首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the hypothesis that preconditioning can decrease postischemic oxidative protein damage. Isolated rat hearts were subjected to 25 min of normothermic global ischemia followed by 45 min of reperfusion. These were compared with hearts pretreated with 20 microM nicorandil or preconditioned with two cycles of ischemia. Changes in the high energy phosphates, ATP and phosphocreatine, were followed using (31)P-NMR spectroscopy. Protein carbonyls were assessed using an immunoblot technique. Postischemic hemodynamic function and high energy phosphates recovered to significantly (p <.05) higher levels in nicorandil-treated and ischemic preconditioned hearts as compared to controls. Postischemic protein carbonyl formation was highest in control reperfused hearts but reduced to intermediate between control and preischemic hearts by ischemic preconditioning and virtually prevented by nicorandil pretreatment, with a prominent band at 43 kDa significantly affected (p <.05). Based on immunoshift and immunoprecipitation studies, this band was identified as a mixture of actin isoforms. These studies support the conclusion that nicorandil diminishes protein oxidative damage in general, and specifically actin oxidation, which in the presence of improved supply of high energy phosphates, leads to enhanced postischemic contractile function.  相似文献   

2.
This study examines the hypothesis that ischemic or pharmacologic preconditioning improves postischemic mitochondrial function by attenuating oxidation of mitochondrial proteins. Isolated rat hearts were perfused for 38 min preischemia, followed by 25 min global ischemia and then 60 min reperfusion. Hearts were preconditioned by two episodes of 3 min global ischemia, followed by 2 min of reflow (IP), or by perfusion with 50 micromol/l nicorandil (Nic) for 10 min, followed by 10 min washout. IP and Nic significantly (p <.05) improved postischemic function, which was abolished by bracketing the protocols with 200 micromol/l 5-hydroxydecoanate (5HD) or 300 micromol/l alpha-mercaptopropionylglycine (MPG). After isolation of cardiac mitochondria, the respiratory control index (RCI) was calculated from State 3 and State 4 respiration. Both IP and Nic significantly (p <.05) improved postischemic RCI, which was depressed 71% from preischemic values in control hearts. The protective effects of IP and Nic were partially abolished by bracketing with 5HD or MPG. Furthermore, mitochondria from ischemic hearts had significantly (p <.05) less ability to resist swelling on Ca2+ loading, which was improved by both IP and Nic. By use of an immunoblot technique, carbonyl content of multiple bands of mitochondrial proteins was observed to be elevated after 25 min ischemia, and still elevated by the end of 60 min reperfusion. Both IP and Nic attenuated the increased protein oxidation observed at the end of ischemia. The protective effect of IP was almost completely abolished by MPG and partially by 5HD, which also partially abolished the protective effect of Nic. These studies support the conclusion that one mechanism for enhanced postischemic function in the preconditioned heart is improved mitochondrial function as a result of decreased oxidation of mitochondrial proteins.  相似文献   

3.
This study examined the hypothesis that low-concentration apomorphine improves postischemic hemodynamic and mitochondrial function in the isolated rat heart model by attenuating oxidation of myocardial proteins. Control and apomorphine-treated hearts were subjected to 35 min of perfusion, 25 min of normothermic global ischemia, and 60 min of reperfusion. Apomorphine (2 microM) was introduced into the perfusate for 20 min starting from the onset of reperfusion. Apomorphine significantly (p <.05) improved postischemic hemodynamic function: work index of the heart (product of LVDP and heart rate) was twice as high in apomorphine-treated hearts compared to controls at the end of reperfusion (p <.01). After isolation of cardiac mitochondria, the respiratory control ratio (RCR) was calculated from the oxygen consumption rate of State 3 and State 4 respiration. Apomorphine significantly improved postischemic RCR (87% of preischemic value vs. 39% in control, p <.05). Using an immunoblot technique, carbonyl content of multiple unidentified myocardial proteins (mitochondrial and nonmitochondrial) was observed to be elevated after global ischemia and reperfusion. Apomorphine significantly attenuated the increased protein oxidation at the end of reperfusion. These results support the conclusion that apomorphine is capable of preventing ischemia/reperfusion-induced oxidative stress and thereby attenuating myocardial protein oxidation and preserving mitochondrial respiration function.  相似文献   

