首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1993,122(6):1197-1206
We have recently shown that ilimaquinone (IQ) causes the breakdown of Golgi membranes into small vesicles (VGMs for vesiculated Golgi membranes) and inhibits vesicular protein transport between successive Golgi cisternae (Takizawa et al., 1993). While other intracellular organelles, intermediate filaments, and actin filaments are not affected, we have found that cytoplasmic microtubules are depolymerized by IQ treatment of NRK cells. We provide evidence that IQ breaks down Golgi membranes regardless of the state of cytoplasmic microtubules. This is evident from our findings that Golgi membranes break down with IQ treatment in the presence of taxol stabilized microtubules. Moreover, in cells where the microtubules are first depolymerized by microtubule disrupting agents which cause the Golgi stacks to separate from one another and scatter throughout the cytoplasm, treatment with IQ causes further breakdown of these Golgi stacks into VGMs. Thus, IQ breaks down Golgi membranes independently of its effect on cytoplasmic microtubules. Upon removal of IQ from NRK cells, both microtubules and Golgi membranes reassemble. The reassembly of Golgi membranes, however, takes place in two sequential steps: the first is a microtubule independent process in which the VGMs fuse together to form stacks of Golgi cisternae. This step is followed by a microtubule-dependent process by which the Golgi stacks are carried to their perinuclear location in the cell. In addition, we have found that IQ has no effect on the structural organization of Golgi membranes at 16 degrees C. However, VGMs generated by IQ are capable of fusing and assembling into stacks of Golgi cisternae at 16 degrees C. This is in contrast to the cells recovering from BFA treatment where, after removal of BFA at 16 degrees C, resident Golgi enzymes fail to exit the ER, a process presumed to require the formation of vesicles. We propose that at 16 degrees C there may be general inhibition in the process of vesicle formation, whereas the process of vesicle fusion is not affected.  相似文献   

2.
W G Dunphy  R Brands  J E Rothman 《Cell》1985,40(2):463-472
Using monoclonal antibodies and electron microscopy, we have localized N-acetylglucosamine transferase I within the Golgi apparatus. This enzyme initiates the conversion of asparagine-linked oligosaccharides to the complex type. We have found that the enzyme is concentrated in the central (or medial) cisternae of the Golgi stack. Cisternae at the cis and trans ends of the Golgi complex appear to lack this protein. These experiments establish a function for the medial portion of the Golgi and imply that the Golgi is partitioned into at least three biochemically and morphologically distinct cisternal compartments.  相似文献   

3.
V Malhotra  L Orci  B S Glick  M R Block  J E Rothman 《Cell》1988,54(2):221-227
An N-ethylmaleimide-sensitive transport component (NSF) has been purified on the basis of its ability to support transport between Golgi cisternae. We now report that NSF is needed for membrane fusion. Thus, when NSF is withheld from incubations of Golgi stacks with cytosol and ATP, uncoated transport vesicles accumulate. Biochemical experiments confirm this conclusion and reveal that NSF is needed to form the first of two previously described prefusion complexes. NSF, therefore, acts within a cascade in which a vesicle-cisterna complex is matured until it is competent for fusion. We suggest that this reflects the stepwise assembly of a multisubunit "fusion machine" following vesicle attachment.  相似文献   

4.
Lateral segregation of mobile membrane constituents (e.g. lipids, proteins or membrane domains) into the regions of their preferred curvature relaxes stresses in the membrane. The equilibrium distribution of the constituents in the membrane is thus a balance between the gains in the membrane elastic energy and the segregation-induced loss of entropy. The membrane in the Golgi cisternae is particularly susceptible to the curvature-driven segregation because it possesses two very different curvatures-the highly curved membrane in the cisternal rims and the flat membrane in the cisternal sides. In this work, we calculate the extent of lateral segregation in the Golgi cisternae in the case where the segregation is driven by the Helfrich bending energy. It is assumed that the membrane bending constant and spontaneous curvature depend on the local membrane composition. A simple analytical expression for the extent of the lateral segregation is derived. The results show that the segregation depends on the ratio between the bending constant and the thermal energy, the difference of the preferred curvatures of the constituents and the sizes of the constituents. Applying the model to a typical Golgi cisterna, it was found that entropy can effectively limit the extent of the curvature-driven lateral segregation.  相似文献   

