (>1 year); and (2) non-litter C, such as throughfall DOC, contributed significantly to the C fluxes from the litter layer since the microbial biomass and the DOC leached from the litter layer contained 20–30% and up to 60% of unlabelled C, respectively. In summary, our study shows that significant amounts of recent leaf litter C (<1 year) are incorporated into mineral soils and that the cold season is clearly less important for the litter turnover than the warm season in this beech forest ecosystem.  相似文献   

19.
半干旱区封禁草地凋落物的积累与分解   总被引:19,自引:0,他引:19  
针对我国西部典型草原地带,退化草地封禁后凋落物的积累、分解与水分变化过程,进行了为期20a(1982~2002年)的定位试验研究.结果表明:本氏针茅、百里香、铁杆蒿和大针茅草地群落的凋落物积累与厚度的变化趋势,拟合曲线符合指数方程,无论在植物年生长的初期还是末期,其相关性极为显著.随着气温的升高和降雨量的增加,凋落物的分解速率加快,本氏针茅和大针茅群落凋落物的分解率达到峰值需150d,百里香群落需180d,铁杆蒿群落需210d;凋落物在积累与分解过程中,具有吸水和保水的重要功能,可截留大量天然降水,促进土壤水分的缓慢入渗,通常在植物生长的初期和末期,凋落物在自然状态下饱和含水量,本氏针茅群落为112.30%~124.02%;百里香群落为116.61%~134.09%;铁杆蒿群落为124.76%~144.32%.但草地适宜封禁年限为11~15a,有利于草地自然更新和凋落物的积累.  相似文献   

20.
Sampling disturbance has been shown to rapidly increase net nitrification rates in some forest soils. To gain insight on mechanisms, we investigated both gross and net rates of ammonification and nitrification in intact cores and mixed composite samples. Using the isotope pool dilution method, we studied samples from two northeastern USA watersheds, Brush Brook and Sleepers River in Vermont, where previous work had found high net nitrification rates. Gross ammonification was usually not significantly different between intact cores and mixed samples. However, gross and net nitrification rates in mixed samples were similar (mean ~24?µmol N?kg?1?hr?1 or ~8 mg N kg?1 d?1) and significantly higher than in intact cores (7.7 and 3.4?µmol N kg?1?h?1 for means of gross and net respectively). Nitrate consumption was decreased somewhat by disturbance but did not account for the large differences in net rates. Because there were similar gross ammonification rates in both treatments, increased nitrification in these disturbed soils must be a result of an increase in the utilization of ammonium by the ammonia oxidizers at the expense of other ammonium consumption pathways. Different mechanisms may operate in different soils; increased nitrification appears to be the primary pathway in these soils with high N cycling rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号