4.
Varga E  Nagy N  Lazar J  Czifra G  Bak I  Biro T  Tosaki A 《Life sciences》2004,75(20):2411-2423
We investigated the contribution of dexamethasone treatment on the recovery of postischemic cardiac function and the development of reperfusion-induced arrhythmias in ischemic/reperfused isolated rat hearts. Rats were treated with 2 mg/kg of intraperitoneal injection of dexamethasone, and 24 hours later, hearts were isolated according to the 'working' mode, perfused, and subjected to 30 min global ischemia followed by 120 min reperfusion. Cardiac function including heart rate, coronary flow, aortic flow, and left ventricular developed pressure were recorded. After 60 min and 120 min reperfusion, 2 mg/kg of dexamethasone significantly improved the postischemic recovery of aortic flow and left ventricular developed pressure from their control values of 10.7 +/- 0.3 ml/min and 10.5 +/- 0.3 kPa to 22.2 +/- 0.3 ml/min (p < 0.05) and 14.3 +/- 0.5 kPa (p < 0.05), 19.3 +/- 0.3 ml/min (p < 0.05) and 12.3 +/- 0.5 kPa (p < 0.05), respectively. Heart rate and coronary flow did not show a significant change in postischemic recovery after 60 or 120 min reperfusion. In rats treated with 0.5 mg/kg of actinomycin D injected i.v., one hour before the dexamethasone injection, suppressed the dexamethasone-induced cardiac protection. Electrocardiograms were monitored to determine the incidence of reperfusion-induced ventricular fibrillation. Dexamethasone pretreatment significantly reduces the occurrence of ventricular fibrillation. Cytochrome c release was also observed in the cytoplasm. The results suggest that the inhibition of cytochrome c release is involved in the dexamethasone-induced cardiac protection.  相似文献   

5.
To investigate the mechanism underlying postischemic contractile dysfunction (myocardial stunning) we examined myocardial sulfhydryl group content, myofibrillar Ca2+-dependent Mg2+-ATPase activity and protein profile after global ischemia and reperfusion. The Langerdorff-perfused rabbit hearts were subjected to 15 min normothermic ischemia followed by 10 min reperfusion and myofibrils were isolated from homogenates of left ventricular tissues. Depressed contractile function during reperfusion was accompanied by a decrease in total sulfhydryl group content. However, myofibrillar protein profile was unchanged and Western immunoblotting analysis showed no significant differences in troponin I immunoreactive bands between control and stunned hearts. Likewise, myofibrillar Mg2+-ATPase activity was unaltered after ischemia and reperfusion. We conclude that myocardial stunning is not caused by altered myofibrillar function and protein degradation but may be partly due to the oxidative modification of as yet undefined proteins.  相似文献   

6.
Insulin improves contractile function after ischemia, but does not increase glucose uptake in the isolated working rat heart. We tested the hypothesis that the positive inotropic effect of insulin is independent of the signaling pathway responsible for insulin-stimulated glucose uptake. We inhibited this pathway at the level of phosphatidyl inositol 3-kinase (PI3K) with wortmannin. Hearts were perfused for 70 min at physiological workload with Krebs-Henseleit buffer containing [2-3H] glucose (5 mM, 0.05 Ci/ml) and oleate (0.4 mM, 1% BSA) in the presence (WM, n = 5) or absence (control, n = 7) of wortmannin (WM, 3 mol/L). After 20 min, hearts were subjected to 15 min of total global ischemia followed by 35 min of reperfusion. Insulin (1 mU/ml) was added at the beginning of reperfusion (WM + insulin n = 8, insulin n = 8). Cardiac power before ischemia was 8.1 ± 0.7 mW. Recovery of contractile function after ischemia was significantly increased in the presence of insulin (73.5 ± 8.9% vs. 38.5 ± 6.7%, p < 0.01). The addition of wortmannin completely abolished the effect of insulin on recovery (32.6 ± 6.4%). Glucose uptake was 1.84 ± 0.32 mol/min/g dry before ischemia and was slightly elevated during reperfusion (2.68 ± 0.35 mol/min/g dry, n.s.). Insulin did not affect postischemic glucose uptake. In the presence of wortmannin, glucose uptake was lowest during reperfusion (n.s.). The results suggest that PI3K is involved in the insulin-induced improvement in postischemic recovery of contractile function. This effect of insulin is independent of its effect on glucose uptake.  相似文献   

