首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Huang SC 《Regulatory peptides》2007,142(1-2):37-43
Protease-activated receptor-1 (PAR1), PAR2 and PAR4 activation can alter the gastrointestinal motility. To investigate effects mediated by PARs in the lower esophageal sphincter, we measured contraction or relaxation of transverse strips from the guinea-pig lower esophageal sphincter caused by PAR1 (TFLLR-NH2 and SFLLRN-NH2), PAR2 (SLIGKV-NH2 and SLIGRL-NH2) and PAR4 peptide agonists (GYPGKF-NH2, GYPGQV-NH2 and AYPGKF-NH2) as well as PAR protease activators (thrombin and trypsin). In resting lower esophageal sphincter strips, TFLLR-NH2 and SFLLRN-NH2 caused moderate concentration-dependent relaxation whereas thrombin did not cause any relaxation or contraction. Furthermore, in carbachol-contracted strips, TFLLR-NH2 and SFLLRN-NH2 caused marked whereas thrombin caused mild concentration-dependent relaxation. These indicate the existence of PAR1 mediating relaxation. Similarly, in resting lower esophageal sphincter strips, trypsin caused moderate concentration-dependent relaxation whereas SLIGRL-NH2 and SLIGKV-NH2 did not cause any relaxation or contraction. In addition, in carbachol-contracted strips, trypsin caused marked whereas SLIGRL-NH2 and SLIGKV-NH2 caused mild concentration-dependent relaxation. These indicate the existence of PAR2 mediating relaxation. The relaxant response of thrombin, TFLLR-NH2, trypsin and SLIGKV-NH2 was insensitive to atropine or tetrodotoxin, suggesting a direct effect. The relaxant response of trypsin was not affected by apamin, charybdotoxin, indomethacin and capsaicin but was attenuated by NG-nitro-L-arginine methyl ester, indicating involvement of NO. FSLLR-NH2, a PAR1 control peptide, and VKGILS-NH2, a PAR2 control peptide, as well as all three PAR4 peptide agonists, GYPGKF-NH2, GYPGQV-NH2 and AYPGKF-NH2, did not cause any relaxation or contraction. Taken together, these results demonstrate that PAR1 and PAR2 but not PAR4 mediate relaxations in the guinea-pig lower esophageal sphincter.  相似文献   

2.
Pancreatic acini secrete digestive enzymes in response to a variety of secretagogues including CCK and agonists acting via proteinase-activated receptor-2 (PAR2). We employed the CCK analog caerulein and the PAR2-activating peptide SLIGRL-NH(2) to compare and contrast Ca(2+) changes and amylase secretion triggered by CCK receptor and PAR2 stimulation. We found that secretion stimulated by both agonists is dependent on a rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and that this rise in [Ca(2+)](i) reflects both the release of Ca(2+) from intracellular stores and accelerated Ca(2+) influx. Both agonists, at low concentrations, elicit oscillatory [Ca(2+)](i) changes, and both trigger a peak plateau [Ca(2+)](i) change at high concentrations. Although the two agonists elicit similar rates of amylase secretion, the rise in [Ca(2+)](i) elicited by caerulein is greater than that elicited by SLIGRL-NH(2). In Ca(2+)-free medium, the rise in [Ca(2+)](i) elicited by SLIGRL-NH(2) is prevented by the prior addition of a supramaximally stimulating concentration of caerulein, but the reverse is not true; the rise elicited by caerulein is neither prevented nor reduced by prior addition of SLIGRL-NH(2). Both the oscillatory and the peak plateau [Ca(2+)](i) changes that follow PAR2 stimulation are prevented by the phospholipase C (PLC) inhibitor U73122, but U73122 prevents only the oscillatory [Ca(2+)](i) changes triggered by caerulein. We conclude that 1) both PAR2 and CCK stimulation trigger amylase secretion that is dependent on a rise in [Ca(2+)](i) and that [Ca(2+)](i) rise reflects release of calcium from intracellular stores as well as accelerated influx of extracellular calcium; 2) PLC mediates both the oscillatory and the peak plateau rise in [Ca(2+)](i) elicited by PAR2 but only the oscillatory rise in [Ca(2+)](i) elicited by CCK stimulation; and 3) the rate of amylase secretion elicited by agonists acting via different types of receptors may not correlate with the magnitude of the [Ca(2+)](i) rise triggered by those different types of secretagogue.  相似文献   

