首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The regulating mechanisms of PAF-acether (platelet-activating factor) biosynthesis in cultured human vascular endothelial cells stimulated with thrombin were investigated. The formation of PAF-acether was maximal at 5 min after stimulation and gradually decreased for up to 30 min. Thrombin induced a rapid 3-4-fold increase in the activity which was maximal by 1 min after stimulation and returned progressively to basal level within 10 min. The thrombin-induced enhancement in acetyltransferase activity was due to an increase of the Vmax of the acetylation reaction without a significant effect on the apparent Km of the enzyme for acetyl-CoA. Human endothelial cells also exhibited a basal PAF-acether acetylhydrolase activity which was not altered upon thrombin stimulation. The pretreatment with 2 mM phenylmethylsulfonyl fluoride (PMSF), a serine proteinase inhibitor reported to block the acetylhydrolase, induced about 2-times more PAF-acether production in response to 2.5 U/ml thrombin stimulation. However, this enhancement of PAF-acether formation seems to be not only due to the inhibition of the acetylhydrolase, but also to the influences on the activities of the acetyltransferase and other enzymes such as phospholipase A2. These results suggest a key role for acetyltransferase and acetylhydrolase in the regulation of PAF-acether formation and catabolism in thrombin-stimulated human endothelial cells.  相似文献   

2.
The presentstudy was performed to characterize thrombin-stimulated phospholipaseA2(PLA2) activity and theresultant release of lysophospholipids from endothelial cells. Themajority of PLA2 activity inendothelial cells was membrane associated,Ca2+ independent, and arachidonateselective. Incubation with thrombin increased membrane-associatedPLA2 activity using bothplasmenylcholine and alkylacyl glycerophosphocholine substrates in theabsence of Ca2+, with no increasein activity observed with phosphatidylcholine substrate. The increasedPLA2 activity was accompanied byarachidonic acid and lysoplasmenylcholine (LPlasC) release fromendothelial cells into the surrounding medium. Thrombin-induced changeswere duplicated by stimulation with the thrombin-receptor-directed peptide SFLLRNPNDKYEPF. Pretreatment with theCa2+-independentPLA2 inhibitor bromoenol lactoneblocked thrombin-stimulated increases inPLA2 activity, arachidonic acid,and LPlasC release. Stimulation of protein kinase C (PKC) increasedbasal PLA2 activity and LPlasCproduction. Thrombin-stimulatedPLA2 activity and LPlasC production were enhanced with PKC activation and completely prevented with PKC downregulation. Thus thrombin treatment of endothelial cellsactivates a PKC-activated, membrane-associated,Ca2+-independentPLA2 that selectively hydrolyzesarachidonylated, ether-linked phospholipid substrates, resulting inLPlasC and arachidonic acid release.

  相似文献   

3.
The physical attributes of the extracellular matrix play a key role in endothelium function by modulating the morphology and phenotype of endothelial cells. Despite the recognized importance of matrix-cell interactions, it is currently not known how the arrangement of adhesive ligands affects the morphology, signal transduction processes, and migration of endothelial cells. We aimed to study how endothelial cells respond to the average spatial arrangement of integrin ligands. We designed functionalized silicon surfaces with average spacing ranging from nanometers to micrometers of the peptide arginine-glycine-aspartic acid (RGD). We found that endothelial cells adhered to and spread on surfaces independently of RGD-to-RGD spacing. In contrast, organization within focal adhesions (FAs) was extremely sensitive to ligand spacing, requiring a nanoscaled average RGD spacing of 44 nm to form lipid raft domains at FAs. The localized membrane organization strongly correlated with the signaling efficiencies of integrin activation and regulated vascular endothelial growth factor (VEGF)-induced signaling events. Importantly, this modulation in signal transduction directly affected the migratory ability of endothelial cells. We conclude that endothelial cells sense nanoscaled variations in the spacing of integrin ligands, which in turn influences signal transduction processes. Average RGD spacing similar to that found in fibronectin leads to lipid raft accumulation at FAs, enhances sensitivity to VEGF stimulation, and controls migration in endothelial cells.  相似文献   