7.
We tested the hypothesis that glycogen levels at the beginning of ischemia affect lactate production during ischemia and postischemic contractile function.Isolated working rat hearts were perfused at physiological workload with bicarbonate buffer containing glucose (10 mmol/L). Hearts were subjected to four different preconditioning protocols, and cardiac function was assessed on reperfusion. Ischemic preconditioning was induced by either one cycle of 5 min ischemia followed by 5, 10, or 20 min of reperfusion (PC5/5, PC5/10, PC5/20), or three cycles of 5 min ischemia followed by 5 min of reperfusion (PC3 × 5/5). All hearts were subjected to 15 min total, global ischemia, followed by 30 min of reperfusion. We measured lactate release, timed the return of aortic flow, compared postischemic to preischemic power, and determined tissue metabolites at selected time points.Compared with preischemic function, cardiac power during reperfusion improved in groups PC5/10 and PC5/20, but was not different from control in groups PC5/5 and PC3 × 5/5. There was no correlation between preischemic glycogen levels and recovery of function during reperfusion. There was also no correlation between glycogen breakdown (or resynthesis) and recovery of function. Lactate accumulation during ischemia was lowest in group PC5/20 and highest in the group with three cycles of preconditioning (PC3 × 5/5). Lactate release during reperfusion was significantly higher in the groups with low recovery of power than in the groups with high recovery of power.In glucose-perfused rat heart recovery of function is independent from both pre- and postischemic myocardial glycogen content over a wide range of glycogen levels. The ability to utilize lactate during reperfusion is an indicator for postischemic return of contractile function.  相似文献   

8.
Myocardial ischemia-reperfusion (I/R) injury is associated with contractile dysfunction, arrhythmias, and myocyte death. Intracellular Ca(2+) overload with reduced activity of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is a critical mechanism of this injury. Although upregulation of SERCA function is well documented to improve postischemic cardiac function, there are conflicting reports where pharmacological inhibition of SERCA improved postischemic function. SERCA2a is the primary cardiac isoform regulating intracellular Ca(2+) homeostasis; however, SERCA1a has been shown to substitute SERCA2a with faster Ca(2+) transport kinetics. Therefore, to further address this issue and to evaluate whether SERCA1a expression could improve postischemic cardiac function and myocardial salvage, in vitro and in vivo myocardial I/R studies were performed on SERCA1a transgenic (SERCA1a(+/+)) and nontransgenic (NTG) mice. Langendorff-perfused hearts were subjected to 30 min of global ischemia followed by reperfusion. Baseline preischemic coronary flow and left ventricular developed pressure were significantly greater in SERCA1a(+/+) mice compared with NTG mice. Independent of reperfusion-induced oxidative stress, SERCA1a(+/+) hearts demonstrated greatly improved postischemic (45 min) contractile recovery with less persistent arrhythmias compared with NTG hearts. Morphometry showed better-preserved myocardial structure with less infarction, and electron microscopy demonstrated better-preserved myofibrillar and mitochondrial ultrastructure in SERCA1a(+/+) hearts. Importantly, intraischemic Ca(2+) levels were significantly lower in SERCA1a(+/+) hearts. The cardioprotective effect of SERCA1a was also observed during in vivo regional I/R with reduced myocardial infarct size after 24 h of reperfusion. Thus SERCA1a(+/+) hearts were markedly protected against I/R injury, suggesting that expression of SERCA 1a isoform reduces postischemic Ca(2+) overload and thus provides potent myocardial protection.  相似文献   

