首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of salinity (0, 50, 100, 150, and 200 mM NaCl) and heat-shock (42°C) and their interactions on germination, seedling growth, and some relevant metabolic changes of two cultivars (cv. Giza 155 and cv. Stork) of wheat (Triticum vulgaris L.) were studied. Germination studies indicate that plants tolerated salinity up to 100 mM NaCl. The lengths of roots and shoots and their water content, as well as fresh and dry matter yield of cv. Giza 155 seedlings remained more or less unchanged up to 100 mM NaCl and of cv. Stork up to 50 mM NaCl. Salinity induced progressive increase in soluble carbohydrates, soluble proteins and proline in cv. Giza 155 and in soluble proteins, proline and other free amino acids in cv. Stork. However, under the higher salinity levels, in cv. Giza 155 increase in soluble carbohydrates was accompanied by lose in other free amino acids, whereas in cv. Stork an opposite effect was obtained. Heat-shock treatment (42°C for 24 h) induced a significant decrease in the final germination percentage, the shoot and root lengths, fresh matter yield and the water content. The dry matter yield of the two cultivars was considerably increased as compared with the corresponding treatments with NaCl only. Heat-shock treatment resulted in a significant increase, in the amount of soluble carbohydrates and proline in salt treated seedlings of both cultivars. The pattern of changes in amino acids was opposite to that of soluble proteins, indicating that the increase in soluble proteins was at the expense of other amino acids in cv. Giza 155 andvice versa in cv. Stork.  相似文献   

2.
The effects of supplemental Ca2+ supply and NaCl salinity on the ionic relations and levels of proline and other amino acids in the primary root of Sorghum bicolor (cv. Hegari) seedlings were investigated. Two days of exposure to 150 m M NaCl resulted in a 50-fold increase in the proline level in the 0–10 mm root tips of seedlings supplied with 5.0 m M Ca2+, but only a 4-fold increase in seedlings with 0.5 m M Ca2+. In contrast to the high levels of proline in the root tip, proline accumulation was only modest in the expanded tissues of the root. The enhancement of proline accumulation in the root tip of salinized seedlings with the Ca2+ supplement may be related to their more favorable tissue K to Na ratio. Thus, elevated Ca2+ may mitigate the NaCl-induced inhibition of S. bicolor root growth via the maintenance of net K to Na selectivity and the enhancement of proline accumulation in the root tip.  相似文献   

3.
Soil salinity is the leading global abiotic stress which limits agricultural production with an annual increment of 10%. Therefore; a pot experiment was conducted with the aim to alleviate the salinity effects on wheat seedlings through exogenous application of silicon (Si) and selenium (Se). Treatments included in the study were viz. (Ck) control (no NaCl nor Si and Se added), only salinity (50 mM NaCl), salinity + Si (50 mM NaCl with 40 mM Si), salinity + Se (50 mM NaCl with 40 mM Se) and salinity + Si + Se (50 mM NaCl + 40 mM Si + 40 mM Si). The salt stress impaired the growth (root and shoot dry weight, root: shoot ratio, seedlings biomass), water relations, photosynthetic attributes, transpiration rate and chlorophyll contents of wheat seedlings. Nonetheless, the foliar application of Si and Se alone and in combination improved the growth, water relations, photosynthetic attributes, transpiration rate and chlorophyll contents of wheat seedlings under stressed conditions. Moreover, an increase in antioxidant enzyme activity and accumulation of osmo-protectants (proline, soluble protein and soluble sugar) was noted under stressed conditions, which was more pronounced in wheat seedling which experienced combined application of Si and Se. To conclude that, foliar application of Si alone mitigated the adverse effect of salinity, while the combined application of Si and Se was proved to be even more effective in alleviating the toxic effects of salinity stress on wheat seedlings.  相似文献   

