首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
DL-2-Haloacid dehalogenase from Pseudomonas sp. strain 113 (DL-DEX) catalyzes the hydrolytic dehalogenation of both D- and L-2-haloalkanoic acids to produce the corresponding L- and D-2-hydroxyalkanoic acids, respectively, with inversion of the C2 configuration. DL-DEX is a unique enzyme: it acts on the chiral carbon of the substrate and uses both enantiomers as equivalent substrates. We have isolated and sequenced the gene encoding DL-DEX. The open reading frame consists of 921 bp corresponding to 307 amino acid residues. No sequence similarity between DL-DEX and L-2-haloacid dehalogenases was found. However, DL-DEX had significant sequence similarity with D-2-haloacid dehalogenase from Pseudomonas putida AJ1, which specifically acts on D-2-haloalkanoic acids: 23% of the total amino acid residues of DL-DEX are conserved. We mutated each of the 26 residues with charged and polar side chains, which are conserved between DL-DEX and D-2-haloacid dehalogenase. Thr65, Glu69, and Asp194 were found to be essential for dehalogenation of not only the D- but also the L-enantiomer of 2-haloalkanoic acids. Each of the mutant enzymes, whose activities were lower than that of the wild-type enzyme, acted on both enantiomers of 2-haloacids as equivalent substrates in the same manner as the wild-type enzyme. We also found that each enantiomer of 2-chloropropionate competitively inhibits the enzymatic dehalogenation of the other. These results suggest that DL-DEX has a single and common catalytic site for both enantiomers.  相似文献   

2.
Two novel hydrolytic dehalogenases, thermostable L-2-haloacid dehalogenase (L-DEX) inducibly synthesized by 2-chloropropionate (2-CPA) and nonthermostable DL-2-haloacid dehalogenase (DL-DEX) induced by 2-chloroacrylate, were purified to homogeneity from Pseudomonas sp. strain YL. DL-DEX consisted of a monomer with a molecular weight of about 36,000 and catalyzed the dehalogenation of L and D isomers of 2-CPA to produce D- and L-lactates, respectively. It acted on 2-haloalkanoic acids with a carbon chain length of 2 to 4. The maximum activity on DL-2-CPA was found at pH 10.5 and 45 degrees C. L-DEX, composed of two subunits with identical molecular weights of 27,000, catalyzes the dehalogenation of L-2-haloalkanoic acids to produce the corresponding D-2-hydroxyalkanoic acids. The enzyme acts not only on short-carbon-chain 2-haloacids such as monochloroacetate and monoiodoacetate in aqueous solution but also on long-carbon-chain 2-haloacids such as 2-bromohexadecanoate in n-heptane. L-DEX is thermostable: it retained its full activity upon heating at 60 degrees C for 30 min. The pH and temperature optima for dehalogenation of L-2-CPA were 9.5 and 65 degrees C, respectively. L-DEX was strongly inhibited by modification of carboxyl groups with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and Woodward reagent K, but DL-DEX was not.  相似文献   

3.
DL-2-Haloacid dehalogenase from Pseudomonas sp. 113 (DL-DEX 113) catalyzes the hydrolytic dehalogenation of D- and L-2-haloalkanoic acids, producing the corresponding L- and D-2-hydroxyalkanoic acids, respectively. Every halidohydrolase studied so far (L-2-haloacid dehalogenase, haloalkane dehalogenase, and 4-chlorobenzoyl-CoA dehalogenase) has an active site carboxylate group that attacks the substrate carbon atom bound to the halogen atom, leading to the formation of an ester intermediate. This is subsequently hydrolyzed, resulting in the incorporation of an oxygen atom of the solvent water molecule into the carboxylate group of the enzyme. In the present study, we analyzed the reaction mechanism of DL-DEX 113. When a single turnover reaction of DL-DEX 113 was carried out with a large excess of the enzyme in H(2)(18)O with a 10 times smaller amount of the substrate, either D- or L-2-chloropropionate, the major product was found to be (18)O-labeled lactate by ionspray mass spectrometry. After a multiple turnover reaction in H(2)(18)O, the enzyme was digested with trypsin or lysyl endopeptidase, and the molecular masses of the peptide fragments were measured with an ionspray mass spectrometer. No peptide fragments contained (18)O. These results indicate that the H(2)(18)O of the solvent directly attacks the alpha-carbon of 2-haloalkanoic acid to displace the halogen atom. This is the first example of an enzymatic hydrolytic dehalogenation that proceeds without producing an ester intermediate.  相似文献   