4.
In this study, we describe a DNA microarray assay by using bead-mediated visible light-assisted signal detection for simultaneous screening of seven clinically important enteric pathogens, including Escherichia coli O157:H7, Vibrio cholerae, Vibrio parahaemolyticus, Salmonella spp., Staphylococcus aureus, Rotavirus, and Norwalk virus (including genogroup I and II). Seven pairs of primers, in which the forward primers were labeled with biotin at the 5′ end, were designed and two sets of multiplex asymmetric PCR system were established to amplify the target genes of the seven pathogens. Twelve type specific oligonucleotides were designed and immobilized onto the aldehyde radical modified glass slide to function as target capture probes. After hybridization and stringency washes, the hybridized biotinylated PCR products were detected by the streptavidin-coated magnetic beads. The final hybridization results were visible to the naked eyes and can be imaged by CCD or digital camera. A total of 86 samples previously identified by conventional microbiological methods and/or PCR method were randomly selected to assess the specificity of this assay by a blind study. A coincidence rate of 100% was obtained. Due to the simplicity and specificity of the magnetic bead based DNA microarray, it is especially appropriate for the diagnosis and monitoring of enteric infectious diseases in the community and seaport.  相似文献   

5.
An in vitro assay has been developed using semi-intact cells, made with the bacterial toxin streptolysin O, in order to measure integrin activity in relation to the cytosol environment. In this assay, the cytosolic content can easily be modified while the receptor binding activity is measured by monitoring the interaction of specific radiolabeled substrates with the cell surface. Using two different cell types, i.e., wild-type Chinese hamster ovary cells and human endothelial cells in culture, it has been shown that the binding activities of the fibronectin and fibrinogen receptors become cytosol-dependent on perforated cells. Furthermore, this control depends on micromolar concentrations of intracellular calcium, suggesting that calcium or calcium binding protein(s) may play a key role in controlling integrin activity.  相似文献   

6.
Effects of a moderate-intensity static magnetic field (SMF) on the early-stage development of endothelial capillary tubule formation were examined during the initial cell growth periods using co-cultured human umbilical vein endothelial cells and human diploid fibroblasts. The co-cultured cells within a well (16 mm in diameter) were exposed to SMF intensity up to 120 mT (Bmax) with the maximum spatial gradient of 21 mT/mm using a disc-shaped permanent magnet (16 mm in diameter and 2.5 mm in height) for up to 10 days. Control exposure was performed without magnet. Some vascular endothelial cells were treated with vascular endothelial growth factor (VEGF)-A (10 ng/ml) to promote the tubule formation every 2-3 days. Four experimental protocols were performed: (1) non-exposure (control); (2) SMF exposure alone; (3) non-exposure with VEGF-A; (4) SMF exposure with VEGF-A. Photomicrographs of tubule cells immunostained with an anti-platelet-endothelial cell adhesion molecule-1 (PECAM-1 [CD31[) antibody as a pan-endothelial marker, were analyzed after culture at 37 degrees C for 4, 7, and 10 days. The mean values of the area density and the length of tubules (related mainly to arteriogenesis) as well as the number of bifurcations (related mainly to angiogenesis) were determined as parameters of tubule formation and were compared between the groups. After a 10 day incubation, in the peripheral part of the culture wells, SMF alone significantly promoted the tubule formation in terms of the area density and the length of tubules, compared with control group. In the central part of the wells, however, SMF did not cause any significant changes in the parameters of tubule formation. After a 7 day incubation, VEGF-A significantly promoted all the parameters of tubule formation in any part of the wells, compared with control group. With regard to the synergistic effects of SMF and VEGF-A on tubule formation, after a 10 day incubation, SMF significantly promoted the VEGF-A-increased area density and length of tubules in the peripheral part of the wells, compared with the VEGF-A treatment alone. However, SMF did not induce any significant changes in the VEGF-A-increased number of bifurcations in any part of the wells. The tubule cells observed in the wells had elongated, spindle-like shapes, and the direction of cell elongation was random, irrespective of the presence and direction of SMF. These findings suggest that the application of SMF to intact or VEGF-A-stimulated vascular endothelial cells leads mainly to promote or enhance arteriogenesis in the peripheral part of the wells, where the spatial gradient increases relative to the central part. The effects of SMF on the VEGF-A-enhanced tubule formation appear to be synergistic or additive in arteriogenesis but not in angiogenesis.  相似文献   