4.
Effect of NaCl and Proline on Bean Seedlings Cultured in vitro   总被引:3,自引:0,他引:3  
Effects of NaCl (150 mM), proline (10 mM) and their combination on growth and contents of chlorophyll, proline and protein of bean (Phaseolus vulgaris cv. Kizilhaç) seedlings in vitro were investigated. NaCl decreased seedling growth. Proline added to control seedlings did not change seedling growth but decreased chlorophyll and increased protein contents. When proline added to NaCl-treated seedlings growth was increased in comparison with NaCl-treated only. Thus, proline alleviated salinity stress in bean seedlings.  相似文献   

5.
Salinity tolerance of sugar beet (Beta vulgaris L.) cultivars in terms of growth, proline and soluble sugars concentrations, and Na+/K+ and Na+/Ca2+ ratios were analyzed in this study. Three-week-old seedlings of three sugar beet cultivars, ‘Gantang7’, ‘SD13829’, and ‘ST21916’, differing in salinity tolerance, were treated with 0, 50, 100, and 200 mM NaCl. Plant shoots and roots were harvested at 7 days after treatment and subjected to analysis. Low concentration of NaCl (50 mM) enhanced fresh and dry weights of shoot and root in ‘Gantang7’, whereas high one (200 mM) reduced growth in all cultivars and the less reduction was observed in ‘ST21916’. Shoot proline was strongly induced by salinity stress in both ‘Gantang7’ and ‘SD13829’, while it remained unchanged in ‘ST21916’. The addition of 50 mM NaCl significantly increased shoot soluble sugars concentrations in ‘Gantang7’ while it had no significant effects in the other two cultivars. ‘Gantang7’ also showed a higher level of root soluble sugars concentration as compared to the other two cultivars. At 50 mM NaCl, the lower shoot Na+ concentration, and the higher shoot K+ and root Ca2+ concentration in ‘Gantang7’ resulted in the lower shoot Na+/K+ and root Na+/Ca2+ ratio. However, ‘SD13829’ maintained a lower Na+/K+ ratio in both shoot and root when subjected to 200 mM NaCl treatment. According to comprehensive evaluation on salinity tolerance, it is clear that ‘Gantang7’ is more tolerant to salinity than the other two cultivars. Therefore, it is suggested that ‘Gantang7’ should be more suitable for cultivating in the arid and semi-arid irrigated regions.  相似文献   

6.
Soil salinity is a prime impediment in the commercial production of citrus. In the present study two citrus rootstock genotypes viz. Citrus jambhiri and Citrus karna were cultured in vitro and exposed to NaCl salt stress. The previously standardized protocol was used for culture establishment and in vitro shoot and root regeneration. NaCl in different concentrations (25, 50, 75, 100 and 125 mM) was added in standardized regeneration and rooting media to note the biochemical changes due to salinity stress. Results revealed that salinity stress adversely affected the shoot and root differentiation and proved lethal above 100 mM NaCl. The hardening was also hampered due to salt stress. Among different biochemical parameters, proline, total soluble proteins and total sugars accumulation were enhanced however; total chlorophyll content was reduced under salinity stress. The revelation of some new protein polypeptides (21, 26 and 54 kDa) at different increasing salinity levels was attributed to their significance in stress alleviation.  相似文献   

7.
Effects of NaCl on growth in vitro and contents of sugars, free proline and proteins in the seedlings and leaf explants of Nicotiana tabacum cv. Virginia were investigated. The fresh and dry mass of the seedlings decreased under salinity. These growth parameters in leaf explants decreased at 50 mM NaCl and increased up to 150 mM NaCl and then decreased at higher level of salinity. Free proline content in both seedlings and leaf explants increased and polysaccharide content decreased continuously with increasing of NaCl concentration. Reducing sugars, oligosaccharides, soluble sugars and total sugars contents in both seedlings and leaf explants decreased up to 150 mM NaCl and then increased at higher concentrations of NaCl.  相似文献   