4.
We isolated and characterized D,L-halidohydrolases from five different soil bacteria. Three of these bacterial strains bear plasmids with sizes of approximately 60 kb. Curing and mating experiments indicated that these three plasmids pFL160, pFL170, and pFL190 encoded a dehalogenase. Owing to their biochemical characterization, these halidohydrolases were closely related among each other and to the DhlIV halidohydrolase, encoded by plasmid pFL40 from Alcaligenes xylosoxidans ssp. denitrificans ABIV. Restriction enzyme patterns as well as DNA-hybridization experiments with an internal fragment of dhlIV revealed a high degree of homology among each of these four plasmids and their dehalogenase genes. Received: 5 July 1996 / Accepted: 1 August 1996  相似文献   

5.
dl-2-Haloacid dehalogenase from Pseudomonas sp. 113 is a unique enzyme because it acts on the chiral carbons of both enantiomers, although its amino acid sequence is similar only to that of d-2-haloacid dehalogenase from Pseudomonas putida AJ1 that specifically acts on (R)-(+)-2-haloalkanoic acids. Furthermore, the catalyzed dehalogenation proceeds without formation of an ester intermediate; instead, a water molecule directly attacks the alpha-carbon of the 2-haloalkanoic acid. We have studied solvent deuterium and chlorine kinetic isotope effects for both stereoisomeric reactants. We have found that chlorine kinetic isotope effects are different: 1.0105 +/- 0.0001 for (S)-(-)-2-chloropropionate and 1.0082 +/- 0.0005 for the (R)-(+)-isomer. Together with solvent deuterium isotope effects on V(max)/K(M), 0.78 +/- 0.09 for (S)-(-)-2-chloropropionate and 0.90 +/- 0.13 for the (R)-(+)-isomer, these values indicate that in the case of the (R)-(+)-reactant another step preceding the dehalogenation is partly rate-limiting. Under the V(max) conditions, the corresponding solvent deuterium isotope effects are 1.48 +/- 0.10 and 0.87 +/- 0.27, respectively. These results indicate that the overall reaction rates are controlled by different steps in the catalysis of (S)-(-)- and (R)-(+)-reactants.  相似文献   

6.
Enzymes that catalyze the conversion of organohalogen compounds have been attracting a great deal of attention, partly because of their possible applications in environmental technology and the chemical industry. We have studied the mechanisms of enzymatic degradation of various organic halo acids. In the reaction of L-2-haloacid dehalogenase and fluoroacetate dehalogenase, the carboxylate group of the catalytic aspartate residue nucleophilically attacked the α-carbon atom of the substrates to displace the halogen atom. In the reaction catalyzed by DL-2-haloacid dehalogenase, a water molecule directly attacked the substrate to displace the halogen atom. In the course of studies on the metabolism of 2-chloroacrylate, we discovered two new enzymes. 2-Haloacrylate reductase catalyzed the asymmetric reduction of 2-haloacrylate to produce L-2-haloalkanoic acid in an NADPH-dependent manner. 2-Haloacrylate hydratase catalyzed the hydration of 2-haloacrylate to produce pyruvate. The enzyme is unique in that it catalyzes the non-redox reaction in an FADH(2)-dependent manner.  相似文献   

7.
A pure bacterial culture and a two-membered mixed culture were isolated that degraded trichloroacetic acid if a second, readily metabolizable substrate was present in the growth medium. Previous doubts over the microbial dehalogenation of trichloroacetic acid (TCA) may be due to its inability to act as a sole carbon and energy source. TCA dehalogenation was associated with conventional 2-haloalkanoic acid dehalogenases but oxalate, the putative dehalogenase product, was not detected. CO2 was produced rapidly and concomitantly with Cl ion release during dehalogenation of TCA. An alternative mechanism is suggested for TCA dehalogenation via an initial decarboxylation reaction. This mechanism predicts that carbon monoxide is a product of TCA decarboxylation and it was significant that one of the organisms isolated,Pseudomonas carboxydohydrogens, was a carboxytroph and a second was an unidentified facultative methylotroph.  相似文献   

