首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Drosophila simulans Lhr rescues lethal hybrids from the cross of D. melanogaster and D. simulans. We describe here, the phenotypes of Lhr dependent rescue hybrids and demonstrate the effects of Lhr on functional morphology of the salivary chromosomes in the hybrids. Our results reveal that the phenotypes of the ‘Lhr dependent rescued’ hybrids were largely dependent on the genetic background and the dominance in species and hybrids, and not on Lhr. Cytological examination reveal that while the salivary chromosome of ‘larval lethal’ male carrying melanogaster X chromosome was unusually thin and contracted, in ‘rescued’ hybrid males (C mel X mel Y sim ; A mel A sim ) the X chromosome showed typical pale staining, enlarged diameter and incorporated higher rate of 3H-uridine in presence of one dose Lhr in the genome. In hybrid males carrying simulans X chromosome (C mel X sim Y mel ; A mel A sim ), enlarged width of the polytene X chromosome was noted in most of the nuclei, in Lhr background, and transcribed at higher rate than that of the single X chromosome of male. In hybrid females (both viable, e.g., C mel X mel X sim ; A mel A sim and rescued, e.g., C mel X mel X mel ; A mel A sim ), the functional morphology of the X chromosomes were comparable to that of diploid autosomes in presence of one dose of Lhr. In hybrid metafemales, (C mel X mel X mel X sim ; A mel A sim ), two dose of melanogaster X chromosomes and one dose of simulans X chromosome were transcribed almost at ‘female’ rate in hybrid genetic background in presence of one dose of Lhr. In rescued hybrid males, the melanogaster-derived X chromosome appeared to complete its replication faster than autosomes. These results together have been interpreted to have suggested that Lhr suppresses the lethality of hybrids by regulating functional activities of the X chromosome(s) for dosage compensation.  相似文献   

2.
Crosses betweenDrosophila melanogaster females andD. simulans males produce viable hybrid females, while males are lethal. These males are rescued if they carry theD. simulans Lhr gene. This paper reports that females of the wild-typeD. melanogaster population Staket do not produce viable hybrid males when crossed withD. simulans Lhr males, a phenomenon which we designate as the Staket phenotype. The agent responsible for this phenomenon was found to be the StaketX chromosome (X mel ,Stk). Analysis of the Staket phenotype showed that it is suppressed by extra copies ofD. melanogaster rDNA genes and that theX mel ,Stk chromosome manifests a weak bobbed phenotype inD. melanogaster X mel ,Stk/0 males. The numbers of functional rDNA genes inX mel ,Stk andX mel ,y w (control) chromosomes were found not to differ significantly. Thus a reduction in rDNA gene number cannot account for the weak bobbedX mel ,Stk phenotype let alone the Staket phenotype. The rRNA precursor molecules transcribed from theX mel ,Stk rDNA genes seem to be correctly processed in both intraspecific (melanogaster) and interspecific (melanogaster-simulans) conditions. It is therefore suggested that theX mel ,Stk rDNA genes are inefficiently transcribed in themelanogaster-simulans hybrids.  相似文献   

3.
The study of hybrid inviability reveals cryptic divergence between the genetic interactions that maintain stable phenotypes in the pure species . We characterized the effects of natural variation on the penetrance of hybrid inviability phenotypes in crosses between Drosophila melanogaster and two species of the D. simulans subcomplex, D. simulans and D. sechellia. Using a panel of wild‐caught lines, we studied the levels of genetic variance present in D. simulans and D. sechellia affecting prezygotic and post‐zygotic isolation in hybridizations with D. melanogaster females. We observed extensive variability in the viability of hybrid individuals, dependent on the genotype of the parents, suggesting that intraspecific natural variation manifests directly in hybrid phenotypes. Furthermore, we found that genetic background significantly affects the penetrance of a well‐studied determinant of hybrid inviability: the interaction between Hmrmel–Lhrsim. Our results suggest that hybrid inviability – and reproductive isolation generally – can be modified by polymorphisms at multiple loci segregating within the parental species. Just as the penetrance of most mutant phenotypes can be modified by the genetic background within the pure species, the penetrance of hybrid inviability phenotypes is highly influenced by the parental genotypes.  相似文献   