8.
The salt tolerance of peanut (Arachis hypogaea L.) seedlings was evaluated by analyzing growth, nutrient uptake, electrolyte leakage, lipid peroxidation and alterations in levels of some organic metabolites under NaCl stress. The plant height, leaf area and plant biomass decreased significantly in salt-treated seedlings as compared with control. The relative water content (RWC %) of leaf decreased by 16 % at high concentrations of NaCl. There was an increase in the lipid peroxidation level and decrease in the electrolyte leakage at high concentrations of NaCl. The total free amino acid and proline contents of leaf increased by 5.5- and 43-folds, respectively in 150 mM NaCl-treated plants as compared with control. Total sugar and starch content increased significantly at high concentrations of NaCl. Chl a, Chl b, total chlorophyll and carotenoid contents decreased significantly at high salinity. Na+ contents of leaf, stem and root increased in dose-dependent manner. K+ content remained unaffected in leaf and root and decreased in stem by salinity. The results from present study reveal that the peanut plants have an efficient adaptive mechanism to tolerate high salinity by maintaining adequate leaf water status associated with growth restriction. In order to circumvent the stress resulting from high salinity, the levels of some organic metabolites such as total free amino acids, proline, total sugars and starch were elevated. The elevated levels of the organic metabolites may possibly have some role in maintenance of osmotic homeostasis, nutrient uptake and adequate tissue water status in peanut seedlings under high-salinity conditions.  相似文献   

9.
Greenhouse experiments were conducted to assess the effect of salinisation of soil on emergence, growth, water content, proline content and mineral accumulation of seedlings of Delonix regia (Hook.) Raf. (Fabaceae). Sodium chloride (NaCl) was added to the soil and salinity was maintained at 0.3, 1.9, 3.9, 6.0 and 7.9 dS m?1. A negative relationship between seedling emergence and salt concentration was obtained. Salinity caused reduction in water content and water potential of tissues (leaves, stems, tap roots and lateral roots) that resulted in internal water deficit to plants. Consequently, shoot and root elongation, leaf expansion and dry matter accumulation in leaves, stems, tap roots and lateral root tissues of seedlings significantly decreased in response to increasing concentration of salt. Proline content in tissues was very low. There were no effective mechanisms to control net uptake of Na on root plasma membrane and subsequently its transport to shoot tissues. Potassium content significantly decreased in tissues in response to salinisation of soil. This tree species is a moderate salt-tolerant glycophytic plant. Nitrogen and calcium content in tissues significantly decreased as soil salinity increased. Phosphors content in tissues exhibited a declining trend with increase in soil salinity. Changes in tissues and whole-plant accumulation pattern of other elements tested, as well as possible mechanisms for avoidance of Na toxicity in this tree species in response to salinisation, are discussed.  相似文献   

10.
Effect of salinity on antioxidant responses of chickpea seedlings   总被引:1,自引:0,他引:1  
The changes in the activity of antioxidant enzymes, like superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase, and growth parameters such as length, fresh and dry weight, proline and H2O2 contents, chlorophyll fluorescence (Fv/Fm), quantum yield of PSII and the rate of lipid peroxidation in terms of malondialdehyde in leaf and root tissues of a chickpea cultivar (Cicer arietinum L. cv. Gökçe) under salt treatment were investigated. Plants were subjected to 0.1, 0.2 and 0.5 M NaCl treatments for 2 and 4 days. Compared to controls, salinity resulted in the reduction of length and of the fresh and dry weights of shoot and root tissues. Salinity caused significant (< 0.05) changes in proline and MDA levels in leaf tissue. In general, a dose-dependent decrease was observed in H2O2 content, Fv/Fm and quantum yield of photosynthesis under salt stress. Leaf tissue extracts exhibited three activity bands, of which the higher band was identified as MnSOD and the others as FeSOD and Cu/ZnSOD. A significant enhancement was detected in the activities of Cu/ZnSOD and MnSOD isozymes in both tissues. APX and GR activities exhibited significant increases (< 0.05) in leaf tissue under all stress treatments, whereas no significant change was observed in root tissue. The activity of CAT was significantly increased under 0.5 M NaCl stress in root tissue, while its activity was decreased in leaf tissue under 0.5 M NaCl stress for 4 days. These results suggest that CAT and SOD activities play an essential protective role against salt stress in chickpea seedlings.  相似文献   