8.
Cultures of the newly isolated bacterial strains AD20, AD25, and AD27, identified as strains of Ancylobacter aquaticus, were capable of growth on 1,2-dichloroethane (DCE) as the sole carbon and energy source. These strains, as well as two other new DCE utilizers, were facultative methylotrophs and were also able to grow on 2-chloroethanol, chloroacetate, and 2-chloropropionate. In all strains tested, DCE was degraded by initial hydrolytic dehalogenation to 2-chloroethanol, followed by oxidation by a phenazine methosulfate-dependent alcohol dehydrogenase and an NAD-dependent aldehyde dehydrogenase. The resulting chloroacetic acid was converted to glycolate by chloroacetate dehalogenase. The alcohol dehydrogenase was induced during growth on methanol or DCE in strain AD20, but no activity was found during growth on glucose. However, in strain AD25 the enzyme was synthesized to a higher level during growth on glucose than on methanol, and it reached levels of around 2 U/mg of protein in late-exponential-phase cultures growing on glucose. The haloalkane dehalogenase was constitutively produced in all strains tested, but strain AD25 synthesized the enzyme at a level of 30 to 40% of the total cellular protein, which is much higher than that found in other DCE degraders. The nucleotide sequences of the haloalkane dehalogenase (dhlA) genes of strains AD20 and AD25 were the same as the sequence of dhlA from Xanthobacter autotrophicus GJ10 and GJ11. Hybridization experiments showed that the dhlA genes of six different DCE utilizers were all located on an 8.3-kb EcoRI restriction fragment, indicating that the organisms may have obtained the dhlA gene by horizontal gene transmission.  相似文献   

9.
Cultures of the newly isolated bacterial strains AD20, AD25, and AD27, identified as strains of Ancylobacter aquaticus, were capable of growth on 1,2-dichloroethane (DCE) as the sole carbon and energy source. These strains, as well as two other new DCE utilizers, were facultative methylotrophs and were also able to grow on 2-chloroethanol, chloroacetate, and 2-chloropropionate. In all strains tested, DCE was degraded by initial hydrolytic dehalogenation to 2-chloroethanol, followed by oxidation by a phenazine methosulfate-dependent alcohol dehydrogenase and an NAD-dependent aldehyde dehydrogenase. The resulting chloroacetic acid was converted to glycolate by chloroacetate dehalogenase. The alcohol dehydrogenase was induced during growth on methanol or DCE in strain AD20, but no activity was found during growth on glucose. However, in strain AD25 the enzyme was synthesized to a higher level during growth on glucose than on methanol, and it reached levels of around 2 U/mg of protein in late-exponential-phase cultures growing on glucose. The haloalkane dehalogenase was constitutively produced in all strains tested, but strain AD25 synthesized the enzyme at a level of 30 to 40% of the total cellular protein, which is much higher than that found in other DCE degraders. The nucleotide sequences of the haloalkane dehalogenase (dhlA) genes of strains AD20 and AD25 were the same as the sequence of dhlA from Xanthobacter autotrophicus GJ10 and GJ11. Hybridization experiments showed that the dhlA genes of six different DCE utilizers were all located on an 8.3-kb EcoRI restriction fragment, indicating that the organisms may have obtained the dhlA gene by horizontal gene transmission.  相似文献   

10.
Enzymes that catalyze the conversion of organohalogen compounds have been attracting a great deal of attention, partly because of their possible applications in environmental technology and the chemical industry. We have studied the mechanisms of enzymatic degradation of various organic halo acids. In the reaction of L-2-haloacid dehalogenase and fluoroacetate dehalogenase, the carboxylate group of the catalytic aspartate residue nucleophilically attacked the α-carbon atom of the substrates to displace the halogen atom. In the reaction catalyzed by DL-2-haloacid dehalogenase, a water molecule directly attacked the substrate to displace the halogen atom. In the course of studies on the metabolism of 2-chloroacrylate, we discovered two new enzymes. 2-Haloacrylate reductase catalyzed the asymmetric reduction of 2-haloacrylate to produce L-2-haloalkanoic acid in an NADPH-dependent manner. 2-Haloacrylate hydratase catalyzed the hydration of 2-haloacrylate to produce pyruvate. The enzyme is unique in that it catalyzes the non-redox reaction in an FADH2-dependent manner.  相似文献   

11.
-2-Haloacid dehalogenase catalyzes the hydrolytic dehalogenation of -2-haloalkanoic acids to produce the corresponding -2-hydroxyalkanoic acids. Asp10 of -2-haloacid dehalogenase from Pseudomonas sp. YL nucleophilically attacks the α-carbon atom of the substrate to form an ester intermediate, which is subsequently hydrolyzed by an activated water molecule. We previously showed that the replacement of Thr14, Arg41, Ser118, Lys151, Tyr157, Ser175, Asn177, and Asp180 causes significant loss in the enzyme activity, indicating the involvement of these residues in catalysis. In the present study, we tried to determine which process these residues are involved in by monitoring the formation of the ester intermediate by measuring the molecular masses of the mutant enzymes using ionspray mass spectrometry. When the wild-type enzyme and the T14A, S118D, K151R, Y157F, S175A, and N177D mutant enzymes were mixed with the substrate, the ester intermediate was immediately produced. In contrast, the R41K, D180N, and D180A mutants formed the intermediate much more slowly than the wild-type enzyme, indicating that Arg41 and Asp180 participate in the formation of the ester intermediate. This study presents a new method to analyze the roles of amino acid residues in catalysis.  相似文献   

12.
Rhodococcus erythropolis NCIMB 13064 and Xanthobacter autotrophicus GJ10 are able to catalyze the conversion of halogenated hydrocarbons to their corresponding alcohols. These strains are attractive biocatalysts for gas phase remediation of polluted gaseous effluents because of their complementary specificity for short or medium and for mono-, di-, or trisubstituted halogenated hydrocarbons (C2-C8 for Rhodococcus erythropolis and C1-C4 for Xanthobacter autotrophicus).After dehydration, these bacteria can catalyze the hydrolytic dehalogenation of 1-chlorobutane in a nonconventional gas phase system under a controlled water thermodynamic activity (a(w)). This process makes it possible to avoid the problems of solubility and bacterial development due to the presence of water in the traditional biofilters.In the aqueous phase, the dehalogenase activity of Rhodococcus erythropolis is less sensitive to thermal denaturation and the apparent Michaelis-Menten constants at 30 degrees C were 0.4 mM and 2.40 micromol min(-1) g(-1) for Km and Vmax, respectively. For Xanthobacter autotrophicus they were 2.8 mM and 0.35 micromol min(-1) g(-1). In the gas phase, the behavior of dehydrated Xanthobacter autotrophicus cells is different from that observed with Rhododcoccus erythropolis cells. The stability of the dehalogenase activity is markedly lower. It is shown that the HCl produced during the reaction is responsible for this low stability. Contrary to Rhodococcus erythropolis cells, disruption of cell walls does not increase the stability of the dehalogenase activity.The activity and stability of lyophilized Xanthobacter autotrophicus GJ10 cells are dependant on various parameters. Optimal dehalogenase activity was determined for water thermodynamic activity (a(w)) of 0.85. A temperature of 30 degrees C offers the best compromise between activity and stability. The pH control before dehydration plays a role in the ionization state of the dehalogenase in the cells. The apparent Michaelis-Menten constants Km and Vmax for the dehydrated Xanthobacter autotrophicus cells were 0.07 (1-chlorobutane thermodynamic activity) and 0.08 micromol min(-1) g(-1) of cells, respectively. A maximal transformation capacity of 1.4 g of 1-chlorobutane per day was finally obtained using 1g of lyophilized Xanthobacter autotrophicus GJ10 cells.  相似文献   

13.
We have determined the nucleotide sequence of the gene encoding thermostable L-2-halo acid dehalogenase (L-DEX) from the 2-chloroacrylate-utilizable bacterium Pseudomonas sp. strain YL. The open reading frame consists of 696 nucleotides corresponding to 232 amino acid residues. The protein molecular weight was estimated to be 26,179, which was in good agreement with the subunit molecular weight of the enzyme. The gene was efficiently expressed in the recombinant Escherichia coli cells: the amount of L-DEX corresponds to about 49% of the total soluble proteins. The predicted amino acid sequence showed a high level of similarity to those of L-DEXs from other bacterial strains and haloacetate dehalogenase H-2 from Moraxella sp. strain B (38 to 57% identity) but a very low level of similarity to those of haloacetate dehalogenase H-1 from Moraxella sp. strain B (10%) and haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (12%). By searching the protein amino acid sequence database, we found two E. coli hypothetical proteins similar to the Pseudomonas sp. strain YL L-DEX (21 to 22%).  相似文献   

14.
-2-Haloacid dehalogenase catalyzes the hydrolytic dehalogenation of - and -2-haloalkanoic acids to produce the corresponding - and -2-hydroxyalkanoic acids, respectively. We have constructed an overproduction system for -2-haloacid dehalogenase from Pseudomonas putida PP3 ( -DEX 312) and purified the enzyme to analyze the reaction mechanism. When a single turnover reaction of -DEX 312 was carried out in H218O by use of a large excess of the enzyme with - or -2-chloropropionate as a substrate, the lactate produced was labeled with 18O. This indicates that the solvent water molecule directly attacked the substrate and that its oxygen atom was incorporated into the product. This reaction mechanism contrasts with that of -2-haloacid dehalogenase, which has an active-site carboxylate group that attacks the substrate to displace the halogen atom. -DEX 312 resembles -2-haloacid dehalogenase from Pseudomonas sp. 113 ( -DEX 113) in that the reaction proceeds with a direct attack of a water molecule on the substrate. However, -DEX 312 is markedly different from -DEX 113 in its substrate specificity. We found that -DEX 312 catalyzes the hydrolytic dehalogenation of 2-chloropropionamide and 2-bromopropionamide, which do not serve as substrates for -DEX 113. -DEX 312 is the first enzyme that catalyzes the dehalogenation of 2-haloacid amides.  相似文献   

15.
A Lyophilized preparation of L-2-halo acid dehalogenase was not only stable but also catalytically active in anhydrous dimethyl sulfoxide, toluene, and other organic solvents. 2-Halo acids with long alkyl (C(5)-C(16)) or aromatic (phenyl and benzyl) side chains were inert in water but dehalogenated effectively in anhydrous dimethyl sulfoxide by the lyophilized enzyme. Long chain 2-haloalkanoic acids such as 2-bromohexadecanoic acids were better as substrate than short-chain halo acids (e.g., 2-chloropropanoic acid). The dehalogenation proceed with inversion of C(2) configuration to produce the corresponding (2R)-2-hydroxy acids in anhydrous dimethyl sulfoxide in the same way as found in water.  相似文献   

16.
The biodegradation of 4-chlorobiphenyl usually proceeds through the intermediate 4-chlorobenzoate. Few bacterial strains can degrade 4-chlorobiphenyl to 4-chlorobenzoate and 4-chlorobenzoate to CO2. This study demonstrates that the 4-chlorobiphenyl-degrading Alcaligenes sp. strain ALP83 can degrade 4-chlorobenzoate to 4-hydroxybenzoate. The dehalogenase activity is correlated with a 10-kb fragment carried on plasmid pSS70.  相似文献   

17.
The biodegradation of 4-chlorobiphenyl usually proceeds through the intermediate 4-chlorobenzoate. Few bacterial strains can degrade 4-chlorobiphenyl to 4-chlorobenzoate and 4-chlorobenzoate to CO2. This study demonstrates that the 4-chlorobiphenyl-degrading Alcaligenes sp. strain ALP83 can degrade 4-chlorobenzoate to 4-hydroxybenzoate. The dehalogenase activity is correlated with a 10-kb fragment carried on plasmid pSS70.  相似文献   

18.
The occurrence of a new bacterial dehalogenase acting on both the optical isomers of 2-halogenated alkanoic acids was demonstrated. When the haloalkanoic acid-utilizing bacteria were screened in a medium containing dl-2-chloropropionate as a sole carbon source, two types of bacteria were isolated: (1) a few strains utilizing both d- and l-isomers of 2-chloropropionate and (2) strains utilizing only the l-isomer. A dehalogenating enzyme was obtained from the cells of Pseudomonas sp. which is able to utilize both isomers. The crude enzyme catalyzed the dehalogenation of d- and l-2-chloropropionates to yield l- and d-isomers of lactate, respectively. The enzyme showed the same pH optimum and heat inactivation rate for the d- and l-isomers. Apparent K m values for d- and l-2-chloropropionates were 4.5 and 1.0 mM, respectively. The enzyme acted specifically on 2-haloalkanoic acids. Activity staining of disc-gels electrophoresed witg the crude enzyme preparation showed that the dehalogenation of d- and l-2-chloropropionates, monochloroacetate, dichloroacetate, 2,2-dichloropropionate, and dl-2-chlorobutyrate is due to a single protein.Abbreviations MCA monochloroacetic acid - DCA dichloroacetic acid - TCA trichloroacetic acid - 2 MCPA 2-monochloropropionic acid - 22 DCPA 2,2-dichloropropionic acid - 3 MCPA 3-monochloropropionic acid - 2 MCBA 2-monochlorobutyric acid - 3 MCBA 3-monochlorobutyric acid - 4 MCBA 4-monochlorobutyric acid  相似文献   

19.
Haloalkane dehalogenases are key enzymes for the degradation of halogenated aliphatic pollutants. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, have open reading frames (ORFs), mlr5434 and blr1087, respectively, that encode putative haloalkane dehalogenase homologues. The crude extracts of Escherichia coli strains expressing mlr5434 and blr1087 showed the ability to dehalogenate 18 halogenated compounds, indicating that these ORFs indeed encode haloalkane dehalogenases. Therefore, these ORFs were referred to as dmlA (dehalogenase from Mesorhizobium loti) and dbjA (dehalogenase from Bradyrhizobium japonicum), respectively. The principal component analysis of the substrate specificities of various haloalkane dehalogenases clearly showed that DbjA and DmlA constitute a novel substrate specificity class with extraordinarily high activity towards beta-methylated compounds. Comparison of the circular dichroism spectra of DbjA and other dehalogenases strongly suggested that DbjA contains more alpha-helices than the other dehalogenases. The dehalogenase activity of resting cells and Northern blot analyses both revealed that the dmlA and dbjA genes were expressed under normal culture conditions in MAFF303099 and USDA110 strain cells, respectively.  相似文献   

20.
Pseudomonas putida PP3 carrying dehalogenases I and II and Pseudomonas aeruginosa PAU3 carrying dehalogenase I coded for by plasmid pUU2 were able to grow on 2-monochloropropionic acid (2MCPA). Neither strain utilized 2-chloropropionamide (2CPA) as a carbon or nitrogen source for growth. Mutations in both strains to 2Cpa+ phenotypes (designated P. putida PPW3 and P. aeruginosa PAU5, respectively) involved the expression of an acquired 2CPA-amidase activity. The amidase followed by dehalogenase reactions in these strains constituted a novel metabolic pathway for growth on 2CPA. P. putida PPW3 synthesized a constitutive amidase of molecular mass 59 kDa consisting of two identical subunits of 29 kDa. For those amides tested this acquired enzyme was most active against chlorinated aliphatic amides, although substrate affinities (Km) and maximum rates of activity (Vmax) were poor. P. aeruginosa PAU5 acquired a 2Cpa+ phenotype by overproducing the A-amidase normally used by this species to hydrolyse aliphatic amides. The A-amidase had only slight activity towards 2CPA. However, with constitutive synthesis the mutant grew on the chlorinated substrates. Chloroacetamide (CAA) was a toxic substrate analogue for these Pseudomonas strains. A strain resistant to CAA was isolated from P. aeruginosa PAU5 when exposed to 1-10 mM-CAA. This mutant, P. aeruginosa PAU6, synthesized an inducible A-amidase. CAA-resistance depended upon the simultaneous expression of CAA-inducible amidase and dehalogenase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号