7.
Recent studies have demonstrated that H2O2 acts as a second messenger of mitogenic signaling and that catalase is under the regulation of PKA and PKC signaling. Here we examined whether catalase binds any mitogenic signaling molecules. Our results indicated that serum stimulation of HeLa, Caco-2, and LiSa-2 cells, but not BJ-1 and primary human bronchial epithelial cells, resulted in catalase binding to Grb2. Whereas serum deprivation, butyrate, and herbimycin-A negatively regulated the binding, an extended culture of confluent Caco-2 cells resulted in binding of an additional but as yet unidentified molecule to the Grb2–catalase complex. Expression of active catalase nearly 15-fold over control level in Tet-off HeLa cells substantially increased binding to Grb2, and this was sensitive to 3-aminotriazole, a specific catalase inhibitor. Furthermore, fibrinogen, fibronectin, and laminin, but not collagen types I to V, hyaluronic acid, elastin, insulin, EGF, IGF-I, PDGF, or NGF, resulted in binding similar to that of serum. A mutation of tyrosine to phenylalanine at 447 abolished the binding capability of catalase to Grb2 in vitro. These results support the view that catalase 447Tyr-Val-Asn-Val binds Grb2 upon phosphorylation in tumor cells when stimulated with serum or ligands for integrin receptors. This is the first report demonstrating that catalase binds a SH2 domain of the molecule and participates in integrin signaling.  相似文献   

8.
Thrombin-mediated changes in endothelial cell adherens junctions modulate vascular permeability. We demonstrate that the nonreceptor protein-tyrosine phosphatase SHP2 co-precipitates with VE-cadherin complexes in confluent, quiescent human umbilical vein endothelial cells. Ligand-binding blots using a SHP2-glutathione S-transferase fusion peptide established that SHP2 associates selectively with beta-catenin in VE-cadherin complexes. Thrombin treatment of human umbilical vein endothelial cells promotes SHP2 tyrosine phosphorylation and dissociation from VE-cadherin complexes. The loss of SHP2 from the cadherin complexes correlates with a dramatic increase in the tyrosine phosphorylation of beta-catenin, gamma-catenin, and p120-catenin complexed with VE-cadherin. We propose that thrombin regulates the tyrosine phosphorylation of VE-cadherin-associated beta-catenin, gamma-catenin, and p120-catenin by modulating the quantity of SHP2 associated with VE-cadherin complexes. Such changes in adherens junction complex composition likely underlie thrombin-elicited alterations in endothelial monolayer permeability.  相似文献   

9.

Objectives

Attachment of magnetic particles to cells is needed for a variety of applications but is not always possible or efficient. Simpler and more convenient methods are thus desirable. In this study, we tested the hypothesis that endothelial cells (EC) can be loaded with micron-size magnetic beads by the phagocytosis-like mechanism ‘angiophagy’. To this end, human umbilical vein EC (HUVEC) were incubated with magnetic beads conjugated or not (control) with an anti-VEGF receptor 2 antibody, either in suspension, or in culture followed by re-suspension using trypsinization.

Results

In all conditions tested, HUVEC incubation with beads induced their uptake by angiophagy, which was confirmed by (i) increased cell granularity assessed by flow cytometry, and (ii) the presence of an F-actin rich layer around many of the intracellular beads, visualized by confocal microscopy. For confluent cultures, the average number of beads per cell was 4.4 and 4.2, with and without the presence of the anti-VEGFR2 antibody, respectively. However, while the actively dividing cells took up 2.9 unconjugated beads on average, this number increased to 5.2 if binding was mediated by the antibody. Magnetic pulldown increased the cell density of beads-loaded cells in porous electrospun poly-capro-lactone scaffolds by a factor of 4.5 after 5 min, as compared to gravitational settling (p?<?0.0001).