11.
Effect of salinity on nodule formation by soybean   总被引:12,自引:0,他引:12       下载免费PDF全文
A split-root growth system was employed to evaluate the effect of NaCl on nodule formation by soybean (Glycine max L. Merr. cv Davis). By applying the salinity stress and rhizobial inoculum to only one-half the root system, the effects of salinity on shoot growth were eliminated in the nodulation process. Rhizobium colonization of inoculated root surfaces was not affected by the salt treatments (0.0, 26.6, 53.2, and 79.9 millimolar NaCl). While shoot dry weight remained unaffected by the treatments, total shoot N declined from 1.26 grams N per pot at 0.0 millimolar NaCl to 0.44 grams N per pot at 79.9 millimolar NaCl. The concentration of N in the shoot decreased from 3.75% N (0.0 millimolar NaCl) to 1.26% N at 79.9 millimolar NaCl. The decrease in shoot N was attributed to a sharp reduction in nodule number and dry weight. Nodule number and weight were reduced by approximately 50% at 26.6 millimolar NaCl, and by more than 90% at 53.2 and 79.9 millimolar NaCl. Nodule development, as evidenced by the average weight of a nodule, was not as greatly affected by salt as was nodule number. Total nitrogenase activity (C2H2 reduction) decreased proportionally in relation to nodule number and dry weight. Specific nitrogenase activity, however, was less affected by salinity and was not depressed significantly until 79.9 millimolar NaCl. In a second experiment, isolates of Rhizobium japonicum from nodules formed at 79.9 millimolar NaCl did not increase nodulation of roots under salt stress compared to nodule isolates from normal media (0.0 millimolar NaCl). Salt was applied (53.2 millimolar NaCl) to half root systems at 0, 4, 12, and 96 hours from inoculation in a third experiment. By delaying the application of salt for 12 hours, an increase in nodule number, nodule weight, and shoot N was observed. Nodule formation in the 12- and 96-hour treatments was, however, lower than the control. The early steps in nodule initiation are, therefore, extremely sensitive to even low concentrations of NaCl. The sensitivity is not related to rhizobial survival and is probably due to the salt sensitivity of root infection sites.  相似文献   

12.
Effects of salicylic acid on some physiological and biochemical characteristics of maize ( Zea mays L.) seedlings under NaCl stress were studied. Pre-soaking treatments of NaCl (0, 50, 100 and 200 mM) were given to maize seeds in the presence as well as in the absence of 0.5 mM salicylic acid. Two-week-old maize seedlings exhibited significant decrease in dry weight, root length, shoot length and leaf area on 6 h exposure of 100 and 200 mM NaCl stress. Photosynthetic pigments and NR activity in leaves decreased sharply with increasing stress levels. Both proline content and lipid peroxidation (measured in terms of MDA) levels increased significantly under saline conditions. However, seedlings pretreated with 0.5 mM salicylic acid along with the salinity levels showed enhancement in growth parameters, photosynthetic pigments, NR activity while, free proline and MDA levels decreased. The results showed that salt-induced deleterious effects in maize seedlings were significantly encountered by the pretreatment of salicylic acid. It is concluded that 0.5 mM salicylic acid improves the adaptabilities of maize plants to NaCl stress.  相似文献   

13.
A number of studies have established that plant growth and development in oilseed rape (Brassica napus L.) are hampered by salinity stress. Nowadays, researchers have focused on the use of plant growth regulators to increase plant tolerance against salinity. An experiment was performed to evaluate the effects of 5-aminolevulinic acid (ALA, 30 mg l?1) on Brassica napus L. (cv. ??ZS 758??) plants under NaCl (100, 200 mM) salinity. Data presented here were recorded on two different leaf positions (first and third) to have a better understanding of the ameliorative role of ALA on NaCl-stressed oilseed rape plants. Results have shown that increasing salinity imposed negative impact on relative growth rate (root and shoot) and leaf water relations (osmotic potential and relative water content), whereas enhanced the level of relative conductivity, malondialdehyde (MDA) content, osmolytes (soluble sugar, soluble protein, free amino acid and proline) concentration, reactive oxygen species (ROS), and enzymatic (ascorbate peroxidase, guaiacol peroxidase, catalase and superoxide dismutase) and non-enzymatic (reduced glutathione and ascorbate) antioxidants activity in two different leaf position samples. Foliar application of ALA improved relative growth rate (root and shoot) and leaf water relations (osmotic potential and relative water content), and also triggered the further accumulation of osmolytes (soluble sugar, soluble protein, free amino acid and proline) as well as enzymatic (ascorbate peroxidase, guaiacol peroxidase, catalase and superoxide dismutase) and non-enzymatic (reduced glutathione and ascorbate) antioxidants activity in both leaf samples, whereas decreased the membrane permeability, MDA content and ROS production. Our results also indicate that osmolytes are preferentially accumulated in younger tissues.  相似文献   

14.
Amelioration of NaCl Stress by Triadimefon in Soybean Seedlings   总被引:4,自引:0,他引:4  
NaCl stress decreased root growth, shoot length and dry matter production of Glycine max seedlings. It has also caused accumulation of proline and amino acids and decreased protein and nucleic acid contents of the seedlings. Addition of triadimefon to NaCl stressed seedlings partially restored the growth and increased the protein, amino acid, proline and nucleic acid contents of the seedlings. The root biomass production under combination of triadimefon and NaCl was even larger than control. Thus triadimefon can ameliorate the effect of NaCl stress in soybean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Erythrina variegata Lam. seedlings were grown under low (100 mM NaCl) and high (250 mM NaCl) salinity. Seedlings exposed to high salinity for 10 d showed significant reduction in growth rate and biomass production while the root/shoot ratio increased. In contrast to pigment and protein contents, starch and saccharide contents increased in salt stressed seedlings. When the seedlings were subsequently sprayed with triacontanol (1 mg kg-1) the salinity effect was partially ameliorated and growth, biomass, chlorophyll and carotenoid contents increased.  相似文献   

16.
Light-Dark Changes in Proline Content of Barley Leaves under Salt Stress   总被引:3,自引:0,他引:3  
Proline accumulation in leaves of barley (Hordeum vulgare L. cv. Alfa) seedlings treated with 150 mM NaCl was promoted in the light and suppressed in the dark. The light/dark changes of proline content was enhanced with each 12 h light/12 h dark cycle and the proline content increased steadily. Root and shoot concentrations of Na+ and Cl in salt treated plants increased about 10 to 25 times as compared to the control. The content of these ions and the content of malondialdehyde were higher in the shoot of seedlings exposed to salt stress for 4 d in the light in comparison with the seedlings exposed to NaCl for 4 d in darkness. Light stimulated both ions and proline accumulation in the leaves and has no effect in the roots. Oxygen uptake was higher in the seedlings kept 4 d in the light which have higher endogenous free proline content. Chlorophyll fluorescence measurements showed that the photochemical activity of PS 2 slightly decreased as a result of salt stress and was not influenced by light regimes during plant growth.  相似文献   

17.
盐胁迫对冬小麦幼苗干物质分配和生理生态特性的影响   总被引:15,自引:2,他引:15  
以冬小麦(Triticum aestivum L.)品种周麦18(Zhoumai18)和豫麦49(Yumai49)为材料,采用盆栽培养,研究100、250、350 mmol/L和450 mmol/L NaCl 浓度胁迫下,小麦幼苗干物质分配、根系特征、叶绿素含量、游离脯氨酸含量和根系活力变化规律.结果表明,随着盐分浓度的增加,两个品种小麦的叶面积、地上干重以及根的长度显著减小;根系干重、根直径、根表面积、根体积、根系活力以及叶绿素含量呈先上升后下降趋势,在250 mmol/L NaCl处理下达最大.叶绿素a/b随NaCl浓度升高而上升.随盐分浓度变化周麦18叶片游离脯氨酸含量高而变化幅度大,450mmol/L处理组的含量高于对照组1.5倍.供试品种冬小麦耐盐阈值为250~350 mmol/L.  相似文献   

18.
Potato (Solanum tuberosum L. cv. Bintje) was transformed with a cDNA clone encoding an osmotin-like protein. Transgenic and non-transgenic in vitro plants were subjected to NaCl for 3 weeks. The shoot and root development was slightly affected by salinity indicating that the salt condition used was a mild stress. The endogenous proline content of the osmotin-like transformed clone only raised slightly as compared to the non-transformed genotype, where a marked increase in proline content could be observed as a result to salt stress. These data provide evidence for the involvement of osmotin-like proteins in the mechanisms of salt tolerance in potato plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
In the present study we tried to evaluate the effect of salicylic acid (SA) in alleviating the negative effects of salinity stress. NaCl stress (50 and 100 mM) declines the shoot and root length and maximum decrease was observed at 100 mM concentration of NaCl. Similarly shoot dry weight decreased by 57.14% and root dry weight by 67.24% with 100 mM NaCl stress. The pigments and leaf relative water content (LRWC) were also observed to decline with increase in NaCl concentration. However, supplementation of SA to NaCl stressed seedlings showed enhanced length and dry weight of shoot and root. The pigment and LRWC also increased by the application of SA in the present study. NaCl stress also enhanced proline and glycine betaine (GB) by 3.01 and 2.04 folds, respectively; further enhancement was recorded by the application of SA. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) content also showed rise in accumulation, however, seedlings treated with SA and NaCl (100 mM + SA) declines the H2O2 accumulation to 1.90 from 2.45 folds and MDA to 1.69 from 2.34 folds over the control. Antioxidants were observed to increase with NaCl concentration and further increase was recorded by the application of SA. Indoleacetic acid (IAA) and indole butyric acid (IBA) decreased by 36.60 and 44.16%, respectively, and ABA increased by 750% with 100 mM NaCl. Addition of SA to NaCl stressed seedlings enhanced the IAA and IBA and decreased the ABA concentration to appreciable level. NaCl is also responsible for the higher accumulation of Na+ and Na+/K+ ratio and decreased uptake of Ca2+ and K+. Supplementation of SA decreased the Na+ accumulation and enhanced the uptake of Ca2+ and K+ in NaCl stressed seedlings. In conclusion, SA supplementation mitigates the negative effects of NaCl toxicity in faba bean seedlings through the modulation of different osmoprotectants, antioxidants and nutrients uptake.  相似文献   

20.
It has been shown that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. The effect of SA and sodium chloride (NaCl) on growth, metabolite accumulation, oxidative stress and enzymatic and non-enzymatic antioxidant responses on common bean plants (Phaseolus vulgaris, cv. F-15) was studied. Results revealed that either SA or NaCl decrease, shoot, root and total plant dry weights. SA treatments decreased the contents of proline, and reduced forms of ascorbate and glutathione, however, the content of soluble sugars (TSS), thiobarbituric acid-reactive substances (TBARs) and oxidized ascorbate remained unaffected. On the other hand, salinity significantly reduced the levels of endogenous SA but increased the content of proline, soluble sugars, TBARs, ascorbate and glutathione, as well as all increasing the levels of antioxidant enzyme activities assayed, except CAT. The application of SA improved the response of common bean plants to salinity by increasing plant dry weight and decreasing the content of organic solutes (proline and TSS) and damage to the membrane (TBARs). Moreover, SA application under saline conditions decreased the levels of antioxidant enzyme activities POX, APX and MDHAR which could indicate successful acclimatization of these plants to saline conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号