5.
We have studied the reconstitution of the Golgi apparatus in vivo using an heterologous membrane transplant system. Endogenous glycopeptides of rat hepatic Golgi fragments were radiolabeled in vitro with [3H]sialic acid using detergent-free conditions. The Golgi fragments consisting of dispersed vesicles and tubules with intraluminal lipoprotein-like particles were then microinjected into Xenopus oocytes and their fate studied by light (LM) and electron microscope (EM) radioautography. 3 h after microinjection, radiolabel was observed by LM radioautography over yolk platelet-free cytoplasmic regions near the injection site. EM radioautography revealed label over Golgi stacked saccules containing the hepatic marker of intraluminal lipoprotein-like particles. At 14 h after injection, LM radioautographs revealed label in the superficial cortex of the oocytes between the yolk platelets and at the oocyte surface. EM radioautography identified the labeled structures as the stacked saccules of the Golgi apparatus, the oocyte cortical granules, and the plasmalemma, indicating that a proportion of microinjected material was transferred to the surface via the secretion pathway of the oocyte. The efficiency of transport was low, however, as biochemical studies failed to show extensive secretion of radiolabel into the extracellular medium by 14 h with approximately half the microinjected radiolabeled constituents degraded. Vinblastine (50 microM) administered to oocytes led to the formation of tubulin paracrystals. Although microinjected Golgi fragments were able to effect the formation of stacked saccules in vinblastine-treated oocytes, negligible transfer of heterologous material to the oocyte surface could be detected by radioautography. The data demonstrate that dispersed fragments of the rat liver Golgi complex (i.e., unstacked vesicles and tubules) reconstitute into stacked saccules when microinjected into Xenopus cytoplasm. After the formation of stacked saccules, reconstituted Golgi fragments transport constituents into a portion of the exocytic pathway of the host cell by a microtubule-regulated process.  相似文献   

6.
1. The reconstitution of chlorophyllide biosynthesis by barley etioplast membranes is described. 2. The process is dependent on the additon of NADPH and protochlorophyllide and on illumination, which can be either continuous or intermittent. 3. The reconstituted process involves spectroscopically similar intermediates to the native reaction in whole leaves. 4. Steps in the process are an initial enzymic formation in the dark of a photoactive complex, P638/652 (probably a ternary protochlorophyllide-NADPH-enzyme complex), followed by a very rapid light-dependent hydrogen transfer from the NADPH to the protochlorophyllide giving chlorophyllide giving chlorophyllide, finally releasing the enzyme for repeating the process. 5. A continuous assay for the system regenerating complex P638/652 was devised on the basis of monitoring chlorophyllide formation. 6. The pH optimum of the reaction is at 6.9 and Km values for protochlorophyllide and NADPH are 0.46 and 35 micron respectively. 7. The reaction is associated specifically with the etioplast membrane fraction. 8. Activities of the system assayed in vitro are more than adequate to account for rates of chlorophyll formation in vivo.  相似文献   

7.
SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins.  相似文献   

8.
The Golgi complex is composed of at least four distinct compartments, termed the cis-, medial, and trans-Golgi cisternae and the trans-Golgi network (TGN). It has recently been reported that the organization of the Golgi complex is disrupted in cells treated with the fungal metabolite, brefeldin-A. Under these conditions, it was shown that resident enzymes of the cis-, medial, and trans-Golgi return to the ER. We report here that 300-kD mannose 6-phosphate receptors, when pulse-labeled within the ER of brefeldin-A-treated cells, acquired numerous N-linked galactose residues with a half time of approximately 2 h, as measured by their ability to bind to RCA-I lectin affinity columns. In contrast, Limax flavus lectin chromatography revealed that less than 10% of these receptors acquired sialic acid after 8 h in brefeldin-A. Two lines of evidence suggested that proteins within and beyond the TGN did not return to the ER in the presence of brefeldin-A. First, the majority of 300-kD mannose 6-phosphate receptors present in the TGN and endosomes did not return to the ER after up to 6 h in brefeldin-A, as determined by their failure to contact galactosyltransferase that had relocated there. Moreover, although mannose 6-phosphate receptors did not acquire sialic acid when present in the ER of brefeldin-A-treated cells, they were readily sialylated when labeled at the cell surface and transported to the TGN. These experiments indicate that galactosyltransferase, a trans-Golgi enzyme, returns to the endoplasmic reticulum in the presence of brefeldin-A, while the bulk of sialyltransferase, a resident of the TGN, does not. Our findings support the proposal that the TGN is a distinct, fourth compartment of the Golgi apparatus that is insensitive to brefeldin-A.  相似文献   