Conclusion

We demonstrated that EC can be readily loaded by angiophagy with micron-sized beads while attached in monolayer culture, then dispersed in single-cell suspensions for pulldown in porous scaffolds and for other applications.
  相似文献   

10.
Augmented vasoconstriction contributes to arterial stiffness associated with diabetes. It has been shown that capacitative calcium entry induced by sarcoplasmic-endoplasmic reticulum calcium ATPase blocker cyclopiazonic acid (CPA) in endothelial cells stimulates production of constrictor prostaglandins, which causes contractions of vascular smooth muscle cells. The aim of the work was to study the effect of diabetes on the vasoconstrictor response induced by calcium entry into endothelial and smooth muscle cells. Force was measured in isolated aortae of diabetic ob/ob and control C57BL/6J mice under isometric conditions. Contractions caused by 10 mumol/l CPA in diabetic mouse aortae featured higher amplitudes and longer durations in comparison with nondiabetic aortae. These contractions were abolished by a COX inhibitor indomethacin (10 mumol/l) or a specific thromboxane A2 receptor blocker SQ 29548 (1 mumol/l) and were not observed in denuded aortae. The contractions were sensitive to extracellular Ca (2+) and store-operated channel blockers. All together this suggests that vasoconstriction was caused by thromboxane A2 synthesis in endothelial cells induced by Ca (2+) entry through store-operated channels. Higher concentrations of CPA (30 mumol/l) or thapsigargin (1 mumol/l) elicited indomethacin-resistant tonic contractions of aortae with 2-fold amplitude in diabetic mice compared to their nondiabetic littermates, which were sensitive to store-operated channel blockers, but not to indomethacin, SQ 29548, or denudation. In conclusions, increases in intracellular Ca (2+) cause augmented vasoconstriction in diabetic vasculature through endothelial synthesis of contractile prostaglandins. In addition capacitative Ca (2+) entry is enhanced in diabetic vascular smooth muscle. These mechanisms indicate possible targets for clinical applications.  相似文献   

11.
Thrombomodulin, an endothelial cell-surface anticoagulant, has been postulated to contain a glycosaminoglycan. Thrombomodulin function was therefore studied in endothelial cells treated with beta-D-xyloside, an inhibitor of glycosaminoglycan attachment to proteoglycan core proteins. Beta-D-xyloside caused a reproducible 3 to 5-fold increase in the Km of thrombomodulin for thrombin and a 20-30% decrease in the rate of protein C activation by the thrombin-thrombomodulin complex. These results support a role for glycosaminoglycans in thrombomodulin function and suggest that beta-D-xylosides can be used to investigate both the anticoagulant mechanisms and the biosynthesis of cell-surface thrombomodulin.  相似文献   

12.
Endothelial cells participate in extracellular ATP release elicited by mechanosensors. To characterize the dynamic interactions between mechanical and chemical factors that modulate ATP secretion by the endothelium, we assessed and compared the mechanisms participating in the spontaneous (basal) and mechanically stimulated secretion using primary cultures of rat mesentery endothelial cells. ATP/metabolites were determined in the cell media prior to (basal) and after cell media displacement or a picospritzer buffer puff used as mechanical stimuli. Mechanical stimulation increased extracellular ATP that peaked within 1 min, and decayed to basal values in 10 min. Interruption of the vesicular transport route consistently blocked the spontaneous ATP secretion. Cells maintained in media lacking external Ca2+ elicited a spontaneous rise of extracellular ATP and adenosine, but failed to elicit a further extracellular ATP secretion following mechanical stimulation. 2-APB, a TRPV agonist, increased the spontaneous ATP secretion, but reduced the mechanical stimulation-induced nucleotide release. Pannexin1 or connexin blockers and gadolinium, a Piezo1 blocker, reduced the mechanically induced ATP release without altering spontaneous nucleotide levels. Moreover, thrombin or related agonists increased extracellular ATP secretion elicited by mechanical stimulation, without modifying spontaneous release. In sum, present results allow inferring that the spontaneous, extracellular nucleotide secretion is essentially mediated by ATP containing vesicles, while the mechanically induced secretion occurs essentially by connexin or pannexin1 hemichannel ATP transport, a finding fully supported by results from Panx1?/? rodents. Only the latter component is modulated by thrombin and related receptor agonists, highlighting a novel endothelium-smooth muscle signaling role of this anticoagulant.  相似文献   

13.
The skin is the first physiological barrier, with a complex constitution, that provides defensive functions against multiple physical and chemical aggressions. Glyphosate is an extensively used herbicide that has been shown to increase the risk of cancer. Moreover there is increasing evidence suggesting that the mechanical phenotype plays an important role in malignant transformation. Atomic force microscopy (AFM) has emerged within the last decade as a powerful tool for providing a nanometer-scale resolution imaging of biological samples. Peak Force Tapping (PFT) is a newly released AFM-based investigation technique allowing extraction of chemical and mechanical properties from a wide range of samples at a relatively high speed and a high resolution. The present work uses the PFT technology to investigate HaCaT keratinocytes, a human epidermal cell line, and offers an original approach to study chemically-induced changes in the cellular mechanical properties under near-physiological conditions. These experiments indicate glyphosate induces cell membrane stiffening, and the appearance of cytoskeleton structures at a subcellular level, for low cytotoxic concentrations whereas cells exposed to IC50 (inhibitory concentration 50%) treatment exhibit control-like mechanical behavior despite obvious membrane damages. Quercetin, a well-known antioxidant, reverses the glyphosate-induced mechanical phenotype.  相似文献   

14.
Thrombin induces rapid and reversible increase of endothelial (EC) barrier permeability associated with actin cytoskeleton remodeling and contraction. The role of microtubules (Mts) in EC barrier regulation compared with actin systems is poorly understood. In this work we studied pathways of Mt and actin regulation in response to thrombin treatment in cultured EC, and the involvement of trimeric G-proteins and in this process. Cells were treated with thrombin, and further analysed using immunofluorescent staining of actin and Mts, digital microscopy and morphometric analysis. In normal cells actin network consists of thin bundles basically located in the cell periphery, Mt density decreases from the cell center to the cell edge. Thrombin (25 nM) induced endothelial dysfunction associated with a rapid (within 5 min) decrease of peripheral Mt network and a slower actin stress fiber formation in the cytoplasm. Pretreatment with Pertussis toxin, which is Gi protein inhibitor, attenuated thrombin-induced stress fiber formation and Mt disassembly. Overexpression of activated G12, G13, Gi and Gq proteins, which are involved in thrombin receptor-mediated signaling, resulted in increasing stress fibers thickness and density and complete Mt disassembly. From the results obtained we suggest that thrombin regulates actin cytoskeleton of EC using local Mt depolymerization at the cell edge.  相似文献   

15.
The unusual dilatation of dermal capillaries and angiogenesis played important roles in psoriasis. Some genes and proteins of dermal mesenchymal stem cells (DMSCs) from psoriasis are abnormal and related to the function of endothelial cells (ECs). The present study was aimed to evaluate whether psoriatic DMSCs could affect adhesion and migration of ECs through neovascularization-related integrins in psoriasis. Human DMSCs, collected from psoriasis lesions and healthy skin, respectively, were cocultured with human umbilical vein endothelial cells (HUVECs). The expression levels of three integrins, that is, αvβ3, αvβ5, and α5β1 in HUVECs were tested by quantitative real-time polymerase chain reaction and Western blot analysis. The adhesion and migration of HUVECs were detected by adhesion assay and migration assay. The results showed that in psoriasis group, the expression of αVβ3 and α5β1 of HUVECs markedly increased 2.50- and 3.71-fold in messenger RNA levels, and significantly increased 1.63- and 1.92-fold in protein levels, comparing to healthy control group (all p < .05). But β5 was not significantly different between the two groups (p > .05). In addition, compared with control, psoriatic DMSCs promoted HUVECs adhesion by 1.62-fold and migration by 2.91-fold (all p < .05). In conclusion, psoriatic DMSCs impact HUVECs adhesion and migration by upregulating the expression of integrins αVβ3 and α5β1.  相似文献   