3.
Protease-activated receptor 2 (PAR2) is a trypsin-activated member of a family of G-protein-coupled PARs. We have identified a polymorphic form of human PAR2 (PAR(2)F240S) characterized by a phenylalanine to serine mutation at residue 240 within extracellular loop 2, with allelic frequencies of 0.916 (Phe(240)) and 0.084 (Ser(240)) for the wild-type and mutant alleles, respectively. Elevations in intracellular calcium were measured in permanently transfected cell lines expressing the receptors. PAR(2)F240S displayed a significant reduction in sensitivity toward trypsin ( approximately 3.7-fold) and the PAR2-activating peptides, SLIGKV-NH(2) ( approximately 2.5-fold) and SLIGRL-NH(2) ( approximately 2.8-fold), but an increased sensitivity toward the selective PAR2 agonist, trans-cinnamoyl-LIGRLO-NH(2) ( approximately 4-fold). Increased sensitivity was also observed toward the selective PAR-1 agonist, TFLLR-NH(2) ( approximately 7-fold), but not to other PAR-1 agonists tested. Furthermore, we found that TLIGRL-NH(2) and a PAR4-derived peptide, trans-cinnamoyl-YPGKF-NH(2), were selective PAR(2)F240S agonists. By introducing the F240S mutation into rat PAR2, we observed shifts in agonist potencies that mirrored the human PAR(2)F240S, suggesting that Phe(240) is involved in determining agonist specificity of PAR2. Finally, differences in receptor signaling were paralleled in a cell growth assay. We suggest that the distinct pharmacological profile induced by this polymorphism will have important implications for the design of PAR-targeted agonists/antagonists and may contribute to, or be predictive of, an inflammatory disease.  相似文献   

4.
In canine coronary artery preparations, the proteinase-activated receptor-2 (PAR(2)) activating peptides (PAR(2)-APs) SLIGRL-NH(2) and 2-furoyl-LIGRLO-NH(2) caused both an endothelium-dependent relaxation and an endothelium-independent contraction. Relaxation was caused at peptide concentrations 10-fold lower than those causing a contractile response. Although trans-cinnamoyl-LIGRLO-NH(2), like other PAR(2)-APs, caused relaxation, it was inactive as a contractile agonist and instead antagonized the contractile response to SLIGRL-NH(2). RT-PCR-based sequencing of canine PAR(2) revealed a cleavage/activation (indicated by underlines) sequence (SKGR/SLIGKTDSSLQITGKG) that is very similar to the human PAR(2) sequence (R/SLIGKV). As a synthetic peptide, the canine PAR-AP (SLIGKT-NH(2)) was a much less potent agonist than either SLIGRL-NH(2) or 2-furoyl-LIGRLO-NH(2), either in the coronary contractile assay or in a Madin-Darby canine kidney (MDCK) cell PAR(2) calcium signaling assay. In the MDCK signaling assay, the order of potencies was as follows: 2-furoyl-LIGRLO-NH(2) > SLIGRL-NH(2) = trans-cinnamoyl-LIGRLO-NH(2) > SLIGKT-NH(2), as expected for PAR(2) responses. In the coronary contractile assay, however, the order of potencies was very different: SLIGRL-NH(2) > 2-furoyl-LIGRLO-NH(2) > SLIGKT-NH(2), trans-cinnamoyl-LIGRLO-NH(2) = antagonist. Because of 1) the distinct agonist (relaxant) and antagonist (contractile) activity of trans-cinnamoyl-LIGRLO-NH(2) in the canine coronary contractile assays, 2) the different concentration ranges over which the peptides caused either relaxation or contraction in the same coronary preparation, and 3) the markedly distinct structure-activity profiles for the PAR-APs in the coronary contractile assay, compared with those for PAR(2)-mediated MDCK cell calcium signaling, we suggest that the canine coronary tissue possesses a receptor system for the PAR-APs that is distinct from PAR(2) itself.  相似文献   