9.
We investigated whether low-pressure reperfusion may attenuate postischemic contractile dysfunction, limits necrosis and apoptosis after a prolonged hypothermic ischemia, and inhibits mitochondrial permeability transition-pore (MPTP) opening. Isolated rats hearts (n = 72) were exposed to 8 h of cold ischemia and assigned to the following groups: 1) reperfusion with low pressure (LP = 70 cmH(2)O) and 2) reperfusion with normal pressure (NP = 100 cmH(2)O). Cardiac function was assessed during reperfusion using the Langendorff model. Mitochondria were isolated, and the Ca(2+) resistance capacity (CRC) of the MPTP was determined. Malondialdehyde (MDA) production, caspase-3 activity, and cytochrome c were also assessed. We found that functional recovery was significantly improved in LP hearts with rate-pressure product averaging 30,380 +/- 1,757 vs. 18,000 +/- 1,599 mmHg/min in NP hearts (P < 0.01). Necrosis, measured by triphenyltetrazolium chloride staining and creatine kinase leakage, was significantly reduced in LP hearts (P < 0.01). The CRC was increased in LP heart mitochondria (P < 0.01). Caspase-3 activity, cytochrome c release, and MDA production were reduced in LP hearts (P < 0.001 and P < 0.01). This study demonstrated that low-pressure reperfusion after hypothermic heart ischemia improves postischemic contractile dysfunction and attenuates necrosis and apoptosis. This protection could be related to an inhibition of mitochondrial permeability transition.  相似文献   

10.
Severe ischemic injury or infarction of myocardium may cause activation of matrix metalloproteinases (MMPs) and damage the interstitial matrix. However, it is unknown whether MMP activation and matrix damage occur after moderate ischemia and reperfusion that result in myocardial stunning without infarction, and if so whether such changes contribute to postischemic myocardial expansion and contractile dysfunction. To address these questions, open-chest anesthetized pigs underwent 90 min of regional ischemia (subendocardial blood flow 0.4 +/- 0.1 ml. g(-1). min(-1)) and 90 min of reperfusion. After ischemia plus reperfusion, histological and ultrastructural examination revealed no myocardial infarction or inflammatory cell infiltration. Myocardial MMP-9 content increased threefold with a fourfold increase in the active form (P < 0.001). Myocardial collagenase content doubled (P < 0.01) but remained in latent form. MMP-2 and tissue inhibitors of metalloproteinases were unaffected. Despite increases in MMPs, collagen ultrastructure (assessed by cell maceration scanning electron microscopy) was unaltered. Intracoronary administration of the MMP inhibitor GM-2487 did not prevent or attenuate myocardial expansion (assessed by regional diastolic dimensions at near-zero left ventricular pressure) or contractile dysfunction. We conclude that although moderate ischemia and reperfusion alter myocardial MMP content and activity, these effects do not result in damage to interstitial collagen, nor do they contribute to myocardial expansion or contractile dysfunction.  相似文献   

11.
Action potential duration (APD) shortening due to opening of sarcolemmal ATP-dependent potassium (KATP) channels has been postulated to protect the myocardium against postischemic damage by reducing Ca2+ influx. This hypothesis was assessed, assuming that increased postischemic stunning due to KATP channel inhibition with glibenclamide could be reverted by the addition of the Ca2+ channel blocker diltiazem. Percent wall thickening fraction (% WTh, conscious sheep) and APD (open-chest sheep) were obtained from the following groups: control: 12 min ischemia by anterior descending coronary artery occlusion followed by 2 h reperfusion; glibenclamide: same as control, with glibenclamide (0.4 mg/kg) infused 30 min before ischemia; diltiazem: same as control, with diltiazem (100 g/kg) administered prior to ischemia; glibenclamide+diltiazem: both drugs infused as in glibenclamide and diltiazem groups. APD was reduced in control ischemia. Conversely, KATP-channel blockade by glibenclamide lengthened APD and increased postischemic stunning (p < 0.01 vs. control); glibenclamide+diltiazem did not shorten APD but enhanced functional recovery (p < 0.01 vs. glibenclamide). Ca2+ channel blockade improvement of increased stunning provoked by KATP channel inhibition supports the hypothesis that APD shortening due to opening of KATP channels protects against postischemic stunning by limiting Ca2+ influx.  相似文献   