16.
Endothelial cells (ECs) are a source of physiologically important molecules that are synthesized and released to the blood and/or to the subendothelial extracellular matrix such as a heparan sulfate proteoglycan (HSPG) with antithrombotic properties. Previously, we have shown that heparin stimulates the synthesis and modifies the sulfation pattern of this HSPG. Here the molecular mechanisms involved in the up‐regulation of HSPG synthesis by heparin in endothelial cells were decoded. The cells were stimulated with heparin and the expression of HSPG and intracellular pathways were evaluated by a combination of methods involving confocal microscopy, flow cytometry, Western blotting analyses, and [35S]‐sulfate metabolically labeling of the cells. We observed that the up‐regulation of HSPG synthesis evoked by heparin is dependent on the interaction of heparin with integrin since RGD peptide abolishes the effect. The activation of integrin leads to tyrosine‐phosphorylation of focal adhesion‐associated proteins such as FAK, Src, and paxillin. In addition, heparin induces ERK1/2 phosphorylation and inhibitors of Ras and MEK decreased heparin‐dependent HSPG synthesis. Moreover, heparin also induced intracellular Ca2+ release, PLCγ1 (phospholipase Cγ1) and CaMKII (calcium calmodulin kinase II) activation, as well as an increase in nitric oxide (NO) production. Finally, an intracellular Ca2+ chelator, Ca2+ signaling inhibitors, and an endothelial NO synthase inhibitor were all able to abolish the effect in heparan sulfate synthesis. In conclusion, the heparin‐induced up‐regulation of HSPG expression is associated with the phosphorylation of focal adhesion proteins and Ras/Raf/MEK/ERK MAP and Ca2+/NO pathways. J. Cell. Physiol. 227: 2740–2749, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
Adhesive properties of endothelial cells are influenced by the thioldisulfide balance. However, the molecular mechanism of this effect is unclear, although recent observations indicate that integrin receptors may be direct targets for redox modulation. The purpose of this study was to examine whether protein disulfide isomerase (PDI) is directly involved in this process. As manganese ions are known to affect the thioldisulfide balance and activate integrins to maximal affinity, we searched for PDI interactions with integrins, particularly with alpha(V)beta(3), in Mn(2+)-treated endothelial cells. By employing confocal microscopy, flow cytometry and coimmunoprecipitation experiments, we showed that exposure of endothelial cells to Mn(2+) resulted in: (a) the appearance of surface protein thiol groups, which can be found in PDI and alpha(V)beta(3), and both proteins colocalizing on the cellular surface; and (b) the formation of the PDI-alpha(V)beta(3) complex, which dissociates upon reduction. In addition, PDI in a complex with alpha(V)beta(3) induces conversion of the integrin to the ligand-competent high-affinity state, as evidenced by increased binding of vitronectin. The membrane-impermeable sulfhydryl blockers 3-N-maleimidylpropionyl biocytin 3-N-maleimidylpropionyl biocytin and p-chloromercuriphenyl sulfonate, as well as the PDI inhibitors bacitracin, MA3 018, and MA3 019, abolished the binding of vitronectin and LM609 to endothelial cells that is activated by Mn(2+). Consistently, LM609 almost completely blocked binding of vitronectin to such cells. The formation of the PDI-alpha(V)beta(3) stoichiometric complex was further demonstrated by surface plasmon resonance analysis, which showed that the initial reversible binding of PDI becomes irreversible in the presence of Mn(2+), probably mediated by disulfide bonds. Thus, we show that Mn(2+) simultaneously modulates the thiol isomerase activity of PDI that is bound to alpha(V)beta(3) and induces its transition to the ligand-competent state, suggesting an alternative mechanism of integrin regulation.  相似文献   

18.
Fluid shear stress (FSS) has been shown to be an ubiquitous stimulator of mammalian cell metabolism. Although many of the intracellular signal transduction pathways have been characterized, the primary mechanoreceptor for FSS remains unknown. One hypothesis is that the cytoplasmic membrane acts as the receptor for FSS, leading to increased membrane fluidity, which in turn leads to the activation of heterotrimetric G proteins (13). 9-(Dicyanovinyl)-julolidine (DCVJ) is a fluorescent probe that integrates into the cell membrane and changes its quantum yield with the viscosity of the environment. In a parallel-plate flow chamber, confluent layers of DCVJ-labeled human endothelial cells were exposed to different levels of FSS. With increased FSS, a reduced fluorescence intensity was observed, indicating an increase of membrane fluidity. Step changes of FSS caused an approximately linear drop of fluorescence within 5 s, showing fast and almost full recovery after shear cessation. A linear dose-response relationship between shear stress and membrane fluidity changes was observed. The average fluidity increase over the entire cell monolayer was 22% at 26 dyn/cm(2). This study provides evidence for a link between FSS and membrane fluidity, and suggests that the membrane is an important flow mechanosensor of the cell.  相似文献   

19.
Das M  Ithychanda SS  Qin J  Plow EF 《PloS one》2011,6(10):e26355
Cell adhesion and migration depend on engagement of extracellular matrix ligands by integrins. Integrin activation is dynamically regulated by interactions of various cytoplasmic proteins, such as filamin and integrin activators, talin and kindlin, with the cytoplasmic tail of the integrin β subunit. Although filamin has been suggested to be an inhibitor of integrin activation, direct functional evidence for the inhibitory role of filamin is limited. Migfilin, a filamin-binding protein enriched at cell-cell and cell-extracellular matrix contact sites, can displace filamin from β1 and β3 integrins and promote integrin activation. However, its role in activation and functions of different β integrins in human vascular cells is unknown. In this study, using flow cytometry, we demonstrate that filamin inhibits β1 and αIIbβ3 integrin activation, and migfilin can overcome its inhibitory effect. Migfilin protein is widely expressed in different adherent and circulating blood cells and can regulate integrin activation in naturally-occurring vascular cells, endothelial cells and neutrophils. Migfilin can activate β1, β2 and β3 integrins and promote integrin mediated responses while migfilin depletion impairs the spreading and migration of endothelial cells. Thus, filamin can act broadly as an inhibitor and migfilin is a promoter of integrin activation.  相似文献   

20.
Although studies have suggested microvessel endothelial cells (MVEC) activation and induction of matrix metalloproteinases (MMPs) by homocysteine (Hcy), the transduction mechanism leading to endothelial activation was unclear. We hypothesized that Hcy induced metalloproteinase and altered the levels of integrin in MVEC. MVEC from mouse brain were isolated and characterized by CD-31 (PECAM-1) FITC labeling. The MVEC were activated with different doses (6-40 microM) of Hcy. The cultured-conditioned-medium was analyzed for MMP activity by gelatin gel-zymography. TIMP-1, -4, beta-1 integrin, and a disintegrin and metalloproteinase-12 (ADAM-12) were quantified by Western blot analysis. We used MVEC in cell culture to study the effect of increasing concentrations of Hcy upon the secretion of various proteins into the culture medium. MMP-9, beta-1 integrin, ADAM-12, and TIMP-1 were found in increased concentrations in the culture medium of Hcy-treated cells whereas TIMP-4 was decreased. We have shown that purified TIMP-4 blocked the increase of beta-1 integrin shedding in Hcy-treated cells. Interestingly, our results suggest that TIMP-1 and TIMP-4 function antagonistically in Hcy-induced signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号