4.
Crosses betweenDrosophila melanogaster females andD. simulans males produce viable hybrid females, while males are lethal. These males are rescued if they carry theD. simulans Lhr gene. This paper reports that females of the wild-typeD. melanogaster population Staket do not produce viable hybrid males when crossed withD. simulans Lhr males, a phenomenon which we designate as the Staket phenotype. The agent responsible for this phenomenon was found to be the StaketX chromosome (X mel ,Stk). Analysis of the Staket phenotype showed that it is suppressed by extra copies ofD. melanogaster rDNA genes and that theX mel ,Stk chromosome manifests a weak bobbed phenotype inD. melanogaster X mel ,Stk/0 males. The numbers of functional rDNA genes inX mel ,Stk andX mel ,y w (control) chromosomes were found not to differ significantly. Thus a reduction in rDNA gene number cannot account for the weak bobbedX mel ,Stk phenotype let alone the Staket phenotype. The rRNA precursor molecules transcribed from theX mel ,Stk rDNA genes seem to be correctly processed in both intraspecific (melanogaster) and interspecific (melanogaster-simulans) conditions. It is therefore suggested that theX mel ,Stk rDNA genes are inefficiently transcribed in themelanogaster-simulans hybrids.  相似文献   

5.
Kuhn DT  Sprey TE 《Genetics》1987,115(2):277-281
Pattern regulation of malic enzyme (ME) distribution in D. melanogaster/D. simulans (mel/sim) hybrid eye-antennal discs was investigated. Both cis- and trans-regulation of the spatial distribution pattern was observed within the eye portion of the disc complex. D. simulans possesses gene(s) that operate in trans in the hybrids to suppress ME staining along the morphogenetic furrow, a region that always stains in D. melanogaster. ME structural genes of both species were expressed in cis within the ommatidial preclusters and clusters of the hybrids. Malic enzyme was not expressed elsewhere in the eye disc of either species. Restoration of the D. melanogaster furrow pattern element occurred in partial hybrids that were homozygous for the D. melanogaster 3R where the structural gene resides. Therefore, a dominant gene(s) in the D. simulans 3R suppresses the D. melanogaster furrow pattern, while a recessive gene(s) in the D. melanogaster 3R restores the pattern when the trans-suppressor is removed. These conclusions agree with those found for regulation of aldehyde oxidase distribution in D. melanogaster/D. simulans hybrid wing discs.  相似文献   

6.

Background  

Hybrid incompatibilities such as sterility and lethality are commonly modeled as being caused by interactions between two genes, each of which has diverged separately in one of the hybridizing lineages. The gene Lethal hybrid rescue (Lhr) encodes a rapidly evolving heterochromatin protein that causes lethality of hybrid males in crosses between Drosophila melanogaster females and D. simulans males. Previous genetic analyses showed that hybrid lethality is caused by D. simulans Lhr but not by D. melanogaster Lhr, confirming a critical prediction of asymmetry in the evolution of a hybrid incompatibility gene.  相似文献   

7.
Hybrid incompatibility (HI) genes are frequently observed to be rapidly evolving under selection. This observation has led to the attractive conjecture that selection-derived protein-sequence divergence is culpable for incompatibilities in hybrids. The Drosophila simulans HI gene Lethal hybrid rescue (Lhr) is an intriguing case, because despite having experienced rapid sequence evolution, its HI properties are a shared function inherited from the ancestral state. Using an unusual D. simulans Lhr hybrid rescue allele, Lhr2, we here identify a conserved stretch of 10 amino acids in the C terminus of LHR that is critical for causing hybrid incompatibility. Altering these 10 amino acids weakens or abolishes the ability of Lhr to suppress the hybrid rescue alleles Lhr1 or Hmr1, respectively. Besides single-amino-acid substitutions, Lhr orthologs differ by a 16-aa indel polymorphism, with the ancestral deletion state fixed in D. melanogaster and the derived insertion state at very high frequency in D. simulans. Lhr2 is a rare D. simulans allele that has the ancestral deletion state of the 16-aa polymorphism. Through a series of transgenic constructs we demonstrate that the ancestral deletion state contributes to the rescue activity of Lhr2. This indel is thus a polymorphism that can affect the HI function of Lhr.  相似文献   

8.
Sex chromosomes have a large effect on reproductive isolation and play an important role in hybrid inviability. In Drosophila hybrids, X-linked genes have pronounced deleterious effects on fitness in male hybrids, which have only one X chromosome. Several studies have succeeded at locating and identifying recessive X-linked alleles involved in hybrid inviability. Nonetheless, the density of dominant X-linked alleles involved in interspecific hybrid viability remains largely unknown. In this report, we study the effects of a panel of small fragments of the D. melanogaster X-chromosome carried on the D. melanogaster Y-chromosome in three kinds of hybrid males: D. melanogaster/D. santomea, D. melanogaster/D. simulans and D. melanogaster/D. mauritiana. D. santomea and D. melanogaster diverged over 10 million years ago, while D. simulans (and D. mauritiana) diverged from D. melanogaster over 3 million years ago. We find that the X-chromosome from D. melanogaster carries dominant alleles that are lethal in mel/san, mel/sim, and mel/mau hybrids, and more of these alleles are revealed in the most divergent cross. We then compare these effects on hybrid viability with two D. melanogaster intraspecific crosses. Unlike the interspecific crosses, we found no X-linked alleles that cause lethality in intraspecific crosses. Our results reveal the existence of dominant alleles on the X-chromosome of D. melanogaster which cause lethality in three different interspecific hybrids. These alleles only cause inviability in hybrid males, yet have little effect in hybrid females. This suggests that X-linked elements that cause hybrid inviability in males might not do so in hybrid females due to differing sex chromosome interactions.  相似文献   

9.
10.
M-T. Yamamoto 《Genetica》1993,87(3):151-158
Interspecific crosses between D. melanogaster and D. simulans or its sibling species result in unisexual inviability of the hybrids. Mostly, crosses of D. melanogaster females X D. simulans males produce hybrid females. On the other hand, only hybrid males are viable in the reciprocal crosses. A classical question is the cause of the unisexual hybrid inviability on the chromosomal level. Is it due to the absence of a D. simulans X chromosome or is it due to the presence of a D. simulans Y chromosome? A lack of adequate chromosomal rearrangements available in D. simulans has made it difficult to answer this question. However, it has been assumed that the lethality results from the absence of the D. simulans X rather than the presence of the D. simulans Y. Recently I synthesized the first D. simulans compound-XY chromosome that consists of almost the entire X and Y chromosomes. Males carrying the compound-XY and no free Y chromosome are fertile. By utilizing the compound-XY chromosome, the viability of hybrids with various constitutions of cytoplasm and sex chromosomes has been examined. The results consistently demonstrate that the absence of a D. simulans X chromosome in hybrid genome, and not the presence of the Y chromosome, is a determinant of the hybrid inviability.  相似文献   

11.
Drosophila melanogaster are found in sympatry with Drosophila simulans, and matings between the species produce nonfertile hybrid offspring at low frequency. Evolutionary theory predicts that females choose mates, so males should alter their behaviour in response to female cues. We show that D. melanogaster males quickly decrease courtship towards D. simulans females. Courtship levels are reduced within 5 min of exposure to a heterospecific female, and overall courtship is significantly lower than courtship towards conspecific females. To understand changes at the molecular level during mate choice, we performed microarray analysis on D. melanogaster males that courted heterospecific D. simulans females and found nine genes have altered expression compared with controls. In contrast, males that court conspecific females alter expression of at least 35 loci. The changes elicited by conspecific courtship likely modulate nervous system function to reinforce positive conspecific signals and dampen the response to heterospecific signals.  相似文献   

12.
Drosophila simulans is more abundant under colder and drier montane habitats in the western Himalayas as compared to its sibling D. melanogaster but the mechanistic bases of such climatic adaptations are largely unknown. Previous studies have described D. simulans as a desiccation sensitive species which is inconsistent with its occurrence in temperate regions. We tested the hypothesis whether developmental plasticity of cuticular traits confers adaptive changes in water balance-related traits in the sibling species D. simulans and D. melanogaster. Our results are interesting in several respects. First, D. simulans grown at 15 °C possesses a high level of desiccation resistance in larvae (~39 h) and in adults (~86 h) whereas the corresponding values are quite low at 25 °C (larvae ~7 h; adults ~13 h). Interestingly, cuticular lipid mass was threefold higher in D. simulans grown at 15 °C as compared with 25 °C while there was no change in cuticular lipid mass in D. melanogaster. Second, developmental plasticity of body melanisation was evident in both species. Drosophila simulans showed higher melanisation at 15 °C as compared with D. melanogaster while the reverse trend was observed at 25 °C. Third, changes in water balance-related traits (bulk water, hemolymph and dehydration tolerance) showed superiority of D. simulans at 15 °C but of D. melanogaster at 25 °C growth temperature. Rate of carbohydrate utilization under desiccation stress did not differ at 15 °C in both the species. Fourth, effects of developmental plasticity on cuticular traits correspond with changes in the cuticular water loss i.e. water loss rates were higher at 25 °C as compared with 15 °C. Thus, D. simulans grown under cooler temperature was more desiccation tolerant than D. melanogaster. Finally, desiccation acclimation capacity of larvae and adults is higher for D. simulans reared at 15 °C but quite low at 25 °C. Thus, D. simulans and D. melanogaster have evolved different strategies of water conservation consistent with their adaptations to dry and wet habitats in the western Himalayas. Our results suggest that D. simulans from lowland localities seems vulnerable due to limited acclimation potential in the context of global climatic change in the western Himalayas. Finally, this is the first report on higher desiccation resistance of D. simulans due to developmental plasticity of both the cuticular traits (body melanisation and epicuticular lipid mass) when grown at 15 °C, which is consistent with its abundance in temperate regions.  相似文献   

13.
The gene Hybrid male rescue (Hmr) causes lethality in interspecific hybrids between Drosophila melanogaster and its sibling species. Hmr has functionally diverged for this interspecific phenotype because lethality is caused specifically by D. melanogaster Hmr but not by D. simulans or D. mauritiana Hmr. Hmr was identified by the D. melanogaster partial loss-of-function allele Hmr1, which suppresses hybrid lethality but has no apparent phenotype within pure-species D. melanogaster. Here we have investigated the possible function of Hmr in D. melanogaster females using stronger mutant alleles. Females homozygous for Hmr mutants have reduced viability posteclosion and significantly reduced fertility. We find that reduced fertility of Hmr mutants is caused by a reduction in the number of eggs laid as well as reduced zygotic viability. Cytological analysis reveals that ovarioles from Hmr mutant females express markers that distinguish various stages of wild-type oogenesis, but that developing egg chambers fail to migrate posteriorly. D. simulans and D. mauritiana Hmr+ partially complement the reduced fertility of a D. melanogaster Hmr mutation. This partial complementation contrasts with the complete functional divergence previously observed for the interspecific hybrid lethality phenotype. We also investigate here the molecular basis of hybrid rescue associated with a second D. melanogaster hybrid rescue allele, In(1)AB. We show that In(1)AB is mutant for Hmr function, likely due to a missense mutation in an evolutionarily conserved amino acid. Two independently discovered hybrid rescue mutations are therefore allelic.  相似文献   

14.
15.
We have analysed the viability of cellular clones induced by mitotic recombination in Drosophila melanogaster/D. simulans hybrid females during larval growth. These clones contain a portion of either melanogaster or simulans genomes in homozygosity. Analysis has been carried out for the X and the second chromosomes, as well as for the 3L chromosome arm. Clones were not found in certain structures, and in others they appeared in a very low frequency. Only in abdominal tergites was a significant number of clones observed, although their frequency was lower than in melanogaster abdomens. The bigger the portion of the genome that is homozygous, the less viable is the recombinant melano-gaster/simulans hybrid clone. The few clones that appeared may represent cases in which mitotic recombination took place in distal chromosome intervals, so that the clones contained a small portion of either melanogaster or simulans chromosomes in homozygosity. Moreover, Lhr, a gene of D. simulans that suppresses the lethality of male and female melanogaster/simulans hybrids, does not suppress the lethality of the recombinant melanogaster/simulans clones. Thus, it appears that there is not just a single gene, but at least one per tested chromosome arm (and maybe more) that cause hybrid lethality. Therefore, the two species, D. melanogaster and D. simulans, have diverged to such a degree that the absence of part of the genome of one species cannot be substituted by the corresponding part of the genome of the other, probably due to the formation of co-adapted gene complexes in both species following their divergent evolution after speciation. The disruption of those coadapted gene complexes would cause the lethality of the recombinant hybrid clones.  相似文献   

16.
The present report presents the results of starch and polyacrylamide gel electrophoretic studies of the influence of the X chromosome on the expression of esterase-6 in D. melanogaster × D. simulans hybrids heterozygous for locus Est-6 as well as studies of the influence of autosomes on esterase expression in Drosophila of the virilis group. A differential expression of esterase-6 has been detected in D. melanogaster × D. simulans hybrid males. A differential decrease in the activity of esterase-6 (both F and S allozymes) derived from D. melanogaster has been noted. In hybrid females, the activity of parental esterases is the same. It is suggested that the X chromosome regulates the expression of esterase-6 in D. melanogaster. Analysis of individuals obtained in different schemes of crosses between different species of Drosophila of the virilis group by use of stocks marked with mutations in various chromosomes indicates that other autosomes (in particular, autosomes 4 and 5) also influence the phenotypic expression of esterases (which are controlled by genes located on the second chromosome).  相似文献   

17.
18.
The two sibling species D. /melanogaster and D. simulans adopt different overwintering strategies in northern border areas situated in France. If the winter is mild, both species reappear in early spring to refound the population. If the winter is cold, with several weeks of temperatures below 0 °C, D. melanogaster leave their shelters in April whereas D. simulans, which do not use shelters, reappear in late June, probably after returning from further south. Here, we tried to identify life-history characteristics responsible for this difference. For this, we studied developmental duration, viability, fecundity, fertility and longevity, and compared the abilities of French and African populations to survive when food supplies were inadequate, at different temperatures (14, 11, 7 °C). These temperatures are lower than those commonly used in the laboratory but closer to real conditions encountered in the wild. When the temperature was mild (14 or 11 °C) and the food supply was adequate, D. simulans performed better than D. melanogaster: it had a higher fecundity, a longer life expectancy and the males remained fertile, allowing outdoor reproduction late in winter. However, D. simulans was less resistant in more extreme conditions. At 7 °C D. simulans survived shorter on normal medium and its ability to survive when food supplies were inadequate was insufficient to allow outdoor overwintering. In contrast, D. melanogaster could not reproduce during winter: its fecundity was low and males were sterile at 11 °C. Nevertheless, if only protein-deficient resources were available, temperate D. melanogaster could survive for longer than D. simulans at all the temperatures tested. This greater resistance to underfeeding allows the species to survive until spring, in shelters for several months. A comparison of French and African population performances showed differences in the evolution of the two species during the colonization of more northern areas. African D. simulans, which are efficient at mild temperatures, underwent few modifications. In contrast, the viability of D. melanogaster improved at low developmental temperatures. This species also displayed higher fecundity, longer survival and higher underfeeding resistance at low temperatures. The relationship between the long retention genotype and underfeeding resistance or survival ability observed in French D. melanogaster populations may not exist in African populations.  相似文献   

19.
Itoh M  Yu S  Watanabe TK  Yamamoto MT 《Genetica》1999,106(3):223-229
To examine whether structural and functional differences exist in the proliferation disrupter (prod) genes between Drosophila simulans and D. melanogaster, we analyzed and compared both genes. The exon–intron structure of the genes was found to be the same – three exons were interrupted by two introns, although a previous report suggested that only one intron existed in D. melanogaster. The prod genes of D. simulans and D. melanogaster both turn out to encode 346 amino acids, not 301 as previously reported for D. melanogaster. The numbers of nucleotide substitutions in the prod genes was 0.0747 ±  per synonymous site and 0.0116 ± 0.0039 per replacement site, both comparable to those previously known for homologous genes between D. simulans and D. melanogaster. Genetic analysis demonstrated that D. simulans PROD can compensate for a deficiency of D. melanogaster PROD in hybrids. The PRODs of D. simulans and D. melanogaster presumably share the same function and a conserved working mechanism. The prod gene showed no significant interaction with the lethality of the male hybrid between these species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The genetic analysis of sexual isolation between the closely-related species Drosophila melanogaster and Drosophila simulans involved two experiments with no-choice tests. The efficiency of sexual isolation was measured by the frequency of courtship initiation and interspecific mating. We first surveyed the variation in sexual isolation between D. melanogaster strains and D. simulans strains of different geographic origin. Then, to investigate variation in sexual isolation within strains, we made F1 diallel sets of reciprocal crosses within strains of D. melanogaster and D. simulans. The F1 diallel progeny of one sex were paired with the opposite sex of the other species. The first experiment showed significant differences in the frequency of interspecific mating between geographic strains. There were more matings between D. simulans females and D. melanogaster males than between D. melanogaster females and D. simulans males. The second experiment uncovered that the male genotypes in the D. melanogaster diallel significantly differed in interspecific mating frequency, but not in courtship initiation frequency. The female genotypes in the D. simulans diallel were not significantly different in courtship initiation and interspecific mating frequency. Genetic analysis reveals that in D. melanogaster males sexual isolation was not affected by either maternal cytoplasmic effects, sex-linked effects, or epistatic interaction. The main genetic components were directional dominance and overdominance. The F1 males achieved more matings with D. simulans females than the inbred males. The genetic architecture of sexual isolation in D. melanogaster males argues for a history of weak or no selection for lower interspecific mating propensity. The behavioral causes of variation in sexual isolation between the two species are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号