5.
6.
Pleural inflammation underlies many pleural diseases, but its pathogenesis remains unclear. Proteinase-activated receptor-2 (PAR(2)) is a novel seven-transmembrane receptor with immunoregulatory roles. We hypothesized that PAR(2) is present on mesothelial cells and can induce pleural inflammation. PAR(2) was detected by immunohistochemistry in all (19 parietal and 11 visceral) human pleural biopsies examined. In cultured murine mesothelial cells, a specific PAR(2)-activating peptide (SLIGRL-NH(2)) at 10, 100, and 1,000 muM stimulated a 3-, 42-, and 1,330-fold increase of macrophage inflammatory protein (MIP)-2 release relative to medium control, respectively (P < 0.05 all) and a 2-, 32-, and 75-fold rise over the control peptide (LSIGRL-NH(2), P < 0.05 all). A similar pattern was seen for TNF-alpha release. Known physiological activators of PAR(2), tryptase, trypsin, and coagulation factor Xa, also stimulated dose-dependent MIP-2 release from mesothelial cells in vitro. Dexamethasone inhibited the PAR(2)-mediated MIP-2 release in a dose-dependent manner. In vivo, pleural fluid MIP-2 levels in C57BL/6 mice injected intrapleurally with SLIGRL-NH(2) (10 mg/kg) were significantly higher than in mice injected with LSIGRL-NH(2) or PBS (2,710 +/- 165 vs. 880 +/- 357 vs. 88 +/- 46 pg/ml, respectively; P < 0.001). Pleural fluid neutrophil counts were higher in SLIGRL-NH(2) group than in the LSIGRL-NH(2) and PBS groups (by 40- and 26-fold, respectively; P < 0.05). This study establishes that activation of mesothelial cell PAR(2) potently induces the release of inflammatory cytokines in vitro and neutrophil recruitment into the pleural cavity in vivo.  相似文献   

7.
We investigated the potential of human mast cell tryptase to induce relaxation of rat aorta. Trypsin and the selective PAR2-activating peptide (PAR2-AP) SLIGRL-NH2 stimulated robust relaxation of phenylephrine-precontracted rat aortic rings. However, human lung tryptase (1-100 nM) either in the presence or absence of heparin failed to induce any significant relaxation. Notwithstanding, incubation of the aorta with tryptase (100 nM), following the addition of a peptide corresponding to the cleavage/activation sequence of rat PAR2 (rPAR2), resulted in relaxation of precontracted tissue due to the proteolytic release of the PAR2-AP SLIGRL/ from the parent peptide. Thus, tryptase was enzymatically active in the bioassay system. Preincubation of aorta with neuraminidase to remove cell-surface sialic acid unmasked the ability of tryptase to induce relaxation of the aorta, but had no effect on relaxation induced by trypsin, SLIGRL-NH2, or acetylcholine (Ach). Like trypsin and SLIGRL-NH2, the tryptase-induced relaxation was inhibited by either removal of the endothelium or pretreatment of the tissue with NG-nitro-L-arginine methyl ester (L-NAME), suggesting an endothelium-derived nitric oxide mechanism. Interestingly, tryptase in the presence of heparin failed to induce relaxation of precontracted neuraminidase-treated rat aorta. We conclude that tryptase-induced relaxation of rat aorta, most likely via PAR2, is tightly regulated by heparin and cell-surface sialic acid.  相似文献   

8.
Protease-activated receptor 2 (PAR(2)) is a G protein-coupled cell surface receptor for trypsin-like enzymes. Proteolytic cleavage at a specific site in the extracellular N-terminus exposes a receptor-activating sequence, the 'tethered ligand', which binds intramolecularly to initiate receptor signalling. Peptide or small molecule agonists for PAR(2), devoid of the non-specific and proteolytic effects of enzyme activators, may be promising therapeutic agents for proliferative and inflammatory diseases reportedly mediated by PAR(2). Synthetic hexapeptides that correspond to the native tethered ligand of human or rodent PAR(2) (SLIGKV and SLIGRL, respectively) can activate the receptor independently of proteolytic cleavage; however, known peptide agonists have much lower potency compared to protease-mediated activation. Here, we investigated the agonist activity of 94 hepta and octapeptide derivatives of the human and rodent PAR(2)-tethered ligand sequences in human airway epithelial (A549) cells which endogenously express PAR(2). Thirty synthetic peptides were found to be as potent as or more potent than SLIGRL on the basis of intracellular Ca(2+) responses. The more active peptide agonists were also examined for agonist cross-reactivity at PAR(1) in Chinese Hamster Ovary (CHO) cells that endogenously express functional PAR(1) but not PAR(2). Two potent and PAR(2)-selective agonists were further examined for their capacity to relax phenylephrine-contracted rat aortic rings. Our findings reveal an important role for carboxyl extensions to native PAR(2) activating peptides in potentiating agonist activity.  相似文献   

9.
Proteinase-activated receptor (PAR)-1 or -2 modulates gastrointestinal transit in vivo. To clarify the underlying mechanisms, we characterized contraction/relaxation caused by TFLLR-NH2 and SLIGRL-NH2, PAR-1- and -2-activating peptides, respectively, in gastric and small intestinal (duodenal, jejunal and ileal) smooth muscle isolated from wild-type and PAR-2-knockout mice. Either SLIGRL-NH2 or TFLLR-NH2 caused both relaxation and contraction in the gastrointestinal preparations from wild-type animals. Apamin, a K+ channel inhibitor, tended to enhance the peptide-evoked contraction in some of the gastrointestinal preparations, whereas it inhibited relaxation responses to either peptide completely in the stomach, but only partially in the small intestine. Indomethacin reduced the contraction caused by SLIGRL-NH2 or TFLLR-NH2 in both gastric and ileal preparations, but unaffected apamin-insensitive relaxant effect of either peptide in ileal preparations. Repeated treatment with capsaicin suppressed the contractile effect of either peptide in the stomach, but not clearly in the ileum, whereas it enhanced the apamin-insensitive relaxant effect in ileal preparations. In any gastrointestinal preparations from PAR-2-knockout mice, SLIGRL-NH2 produced no responses. Thus, the inhibitory component in tension modulation by PAR-1 and -2 involves both apamin-sensitive and -insensitive mechanisms in the small intestine, but is predominantly attributable to the former mechanism in the stomach. The excitatory component in the PAR-1 and -2 modulation may be mediated, in part, by activation of capsaicin-sensitive sensory nerves and/or endogenous prostaglandin formation. Our study thus clarifies the multiple mechanisms for gastrointestinal motility modulation by PAR-1 and -2, and also provides ultimate evidence for involvement of PAR-2.  相似文献   

10.
Proteinase-activated receptor 2 (PAR2) has been suggested to play a role in inflammatory reactions. Because leukocyte-endothelial cell interactions are critical events during inflammatory reactions, and because PAR2 is expressed both on endothelium and leukocytes, we have examined the effects of PAR2-activating peptides (PAR2-APs) on leukocyte rolling and adhesion in mesenteric venules and on leukocyte recruitment into the peritoneal cavity. Using intravital microscopy, leukocyte rolling, flux, and adhesion in rat mesenteric postcapillary venules were quantified. Topical addition of PAR2-APs (10 microM) for 1 min to the superfused venule induced a significant increase in leukocyte rolling and adherence. The increase in leukocyte adherence was not affected by pretreatment with a mast cell stabilizer (sodium cromoglycate) nor by prior degranulation of mast cells with compound 48/80. Nonetheless, both leukocyte rolling and adhesion were completely inhibited by pretreatment with a platelet-activating factor receptor antagonist (WEB 2086). Intraperitoneal injections of a selective PAR2-AP (SLIGRL-NH2) caused a significant increase in leukocyte migration into the peritoneal cavity. The effect of SLIGRL-NH2 on peritoneal leukocyte infiltration was completely inhibited by WEB 2086. These data suggest that PAR2 activation could contribute to several early events in the inflammatory reaction, including leukocyte rolling, adherence, and recruitment, by a mechanism dependent on platelet-activating factor release.  相似文献   

11.
Proteinase-activated receptor-2 (PAR2) activation induces colonic inflammation by an unknown mechanism. We hypothesized that PAR2 agonists administered intracolonically in mice induce inflammation via a neurogenic mechanism. Pretreatment of mice with neurokinin-1 and calcitonin-gene-related peptide (CGRP) receptor antagonists or with capsaicin showed attenuated PAR2-agonist-induced colitis. Immunohistochemistry demonstrated a differential expression of a marker for the type-1 CGRP receptor during the time course of PAR2-agonist-induced colitis, further suggesting a role for CGRP. We conclude that PAR2-agonist-induced intestinal inflammation involves the release of neuropeptides, which by acting on their receptors cause inflammation. These results implicate PAR2 as an important mediator of intestinal neurogenic inflammation.  相似文献   

12.
Protease activated receptor 2 (PAR2) is an unusual G-protein coupled receptor in being self-activated, after pruning of the N-terminus by serine proteases like trypsin and tryptase. Short synthetic peptides corresponding to the newly exposed N-terminal hexapeptide sequence also activate PAR2 on immunoinflammatory, cancer and many normal cell types. (1)H nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy were used here to search for structural clues to activating mechanisms of the hexapeptide agonists SLIGRL (rat), SLIGKV (human) and the peptidomimetic analogue, 2-furoyl-LIGRLO. Either with a free or acetyl capped N-terminus, these agonist peptides display significant propensity in aprotic (DMSO) or lipidic (water-SDS) solvents for turn-like conformations, which are predicted to be receptor-binding conformations in the transmembrane or loops region of PAR2. These motifs may be valuable for the design of small molecule PAR2 agonists and antagonists as prospective new drugs for regulating inflammatory and proliferative diseases.  相似文献   

13.
A lowered threshold to the cough response frequently accompanies chronic airway inflammatory conditions. However, the mechanism(s) that from chronic inflammation results in a lowered cough threshold is poorly understood. Irritant agents, including capsaicin, resiniferatoxin, and citric acid, elicit cough in humans and in experimental animals through the activation of the transient receptor potential vanilloid 1 (TRPV1). Protease-activated receptor-2 (PAR2) activation plays a role in inflammation and sensitizes TRPV1 in cultured sensory neurons by a PKC-dependent pathway. Here, we have investigated whether PAR2 activation exaggerates TRPV1-dependent cough in guinea pigs and whether protein kinases are involved in the PAR2-induced cough modulation. Aerosolized PAR2 agonists (PAR2-activating peptide and trypsin) did not produce any cough per se. However, they potentiated citric acid- and resiniferatoxin-induced cough, an effect that was completely prevented by the TRPV1 receptor antagonist capsazepine. In contrast, cough induced by hypertonic saline, a stimulus that provokes cough in a TRPV1-independent manner, was not modified by aerosolized PAR2 agonists. The PKC inhibitor GF-109203X, the PKA inhibitor H-89, and the cyclooxygenase inhibitor indomethacin did not affect cough induced by TRPV1 agonists, but abated the exaggeration of this response produced by PAR2 agonists. In conclusion, PAR2 stimulation exaggerates TRPV1-dependent cough by activation of diverse mechanism(s), including PKC, PKA, and prostanoid release. PAR2 activation, by sensitizing TRPV1 in primary sensory neurons, may play a role in the exaggerated cough observed in certain airways inflammatory diseases such as asthma and chronic obstructive pulmonary disease.  相似文献   

14.
Protease-activated receptor-2 (PAR-2) is a tethered-ligand, G-protein-coupled receptor that is activated by proteolytic cleavage or by small peptides derived from its cleaved N-terminal sequence, such as SLIGRL-NH2. To assess specific PAR activity, we developed an immortalized murine PAR-1 (-/-) cell line transfected with either human PAR-2 or PAR-1. A "directed" library of more than 100 PAR agonist peptide analogues was synthesized and evaluated for PAR-2 and PAR-1 activity to establish an in-depth structure-function profile for specific action on PAR-2. The most potent agonist peptides (EC50 = 2-4 microM) had Lys at position 6, Ala at position 4, and pFPhe at position 2; however, these also exhibited potent PAR-1 activity (EC50 = 0.05-0.35 microM). We identified SLIARK-NH2 and SL-Cha-ARL-NH2 as relatively potent, highly selective PAR-2 agonists with EC50 values of 4 microM. Position 1 did not tolerate basic, acidic, or large hydrophobic amino acids. N-Terminal capping by acetyl eliminated PAR-2 activity, although removal of the amino group reduced potency by just 4-fold. At position 2, substitution of Leu by Cha or Phe gave equivalent PAR-2 potency, but this modification also activated PAR-1, whereas Ala, Asp, Lys, or Gln abolished PAR-2 activity; at position 3, Ile and Cha were optimal, although various amino acids were tolerated; at position 4, Ala or Cha increased PAR-2 potency 2-fold, although Cha introduced PAR-1 activity; at position 5, Arg or Lys could be replaced successfully by large hydrophobic amino acids. These results with hexapeptide C-terminal amides that mimic the native PAR-2 ligand indicate structural modes for obtaining optimal PAR-2 activity, which could be useful for the design of PAR-2 antagonists.  相似文献   

15.
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, has been shown to play a role in wound-healing processes. In this study, we investigated whether protease-activated receptor (PAR)-1 and PAR-2 mediated MIF expression in human endothelial cells. Thrombin, factor Xa (FXa), and trypsin induced MIF expression in human dermal microvascular endothelial cells and human umbilical vein endothelial cells, but other proteases, including kallikrein and urokinase, failed to do so. Thrombin-induced MIF mRNA expression was significantly reduced by the thrombin-specific inhibitor hirudin. Thrombin receptor activation peptide-6, a synthetic PAR-1 peptide, induced MIF mRNA expression, suggesting that PAR-1 mediates MIF expression in response to thrombin. The effects of FXa were blocked by antithrombin III, but not by hirudin, indicating that FXa might enhance MIF production directly rather than via thrombin stimulation. The synthetic PAR-2 peptide SLIGRL-NH(2) induced MIF mRNA expression, showing that PAR-2 mediated MIF expression in response to FXa. Concerning the signal transduction, a mitogen-activated protein kinase kinase inhibitor (PD98089) and a nuclear factor (NF)-kappaB inhibitor (SN50) suppressed the up-regulation of MIF mRNA in response to thrombin, FXa, and PAR-2 agonist stimulation, whereas a p38 inhibitor (SB203580) had little effect. These facts indicate that up-regulation of MIF by thrombin or FXa is regulated by p44/p42 mitogen-activated protein kinase-dependent pathways and NF-kappaB-dependent pathways. Moreover, we found that PAR-1 and PAR-2 mRNA expression in endothelial cells was enhanced by MIF. Furthermore, we examined the inflammatory response induced by PAR-1 and PAR-2 agonists injected into the mouse footpad. As shown by footpad thickness, an indicator of inflammation, MIF-deficient mice (C57BL/6) were much less sensitive to either PAR-1 or PAR-2 agonists than wild-type mice. Taken together, these results suggest that MIF contributes to the inflammatory phase of the wound healing process in concert with thrombin and FXa via PAR-1 and PAR-2.  相似文献   

16.
17.
It is known that subepithelial myofibroblast-derived prostaglandin (PG)E2 can regulate intestinal epithelial cell functions, and that proteinase-activated receptor-2 (PAR2) is abundantly expressed in the gastrointestinal tract. Since PAR2 activation has previously been associated with stimulation of PGE2 synthesis, we hypothesized that PAR2 expressed on primary human gastrointestinal myofibroblasts regulates PGE2 synthesis via cyclooxygenase (COX)-1 and (or) COX-2, and associated PGE synthases. Primary human myofibroblasts were isolated from the resection tissue of the esophagus, small intestine, and colon. Expression of functional PAR2 was determined by RT-PCR and by calcium mobilization in Fura-2/AM-loaded cells. Trypsin and the selective PAR2-activating peptide (PAR2-AP) SLIGRL-NH2 stimulated PGE2 synthesis in a concentration-dependent manner, as measured by enzyme immunoassay. Selective COX inhibition showed PAR2-induced PGE2 synthesis to be COX-1 dependent in esophageal myofibroblasts and both COX-1 and COX-2 dependent in colonic cells, consistent with the distribution of COX-1 and COX-2 expression. Although both cytosolic and microsomal PGE synthases were expressed in cells from all tissues, microsomal PGE synthases were expressed at highest levels in the colonic myofibroblasts. Activation of PAR2 on gastrointestinal myofibroblasts stimulates PGE2 synthesis via different pathways in the colon than in the esophagus and small intestine.  相似文献   

18.
Proteinase-activated receptor 2 (PAR2) is cleaved and activated by trypsin or mast cell tryptase, and may play an important role in inflammation. We have investigated the potential of PAR2 agonists to modulate TNF-alpha secretion from human astrocytoma cell line CCF-STTG1. We found that CCF-STTG1 expresses PAR2 by RT-PCR and Western blot analysis. Agonists such as trypsin, the peptide SLIGKV-NH(2) (corresponding to the PAR2 tethered ligand), or mast cell tryptase directly signal to CCF-STTG1 to stimulate secretion of TNF-alpha but do not stimulate in the presence of soybean trypsin inhibitor (SBTI) or VKGILS-NH(2) (reverse peptide). The secretion of TNF-alpha by trypsin was significantly blocked by pretreatment with either 50 microM PD98059 or 1 microM SB203580. Furthermore, trypsin stimulated the activation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase homologue in CCF-STTG1 without any detectable activation of c-Jun N-terminal kinase (JNK). These results show that trypsin may induce TNF-alpha secretion following activation of ERK and p38 via PAR2 in CCF-STTG1.  相似文献   

19.
Human lung fibroblasts express proteinase-activated receptor-1 (PAR1), PAR2 and PAR3, but not PAR4. Because PAR2 has inflammatory effects on human primary bronchial fibroblasts (HPBF), we asked 1) whether the inflammatory mediators TNF-alpha and LPS could modify HPBF PAR expression and 2) whether modified PAR expression altered HPBF responsiveness to PAR agonists in terms of calcium signaling and cell growth. TNF-alpha and LPS induced PAR4 mRNA expression (RT-PCR) at 6 h and 24 h, respectively. TNF-alpha and LPS also upregulated PAR2 mRNA expression with similar kinetics but had negligible effect on PAR1 and PAR3. Flow cytometry for PAR1, PAR2, and PAR3 also demonstrated selective PAR2 upregulation in response to TNF-alpha and LPS. Intracellular calcium signaling to SLIGKV-NH2 (a selective PAR2-activating peptide; PAR2-AP) and AYPGQV-NH2 (PAR4-AP) revealed that TNF-alpha and LPS induced maximal responses to these PAR agonists at 24 h and 48 h, respectively. Upregulation of PAR2 by TNF-alpha heightened HPBF responses to trypsin, while PAR4 induction enabled cathepsin-G-mediated calcium signaling. Cathepsin-G also disarmed PAR1 and PAR2 in HPBF, while tryptase disarmed PAR2. Induction of PAR4 also enabled thrombin to elicit a calcium signal through both PAR1 and PAR4, as determined by a desensitization assay. In cell growth assays the PAR4 agonists cathepsin-G and AYPGQV-NH2 reduced HPBF cell number only in TNF-alpha-treated HPBF. Moreover, the mitogenic effect of thrombin (a PAR1/PAR4 agonist) but not the PAR1-AP TFLLR-NH2, was ablated in TNF-alpha-treated HPBF. These findings point to an important mechanism, whereby cellular responses to thrombin and cathepsin-G can be modified during an inflammatory response.  相似文献   

20.
Studies of homozygous PAR2 gene knockout mice have described a mix of phenotypic effects in vitro and in vivo. However, there have been few studies of PAR2 heterozygous (wild-type/knockout; PAR2-HET) mice. The phenotypes of many hemi and heterozygous transgenic mice have been described as intermediates between those of wild-type and knockout animals. In our study we aimed to determine the effects of intermediary par2 gene zygosity on vascular tissue responses to PAR2 activation. Specifically, we compared the vasodilator effectiveness of the PAR2 activating peptide 2-furoyl-LIGRLO-amide in aortas of wild-type PAR2 homozygous (PAR2-WT) and PAR2-HET mice. In myographs under isometric tension conditions, isolated aortic rings were contracted by alpha 1-adrenoeceptor agonist (phenylephrine), and thromboxane receptor agonist (U46619) and then relaxation responses by the additions of 2-furoyl-LIGRLO-amide, acetylcholine, and nitroprusside were recorded. A Schild regression analysis of the inhibition by a PAR2 antagonist (GB-83) of PAR2 agonist-induced aortic ring relaxations was used to compare receptor expression in PAR2-WT to PAR2-HET. PAR2 mRNA in aortas was measured by quantitative real-time PCR. In aortas contracted by either phenylephrine or U46619, the maximum relaxations induced by 2-furoyl-LIGRLO-amide were less in PAR2-HET than in the gender-matched PAR2-WT. GB-83 was 3- to 4-fold more potent for inhibition of 2fly in PAR2-HET than in PAR2-WT. PAR2 mRNA content of aortas from PAR2-HET was not significantly different than in PAR2-WT. Acetylcholine- and nitroprusside-induced relaxations of aortas from PAR2-HET were not significantly different than in PAR2-WT and PAR2 knockout. An interesting secondary finding was that relaxations induced by agonists of PAR2 and muscarinic receptors were larger in females than in males. We conclude that the lower PAR2-mediated responses in PAR2-HET aortas are consistent with evidence of a lower quantity of functional receptor expression, despite the apparently normal PAR2 mRNA content in PAR2-HET aortas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号