9.
The Golgi ribbon is a complex structure of many stacks interconnected by tubules that undergo fragmentation during mitosis through a multistage process that allows correct Golgi inheritance. The fissioning protein CtBP1-S/BARS (BARS) is essential for this, and is itself required for mitotic entry: a block in Golgi fragmentation results in cell-cycle arrest in G2, defining the 'Golgi mitotic checkpoint'. Here, we clarify the precise stage of Golgi fragmentation required for mitotic entry and the role of BARS in this process. Thus, during G2, the Golgi ribbon is converted into isolated stacks by fission of interstack connecting tubules. This requires BARS and is sufficient for G2/M transition. Cells without a Golgi ribbon are independent of BARS for Golgi fragmentation and mitotic entrance. Remarkably, fibroblasts from BARS-knockout embryos have their Golgi complex divided into isolated stacks at all cell-cycle stages, bypassing the need for BARS for Golgi fragmentation. This identifies the precise stage of Golgi fragmentation and the role of BARS in the Golgi mitotic checkpoint, setting the stage for molecular analysis of this process.  相似文献   

10.
Rat liver Golgi stacks were incubated with mitotic cytosol for 30 min at 37 degrees C to generate mitotic Golgi fragments comprising vesicles, tubules, and cisternal remnants. These were isolated and further incubated with rat liver cytosol for 60 min. The earliest intermediate observed by electron microscopy was a single, curved cisterna with tubular networks fused to the cisternal rims. Elongation of this cisterna was accompanied by stacking and further growth at the cisternal rims. Stacks also fused laterally so that the typical end product was a highly curved stack of 2-3 cisternae mostly enclosing an electron-lucent space. Reassembly occurred in the presence of nocodazole or cytochalasin B but not at 4 degrees C or in the absence of energy supplied in the form of ATP and GTP. Pretreatment of the mitotic fragments and cytosol with N-ethylmaleimide (NEM) also prevented reassembly. GTP gamma S and A1F prevented reassembly when added during fragmentation but not when added to the reassembly mixture. In fact, GTP gamma S stimulated reassembly such that all cisternae were stacked at the end of the incubation and comprised 40% of the total membrane. In contrast, microcystin inhibited stacking so that only single cisternae accumulated. Together these results provide a detailed picture of the reassembly process and open up the study of the architecture of the Golgi apparatus to a combined morphological and biochemical analysis.  相似文献   

11.
The budding yeast Pichia pastoris contains ordered Golgi stacks next to discrete transitional endoplasmic reticulum (tER) sites, making this organism ideal for structure-function studies of the secretory pathway. Here, we have used P. pastoris to test various models for Golgi trafficking. The experimental approach was to analyze P. pastoris tER-Golgi units by using cryofixed and freeze-substituted cells for electron microscope tomography, immunoelectron microscopy, and serial thin section analysis of entire cells. We find that tER sites and the adjacent Golgi stacks are enclosed in a ribosome-excluding "matrix." Each stack contains three to four cisternae, which can be classified as cis, medial, trans, or trans-Golgi network (TGN). No membrane continuities between compartments were detected. This work provides three major new insights. First, two types of transport vesicles accumulate at the tER-Golgi interface. Morphological analysis indicates that the center of the tER-Golgi interface contains COPII vesicles, whereas the periphery contains COPI vesicles. Second, fenestrae are absent from cis cisternae, but are present in medial through TGN cisternae. The number and distribution of the fenestrae suggest that they form at the edges of the medial cisternae and then migrate inward. Third, intact TGN cisternae apparently peel off from the Golgi stacks and persist for some time in the cytosol, and these "free-floating" TGN cisternae produce clathrin-coated vesicles. These observations are most readily explained by assuming that Golgi cisternae form at the cis face of the stack, progressively mature, and ultimately dissociate from the trans face of the stack.  相似文献   

12.
In addition to important roles near the actin-rich cell cortex, ample evidence indicates that multiple myosins are also involved in membrane movements in the endomembrane system. Nonmuscle myosin-II has been shown to have roles in anterograde and retrograde trafficking at the Golgi. Myosin-II is present on Golgi stacks isolated from intestinal epithelial cells and has been localized to the Golgi in several polarized and unpolarized cell lines. An understanding of roles of myosin-II in Golgi physiology will be facilitated by understanding the molecular arrangement of myosin-II at the Golgi. Salt-washing removes endogenous myosin-II from isolated Golgi and purified brush border myosin-II can bind in vitro. Brush border myosin-II binds to a tightly bound Golgi peripheral membrane protein with a K(1/2) of 75 nM and binding is saturated at 0.7 pmol myosin/microg Golgi. Binding studies using papain cleavage fragments of brush border myosin-II show that the 120-kDa rod domain, but not the head domain, of myosin heavy chain can bind directly to Golgi stacks. The 120-kDa domain does not bind to Golgi membranes when phosphorylated in vitro with casein kinase-II. These results suggest that phosphorylation in the rod domain may regulate the binding and/or release of myosin-II from the Golgi. These data support a model in which myosin-II is tethered to the Golgi membrane by its tail and actin filaments by its head. Thus, translocation along actin filaments may extend Golgi membrane tubules and/or vesicles away from the Golgi complex.  相似文献   

13.
14.
The Golgi apparatus is a stack of compartments that serves as a central junction for membrane traffic, with carriers moving through the stack as well as arriving from, and departing toward, many other destinations in the cell. This requires that the different compartments in the Golgi recruit from the cytosol a distinct set of proteins to mediate accurate membrane traffic. This recruitment appears to reflect recognition of small GTPases of the Rab and Arf family, or of lipid species such as PtdIns(4)P and diacylglycerol, which provide a unique "identity" for each compartment. Recent work is starting to reveal the mechanisms by which these labile landmarks are generated in a spatially restricted manner on specific parts of the Golgi.  相似文献   

15.
We have used serial sectioning to study the topology of Golgi cisternae in insulin-secreting cells during secretion-stimulated endocytotic uptake of exogenous horseradish peroxidase (HRP). HRP-labelled cisternae were followed on several series of consecutive sections. This revealed that labelled cisternae could always be traced to a position in the Golgi stack intermediate between the cis and the trans poles. This occurred in spite of the apparent cis or trans locations of HRP-containing cisternae on some sections. The latter images could be explained by the lack of the true cis or trans (clathrin-coated) cisternae at certain levels of the stack.  相似文献   

16.
17.
A role for heterotrimeric G proteins in the regulation of Golgi function and formation of secretory granules is generally accepted. We set out to study the effect of activation of heterotrimeric G proteins by aluminum fluoride on secretory granule formation in AtT-20 corticotropic tumor cells and in melanotrophs from the rat pituitary. In AtT-20 cells, treatment with aluminum fluoride or fluoride alone for 60 min induced complete dispersal of Golgi, ER-Golgi intermediate compartment and Golgi matrix markers, while betaCOP immunoreactiviy retained a juxtanuclear position and TGN38 was unaffected. Electron microscopy showed compression of Golgi cisternae followed by conversion of the Golgi stacks into clusters of tubular and vesicular elements. In the melanotroph of the rat pituitary a similar compression of Golgi cisternae was observed, followed by a progressive loss of cisternae from the stacks. As shown in other cells, brefeldin A induced redistribution of the Golgi matrix protein GM130 to punctate structures in the cytoplasm in AtT-20 cells, while mannosidase II immunoreactivity was completely dispersed. Fluoride induced a complete dispersal of mannosidase II and GM130 immunoreactivity. The effect of fluoride was fully reversible with reestablishment of normal mannosidase II and GM130 immunoreactivity within 2 h. After 1 h of recovery, showing varying stages of reassembly, the patterns of mannosidase II and GM130 immunoreactivity were identical in individual cells, indicating that Golgi matrix and cisternae reassemble with similar kinetics during recovery from fluoride treatment. Instead of a specific aluminum fluoride effect on secretory granule formation in the trans-Golgi network, we thus observe a unique form of Golgi dispersal induced by fluoride alone, possibly via its action as a phosphatase inhibitor.  相似文献   

18.
Microtubule disruption has dramatic effects on the normal centrosomal localization of the Golgi complex, with Golgi elements remaining as competent functional units but undergoing a reversible "fragmentation" and dispersal throughout the cytoplasm. In this study we have analyzed this process using digital fluorescence image processing microscopy combined with biochemical and ultrastructural approaches. After microtubule depolymerization, Golgi membrane components were found to redistribute to a distinct number of peripheral sites that were not randomly distributed, but corresponded to sites of protein exit from the ER. Whereas Golgi enzymes redistributed gradually over several hours to these peripheral sites, ERGIC-53 (a protein which constitutively cycles between the ER and Golgi) redistributed rapidly (within 15 minutes) to these sites after first moving through the ER. Prior to this redistribution, Golgi enzyme processing of proteins exported from the ER was inhibited and only returned to normal levels after Golgi enzymes redistributed to peripheral ER exit sites where Golgi stacks were regenerated. Experiments examining the effects of microtubule disruption on the membrane pathways connecting the ER and Golgi suggested their potential role in the dispersal process. Whereas clustering of peripheral pre-Golgi elements into the centrosomal region failed to occur after microtubule disruption, Golgi-to-ER membrane recycling was only slightly inhibited. Moreover, conditions that impeded Golgi-to-ER recycling completely blocked Golgi fragmentation. Based on these findings we propose that a slow but constitutive flux of Golgi resident proteins through the same ER/Golgi cycling pathways as ERGIC-53 underlies Golgi Dispersal upon microtubule depolymerization. Both ERGIC-53 and Golgi proteins would accumulate at peripheral ER exit sites due to failure of membranes at these sites to cluster into the centrosomal region. Regeneration of Golgi stacks at these peripheral sites would re-establish secretory flow from the ER into the Golgi complex and result in Golgi dispersal.  相似文献   

19.
Investigations of regulated S-nitrosylation and denitrosylation of vasorelevant proteins are a newly emergent area in vascular biology. We previously showed that monocrotaline pyrrole (MCTP)-induced megalocytosis of pulmonary arterial endothelial cells (PAECs), which underlies the development of pulmonary arterial hypertension, was associated with a Golgi blockade characterized by the trapping of diverse vesicle tethers, soluble N-ethylmaleimide-sensitive factor (NSF)-attachment protein receptors (SNAREs), and soluble NSF-attachment proteins (SNAPs) in the Golgi; reduced trafficking of caveolin-1 (cav-1) and endotheial nitric oxide (NO) synthase (eNOS) from the Golgi to the plasma membrane; and decreased caveolar NO. We have investigated whether NSF, the ATPase involved in all SNARE disassembly, might be the upstream target of MCTP and whether MCTP might regulate NSF by S-nitrosylation. Immunofluorescence microscopy and Golgi purification techniques revealed the discordant decrease of NSF by approximately 50% in Golgi membranes after MCTP despite increases in alpha-SNAP, cav-1, eNOS, and syntaxin-6. The NO scavenger (4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide failed to affect the initiation or progression of MCTP megalocytosis despite a reduction of 4,5-diaminofluorescein diacetate fluorescence and inhibition of S-nitrosylation of eNOS as assayed using the biotin-switch method. Moreover, the latter assay not only revealed constitutive S-nitrosylation of NSF, eNOS, cav-1, and clathrin heavy chain (CHC) in PAECs but also a dramatic 70-95% decrease in the S-nitrosylation of NSF, eNOS, cav-1, and CHC after MCTP. These data point to depletion of NSF from Golgi membranes as a mechanism for Golgi blockade after MCTP and to denitrosylation of vasorelevant proteins as critical to the development of endothelial cell megalocytosis.  相似文献   

20.
Protein transport via the endoplasmic reticulum Golgi apparatus-cell surface export route was blocked when slices (6-15 cells thick) of livers of 10-day-old rats were incubated with 1 microM monensin. Production of secretory vesicles by Golgi apparatus was reduced or eliminated and, in their place, swollen cisternae accumulated in the cytoplasm at the trans Golgi apparatus face. The swelling response was restricted to the six external cell layers of the liver slices, and the number of cells showing the response was little increased by either a greater concentration of monensin or by longer times of incubation. When monensin was added post-chase to the slices, flux of radioactive proteins to the cell surface was inhibited by about 80% as determined from standard pulse-chase analyses with isolated cell fractions. Radioactive proteins accumulated in both endoplasmic reticulum and Golgi apparatus and in a fraction that may contain monensin-blocked Golgi apparatus cisternae released from the stack. The latter fraction was characterized by galactosyltransferase/thiamine pyrophosphatase ratios similar to those of Golgi apparatus from control slices. The use of monensin with the tissue slice system may provide an opportunity for the cells to accumulate monensin-blocked Golgi apparatus cisternae in sufficient quantities to permit their isolation and purification by conventional cell fractionation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号