12.
Previous studies indicate that deficiency of endothelial nitric oxide (NO) synthase (eNOS)-derived NO exacerbates myocardial reperfusion injury. We hypothesized that overexpression of eNOS would reduce the extent of myocardial ischemia-reperfusion (MI/R) injury. We investigated two distinct strains of transgenic (TG) mice overexpressing the eNOS gene (eNOS TG). Bovine eNOS was overexpressed in one strain (eNOS TG-Kobe), whereas the human eNOS gene was overexpressed in the other strain (eNOS TG-RT). Non-TG (NTG) and eNOS TG mice were subjected to 30 min of coronary artery occlusion followed by 24 h of reperfusion, and the extent of myocardial infarction was determined. Myocardial infarct size was reduced by 33% in the eNOS TG-Kobe strain (P < 0.05 vs. NTG) and by 32% in the eNOS TG-RT strain (P < 0.05 vs. NTG). However, postischemic cardiac function (cardiac output, fractional shortening) was not improved in the eNOS TG-Kobe mouse at 24 h of reperfusion [P = not significant (NS) vs. NTG]. In additional studies, eNOS TG-Kobe mice were subjected to 30 min of myocardial infarction and 7 days of reperfusion. Fractional shortening and the first derivative of left ventricular pressure were measured in eNOS TG-Kobe and NTG mice, and no significant differences in contractility were observed (P = NS) between the eNOS TG mice and NTG controls. Left ventricular end-diastolic pressure was significantly (P < 0.05 vs. NTG) reduced in the eNOS TG-Kobe strain at 7 days of reperfusion. The cardioprotective effects of eNOS overexpression on myocardial infarct size were ablated by Nomega-nitro-l-arginine methyl ester (300 mg/kg) pretreatment. Thus genetic overexpression of eNOS in mice attenuates myocardial infarction after MI/R but fails to significantly protect against postischemic myocardial contractile dysfunction in mice.  相似文献   

13.
Normalization of intracellular sodium (Na) after postischemic reperfusion depends on reactivation of the sarcolemmal Na(+)-K(+)-ATPase. To evaluate the requirement of glycolytic ATP for Na(+)-K(+)-ATPase function during postischemic reperfusion, 5-s time-resolution 23Na NMR was performed in isolated perfused rat hearts. During 20 min of ischemia, Na increased approximately twofold. In glucose-reperfused hearts with or without prior preischemic glycogen depletion, Na decreased immediately upon postischemic reperfusion. In glycogen-depleted pyruvate-reperfused hearts, however, the decrease of Na was delayed by approximately 25 s, and application of the pyruvate dehydrogenase (PDH) activator dichloroacetate (DA) did not shorten this delay. After 30 min of reperfusion, Na had almost normalized in all groups and contractile recovery was highest in the DA-treated hearts. In conclusion, some degree of functional coupling of glycolytic ATP and Na(+)-K(+)-ATPase activity exists, but glycolysis is not essential for recovery of Na homeostasis and contractility after prolonged reperfusion. Furthermore, the delayed Na(+)-K(+)-ATPase reactivation observed in pyruvate-reperfused hearts is not due to inhibition of PDH.  相似文献   

14.
We have proposed that pharmacological preconditioning, leading to PKC-epsilon activation, in hearts improves postischemic functional recovery through a decrease in actomyosin ATPase activity and subsequent ATP conservation. The purpose of the present study was to determine whether moderate PKC-independent decreases in actomyosin ATPase are sufficient to improve myocardial postischemic function. Rats were given propylthiouracil (PTU) for 8 days to induce a 25% increase in beta-myosin heavy chain with a 28% reduction in actomyosin ATPase activity. Recovery of postischemic left ventricular developed pressure (LVDP) was significantly higher in PTU-treated rat hearts subjected to 30 min of global ischemia than in control hearts: 57.9 +/- 6.2 vs. 32.6 +/- 5.1% of preischemic values. In addition, PTU-treated hearts exhibited a delayed onset of rigor contracture during ischemia and a higher global ATP content after ischemia. In the second part of our study, we demonstrated a lower maximal actomyosin ATPase and a higher global ATP content after ischemia in human troponin T (TnT) transgenic mouse hearts. In mouse hearts with and without a point mutation at F110I of human TnT, recovery of postischemic LVDP was 55.4 +/- 5.5 and 62.5 +/- 14.5% compared with 20.0 +/- 2.9% in nontransgenic mouse hearts after 35 min of global ischemia. These results are consistent with the hypothesis that moderate decreases in actomyosin ATPase activity result in net ATP conservation that is sufficient to improve postischemic contractile function.  相似文献   

15.
The effect of melatonin on reperfusion arrhythmias and postischemic contractile dysfunction was studied in the isolated rat heart. 25 min global ischemia was induced and followed by 30 min of reperfusion. Melatonin (10 micromol/l) was present in the perfusion solution during the whole experiment. Experiment revealed protective effect of melatonin on reperfusion-induced arrhythmias--arrhythmia score was significantly lower as well as the total time of arrhythmias duration was significantly shorter in melatonin group than in controls. On the other hand, post-ischemic recovering of contractility was significantly reduced in melatonin group.  相似文献   

16.
To determine whether A(3) adenosine receptor (A(3)AR) signaling modulates myocardial function, energetics, and cardioprotection, hearts from wild-type and A(3)AR-overexpressor mice were subjected to 20-min ischemia and 40-min reperfusion while (31)P NMR spectra were acquired. Basal heart rate and left ventricular developed pressure (LVDP) were lower in A(3)AR-overexpressor hearts than wild-type hearts. Ischemic ATP depletion was delayed and postischemic recoveries of contractile function, ATP, and phosphocreatine were greater in A(3)AR-hearts. To determine the role of depressed heart rate and to confirm A(3)AR-specific signaling, hearts were paced at 480 beats/min with or without 60 nmol/l MRS-1220 (A(3)AR-specific inhibitor) and then subjected to ischemia-reperfusion. LVDP was similar in paced A(3)AR-overexpressor and paced wild-type hearts. Differences in ischemic ATP depletion and postischemic contractile and energetic dysfunction remained in paced A(3)AR-overexpressor hearts versus paced wild-type hearts but were abolished by MRS-1220. In summary, A(3)AR overexpression decreased basal heart rate and contractility, preserved ischemic ATP, and decreased postischemic dysfunction. Pacing abolished the decreased contractility but not the ATP preservation or cardioprotection. Therefore, A(3)AR overexpression results in cardioprotection via a specific A(3)AR effect, possibly involving preservation of ATP during ischemia.  相似文献   

17.
To determine whether prior acute Beta blockade protects the heart against the deleterious effects of normothermic low flow global ischemia on myocardial function, aortic pressure, developed pressure, dP/dtmax and end diastolic pressure were monitored in isolated perfused rabbit hearts prior to, during and following 30 and 60 min ischemia, during which either Krebs-Henseleit (control) or Beta blocking agents, Bevantolol (cardioselective) or Propranolol (non-selective) were perfused through the heart. Control hearts made ischemic for 30 min and then reperfused had significantly elevated end diastolic (p < .01) and aortic pressures (p < .01) and reduced developed pressure relative to baseline (p < .05). Hearts treated with Bevantolol or Propranolol (3 × 10-5 m/l) 5 min prior to and during 30 min ischemia recovered preischemic developed pressure and dP/dtmax (p > 0.05), while end diastolic pressure was elevated (p < .01, p < .05 respectively). Aortic pressure was unchanged relative to baseline (p > .05). