首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
O Naess 《Steroids》1976,27(2):167-185
The specific androgen receptors for testosterone (T) (1) and 5alpha-dihydrotestosterone (DHT) in the cytosol fraction of the hypothalamus, preoptic area and brain cortex of the rat have been characterized using electrophoresis and isoelectric focusing in polyacrylamide gels. After labeling of the cytosol fractions in vivo and in vitro we were able to demonstrate androgen-receptor complexes moving with an electrophoretic mobility (R(f) of 0.5 in 3.25% acrylamide gels containing 0.5% agarose and 10% glycerol. Polyacrylamide gel electrophoresis was used as a quantitative assay for androgen receptors in the tissues. The hypothalamus, preoptic area and brain cortex were found to possess a single class of high affinity binding sites for androgens and the dissociation constants (K(D) were estimated to be 3.4, 4.3 and 2.6 X 10 (-10M) respectively. The binding capacities were 3.7 (hypothalamus), 3.5 (preoptic area) and 1.8 X 10 (-15) (brain cortex) moles of high affinity binding sites per mg protein. Like other androgen-receptor complexes, the testosterone-receptor complexes of the hypothalamus, preoptic area and brain cortex were temperature labile, sulfhydryl dependent and revealed a very slow rate of dissociation at o degrees C (t1/2 greater than 36 hr). The receptors in all the tissues had an isoelectric point of 5.8. The steroid specificity of the cytoplasmic androgen receptors was tested in vitro by the competing efficiency of different unlabeled steroids for (3H)-testosterone binding. In the three tissues in investigation the following order of affinity was found: DHT greater than T greater than Cyproterone acetate greater than progesterone greater than androstenedione greater than 17beta-estradiol. Cortisol did not effect androgen binding significantly. Thus, the physiochemical characteristics of the cytoplasmic androgen receptors of the hypothalamus, preoptic area and brain cortex are very similar, if not identical, to those of the androgen receptors described in the anterior pituitary, ventral prostate, epididymis and testis.  相似文献   

2.
The specific binding of tritiated muscimol to gamma-aminobutyric acid (GABA) receptor sites was studied in distinct brain areas of female rats during different endocrine states. In diestrous rats with intact ovaries the highest receptor densities were found in the cortex (10.24 pmol/mg protein) and the lowest concentrations in the mediobasal hypothalamus (3.29 pmol/mg protein). Four weeks after removal of the ovaries, the number of binding sites was enhanced up to 2.4-fold in all brain areas investigated: the preoptic brain area, mediobasal hypothalamus, corticomedial amygdala, and cerebral cortex. The affinity of the binding sites remained unchanged. Substitution of estradiol and progesterone reduced the number of binding sites to values seen before ovariectomy. The induction of an afternoon surge of LH by estradiol that could be blocked by enhancing the GABAergic tone was accompanied by a distinct reduction in Bmax in the preoptic area in the morning. These results give evidence that ovarian hormones modulate GABAergic neurotransmission by regulation of GABAA receptor synthesis or degradation.  相似文献   

3.
We have demonstrated a high density of both radiolabeled progesterone and estradiol conjugated to bovine serum albumin binding sites in the medial preoptic area and hypothalamus. Infusions of sex hormone binding globulin into the medial preoptic area of rats increased their female sexual receptivity similarly to the effect of estradiol conjugated to bovine serum albumin, suggesting sex hormone binding globulin acts at binding sites for estradiol conjugated to bovine serum albumin. In this study sex hormone binding globulin was used to displace radiolabeled progesterone conjugated to bovine serum albumin from plasma membrane fractions from the medial preoptic area-anterior hypothalamus and medial basal hypothalamus of ovariectomized rats injected with either 5 microg estradiol benzoate or sesame oil vehicle. We found that sex hormone binding displaced radiolabeled progesterone conjugated to bovine serum albumin in both areas and that in vivo estradiol treatment greatly increased the relative displacement by sex hormone binding globulin in the medial preoptic area-anterior hypothalamus. We interpret these data as indicating the presence of sex hormone binding globulin receptors in brain plasma membranes and further suggest that endogenous steroid conditions may alter these receptors.  相似文献   

4.
SYNOPSIS. In the dwarf Siberian hamster, Phodopus sungorus,the photoperiodic response can be modified by numerous environmentalstimuli, including social interactions, dietary, and climaticchanges. Photoperiodic information is processed in both themedial basal hypothalamus and the preoptic area. Transfer ofanimals from a long summer photoperiod to a short winter photoperiodresults in decreases in the concentration of both norepinephrineand dopamine in both of these brain areas. Results from thesestudies indicate that both dietary supplements and social interactionscan override the effects of day length on changes in brain neurotransmitters.Specifically, social interactions can override the decreasesin norepinephrine and dopamine in the medial basal hypothalamusbut not the preoptic area. Conversely, dietary manipulationsoverride the decreases in the preoptic area but not in the medialbasal hypothalamus. These results suggest that photoperiod isa general stimulus that depresses neurotransmitter activityin multiple brain areas including the medial basal hypothalamus,and preoptic area. Fine tuning information, such as dietaryand social cues, is then processed in very specific areas ofthe brain and can override the photoperiod induced changes inthese specific areas  相似文献   

5.
The spinal and peripheral innervation of the clitoris and vagina are fairly well understood. However, little is known regarding supraspinal control of these pelvic structures. The multisynaptic tracer pseudorabies virus (PRV) was used to map the brain neurons that innervate the clitoris and vagina. To delineate forebrain input on PRV-labeled cells, the anterograde tracer biotinylated dextran amine was injected in the medial preoptic area (MPO), ventromedial nucleus of the hypothalamus (VMN), or the midbrain periaqueductal gray (PAG) 10 days before viral injections. These brain regions have been intimately linked to various aspects of female reproductive behavior. After viral injections (4 days) in the vagina and clitoris, PRV-labeled cells were observed in the paraventricular nucleus (PVN), Barrington's nucleus, the A5 region, and the nucleus paragigantocellularis (nPGi). At 5 days postviral administration, additional PRV-labeled cells were observed within the preoptic region, VMN, PAG, and lateral hypothalamus. Anterograde labeling from the MPO terminated among PRV-positive cells primarily within the dorsal PVN of the hypothalamus, ventrolateral VMN (VMNvl), caudal PAG, and nPGi. Anterograde labeling from the VMN terminated among PRV-positive cells in the MPO and lateral/ventrolateral PAG. Anterograde labeling from the PAG terminated among PRV-positive cells in the PVN, ventral hypothalamus, and nPGi. Transynaptically labeled cells in the lateral hypothalamus, Barrington's nucleus, and ventromedial medulla received innervation from all three sources. These studies, together, identify several central nervous system (CNS) sites participating in the neural control of female sexual responses. They also provide the first data demonstrating a link between the MPO, VMNvl, and PAG and CNS regions innervating the clitoris and vagina, providing support that these areas play a major role in female genital responses.  相似文献   

6.
Orexins exert their effects through two specific receptors (OX1R and OX2R) that have been found mainly in the brain and also in peripheral tissues of rats and humans. Here, we demonstrate expression of mRNA encoding for ovine OX1R and OX2R in central and peripheral tissues of sheep. Gene expression for orexin receptors in the hypothalamus and the preoptic area was localised by in situ hybridisation. OX1R was detected in arcuate nuclei (ARC), median eminence (ME), the lateral hypothalamic nuclei and preoptic area (POA) and it was scattered along the third ventricle from the paraventricular (PVN) to the ventromedial hypothalamic nuclei (VMH). OX2R was localised in the PVN, ARC, ME, ventral VMH and a small region of the ventral POA. Gene expression for OX1R and OX2R in central and peripheral tissues was analysed using quantitative real time RT-PCR. Both orexin receptor genes were expressed in the hypothalamus, POA, hippocampus, amygdala, olfactory bulb, pineal gland and recess and pituitary gland, whereas only OX1R mRNA was detected in the testis, kidney and adrenal gland. The expression of the genes for orexin receptors in this range of ovine tissues suggests roles for orexins in multiple physiological functions, with actions at both central and peripheral levels.  相似文献   

7.
We demonstrated previously that testosterone regulates aromatase activity in the anterior/dorsolateral hypothalamus of male rhesus macaques. To determine the level of the androgen effect, we developed a ribonuclease protection assay to study the effects of testosterone or dihydrotestosterone (DHT) on aromatase (P450(AROM)) mRNA in selected brain areas. Adult male rhesus monkeys were treated with testosterone or DHT. Steroids in serum were quantified by RIA. Fourteen brain regions were analyzed for P450(AROM) mRNA. Significant elevations of its message over controls (P<0.05) were found in the medial preoptic area/anterior hypothalamus of both androgen treatment groups and the medial basal hypothalamus of the testosterone-treated males. Other brain areas were not affected by androgen treatment. We conclude that testosterone and DHT regulate P450(AROM) mRNA in brain regions that mediate reproductive behaviors and gonadotropin release. The P450(AROM) mRNA of other brain areas is not androgen dependent. Brain-derived estrogens may also be important for maintaining neural circuitry in brain areas not related to reproduction. The control of P450(AROM) mRNA in these areas may differ from what we report here, but it is equally important to understand the function of in situ estrogen formation in these areas.  相似文献   

8.
The role of the suprachiasmatic nucleus/medial preoptic area region of the hypothalamus in the expression of rat hypothalamic growth hormone-releasing factor-induced feeding in the rat was examined. Rats were tested for their 90-min food intake following microinjections of growth hormone-releasing factor (0.0, 0.01, 0.1 or 1.0 pmol) aimed at the suprachiasmatic nucleus/medial preoptic area region. It was found that growth hormone-releasing factor dose-dependently stimulated food intake with the 1.0 pmol dose being the most effective, increasing food intake by approximately 200%. Injections outside the suprachiasmatic nucleus/medial preoptic area region were ineffective. These data are taken to suggest that the suprachiasmatic nucleus/medial preoptic area region of the hypothalamus is important for the central stimulatory effects of growth hormone-releasing factor on feeding.  相似文献   

9.
Double-label immunocytochemistry was used to determine whether estradiol-induced progestin receptors and either beta-endorphin or leucine-enkephalin are colocalized in female guinea pig brain. Ovariectomized, adult guinea pigs were implanted with capsules containing estradiol-17 beta to induce high levels of progestin receptors, and injected intracerebroventricularly with colchicine to improve visualization of the opiate peptides. Sections through the hypothalamus and preoptic area were processed for progestin receptor, followed by beta-endorphin or leucine-enkephalin immunocytochemistry. As reported previously, high concentrations of progestin receptor-immunoreactive (PR-IR) cells were found in the preoptic area (medial and periventricular portions, medial preoptic nucleus) and hypothalamus (anterior hypothalamic and arcuate nuclei, ventrolateral area). Many beta-endorphin-IR cells contained PR-IR in the arcuate nucleus and its surroundings (33%) and in the dorsomedial area of the hypothalamus (64%). Scattered enkephalin-IR cells were found in the septal nucleus, medial and lateral preoptic area, bed nucleus of the stria terminalis, and the arcuate nucleus. The ventromedial nucleus of the hypothalamus and dorsolateral magnocellular nucleus, respectively, contained moderate and heavy concentrations of enkephalin-IR cells. Although some of these areas also contained PR-IR, enkephalin-IR was colocalized consistently with PR-IR only in a small number of cells in the arcuate nucleus and ventromedial/ventrolateral area of the hypothalamus. These data, taken together with earlier observations that virtually all cells containing estradiol-induced PR-IR also contain estrogen receptor-IR, provide neuroanatomical evidence that hypothalamic actions of progesterone and estradiol may be mediated by beta-endorphin and/or enkephalin.  相似文献   

10.
Medroxyprogesterone acetate (MPA) is a synthetic progestin that is reported to be effective in the treatment of paraphilic behavior, including paraphilic aggression, in men. The mechanisms and sites of action for its behavioral effects are not known. Thaw-mount autoradiography was used to help identify sites in the brain at which MPA may act in a male primate. Two adult, castrated male cynomolgus monkeys were administered [3H]MPA and killed one hour later. Radioactivity was concentrated in the nuclei of many neurons in the medial preoptic nucleus (n.), anterior hypothalamic area, ventromedial hypothalamic n., and arcuate n. Virtually no labeled cells were observed in the bed n. of the stria terminalis, lateral septal n., or amygdala. Analysis by high performance liquid chromatography of brain samples from the same animals demonstrated that 84% of the extractable radioactivity in cell nuclei from the hypothalamus and preoptic area was in the form of unmetabolized [3H]MPA. The localization of MPA-concentrating neurons in regions of the brain known to be implicated in regulating both sexual behavior and pituitary function suggests that, among other sites of action, MPA may act directly upon the brain.  相似文献   

11.
Double-label immunocytochemistry was used to determine whether estradiol-induced progestin receptors and either β-endorphin or leucine-enkephalin are colocalized in female guinea pig brain. Ovariectomized, adult guinea pigs were implanted with capsules containing estradiol-17β to induce high levels of progestin receptors, and injected intracerebroventricularly with co chicine to improve visualization of the opiate peptides. Sections through the hypothalamus and preoptic area were processed for progestin receptor, followed by β-endorphin or leucine-enkephalin immunocytochemistry. As reported previously, high concentrations of progestin receptor-immunoreactive (PR-IR) cells were found in the preoptic area (medial and periventricular portions, medial preoptic nucleus) and hypothalamus (anterior hypothalamic and arcuate nuclei, ventrolateral area). Many β-endorphin-IR cells contained PR-IR in the arcuate nucleus and its surroundings (33%) and in the dorsomedial area of the hypothalamus (64%). Scattered enkephalin-IR cells were found in the septal nucleus, medial and lateral preoptic area, bed nucleus of the stria terminalis, and the arcuate nucleus. The ventromedial nucleus of the hypothalamus and dorsolateral magnocellular nucleus, respectively, contained moderate and heavy concentrations of enkephalin-IR cells. Although some of these areas also contained PR-IR, enkephalin-IR was colocalized consistently with PR-IR only in a small number of cells in the arcuate nucleus and ventromedial/ventrolateral area of the hypothalamus. These data, taken together with earlier observations that virtually all cells containing estradiol-induced PR-IR also contain estrogen receptor-IR, provide neuroanatomical evidence that hypothalamic actions of progesterone and estradiol may be mediated by β-endorphin and/or enkephalin.  相似文献   

12.
13.
The distribution of brain natriuretic peptide (BNP)-like immunoreactivity (ir) was studied in the brain of a urodele amphibian, the crested newt Triturus carnifex Laur. BNP-like immunoreactive neurons were found mainly in the caudal hypothalamus (retro- and supra-chiasmatic areas) and in the preoptic area. A widespread innervation throughout the brainstem as far as the spinal cord was also observed. By double immunostaining (after section incubation with a-BNP and a-tyrosine hydroxylase-TH-antibodies), close topographical relationships between BNP-like and TH-like immunoreactive neurons within the hypothalamus were found.  相似文献   

14.
Martinez V  Taché Y 《Peptides》2000,21(11):1617-1625
Bombesin is the first peptide shown to act in the brain to influence gastric function and the most potent peptide to inhibit acid secretion when injected into the cerebrospinal fluid (CSF) in rats and dogs. Bombesin responsive sites include specific hypothalamic nuclei (paraventricular nucleus, preoptic area and anterior hypothalamus), the dorsal vagal complex as well as spinal sites at T9-T10. The antisecretory effect of central bombesin encompasses a variety of endocrine/paracrine (gastrin, histamine) or neuronal stimulants. Bombesin into the CSF induces an integrated gastric response (increase in bicarbonate, and mucus, inhibition of acid, pepsin, vagally mediated contractions) enhancing the resistance of the mucosa to injury through autonomic pathways. The physiological significance of central action of bombesin on gastric function is still to be unraveled.  相似文献   

15.
Estradiol (E2) exerts an inhibitory effect on food intake in a variety of species. While compelling evidence indicates that central, rather than peripheral, estrogen receptors (ERs) mediate this effect, the exact brain regions involved have yet to be conclusively identified. In order to identify brain regions that are sufficient for E2's anorectic effect, food intake was monitored for 48 h following acute, unilateral, microinfusions of vehicle and two doses (0.25 and 2.5 μg) of a water-soluble form of E2 in multiple brain regions within the hypothalamus and midbrain of ovariectomized rats. Dose-related decreases in 24-h food intake were observed following E2 administration in the medial preoptic area (MPOA), arcuate nucleus (ARC), and dorsal raphe nucleus (DRN). Within the former two brain areas, the larger dose of E2 also decreased 4-h food intake. Food intake was not influenced, however, by similar E2 administration in the paraventricular nucleus, lateral hypothalamus, or ventromedial nucleus. These data suggest that E2-responsive neurons within the MPOA, ARC, and DRN participate in the estrogenic control of food intake and provide specific brain areas for future investigations of the cellular mechanism underlying estradiol's anorexigenic effect.  相似文献   

16.
The relative distributions of aromatase and of estrogen receptors were studied in the brain of the Japanese quail by a double-label immunocytochemical technique. Aromatase immunoreactive cells (ARO-ir) were found in the medial preoptic nucleus, in the septal region, and in a large cell cluster extending from the dorso-lateral aspect of the ventromedial nucleus of the hypothalamus to the tuber at the level of the nucleus inferioris hypothalami. Immunoreactive estrogen receptors (ER) were also found in each of these brain areas but their distribution was much broader and included larger parts of the preoptic, septal, and tuberal regions. In the ventromedial and tuberal hypothalamus, the majority of the ARO-ir cells (over 75%) also contained immunoreactive ER. By contrast, very few of the ARO-ir cells were double-labeled in the preoptic area and in the septum. More than 80% of the aromatase-containing cells contained no ER in these regions. This suggests that the estrogens, which are formed centrally by aromatization of testosterone, might not exert their biological effects through binding with the classical nuclear ER. The fact that significant amounts of aromatase activity are found in synaptosomes purified by differential centrifugation and that aromatase immunoreactivity is observed at the electron microscope level in synaptic boutons suggests that aromatase might produce estrogens that act at the synaptic level as neurohormones or neuromodulators.  相似文献   

17.
The anatomical distribution of neurons containing galanin has been studied in the central nervous system of the chicken by means of immunocytochemistry using antisera against rat galanin. Major populations of immunostained perikarya were detected in several brain areas. The majority of galanin-immunoreactive cell bodies was present in the hypothalamus and in the caudal brainstem. Extensive groups of labeled perikarya were found in the paraventricular, periventricular, dorsomedial and tuberal hypothalamic nuclei, and in the nucleus of the solitary tract in the medulla oblongata. In the telencephalon, immunoreactive perikarya were observed in the preoptic area, in the lateral septal nucleus and in the hippocampus. The mesencephalon contained only a few galanin-positive perikarya located in the interpeduncular nucleus. Immunoreactive nerve fibers of varying density were detected in all subdivisions of the brain. Dense accumulations of galanin-positive fibers were seen in the preoptic area, periventricular region of the diencephalon, the ventral hypothalamus, the median eminence, the central gray of the brainstem, and the dorsomedial caudal medulla. The distributional pattern of galanin-immunoreactive neurons suggests a possible involvement of a galanin-like peptide in several neuroregulatory mechanisms.  相似文献   

18.
The results of studies of the localization of the hypothalamic hypophysiotropic factors based on their direct determination in sections or nuclear punches are described. Luteinizing hormone-releasing hormone was found in high concentrations in the median eminence-arcuate nucleus complex, in lower concentrations in the mediobasal zone of the preoptic area. In addition to these hypothalamic sites, it is present in all four periventricular organs, especially in the organum vasculosum laminae terminalis. Thyrotropin releasing hormone has a widespread distribution. High concentrations are in the median eminence, arcuate nucleus, dorsomedial nucleus, and anterior part of the ventromedial nucleus. Lower concentrations are in several other structures of the hypothalamus, preoptic area and septum, and low but measurable quantities are found in most of the structures of the brain. Somatostatin is also present in most structures of the central nervous system, with highest concentrations in the median eminence, arcuate nucleus, ventromedial nucleus and periventricular nucleus. There are indications that the ventromedial nucleus or its immediate vicinity contains growth hormone releasing factor. Prolactin releasing activity was present in the median eminence and mediobasal parts of the anterior hypothalamus, whereas prolactin inhibitory activity was in the dorsolateral parts of the anterior hypothalamus and/or preoptic area.  相似文献   

19.
20.
We assessed the effect of nitric oxide (NO) synthase inhibition on plasma atrial natriuretic peptide (ANP) concentration and content in some brain structures [neurohypophysis (NH), adenohypophysis (AH), medial basal hypothalamus (MHB) and olfactory bulb (OB)] in rats before and after blood volume expansion (BVE). Male Wistar rats were injected i.p. with N(pi)-nitro-L-arginine (L-NNA), 25 mg/kg of body weight, 40 min before the experiment (acute treatment) or L-NNA at a dose of 25 mg/kg body weight, twice a day, for 4 days (chronic treatment). The acute treatment caused an increase in the blood pressure and plasma ANP concentration in rats under basal conditions and after BVE. A decrease in ANP content was observed in the OB and NH, whereas no significant changes were found in the AH or MBH. In chronically treated rats, we also found an increase in blood pressure and in plasma ANP concentration under basal conditions and after BVE. The ANP content increased in the OB, NH and AH. These results indicate that systemic NO synthase inhibition increases ANP concentration in plasma and in areas of the central nervous system. We hypothesize that ANP participates in the hypertension-induced by NO synthesis blockade acting by baroreceptors input to the brain to stimulate ANP release and synthesis that reduces NO prival hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号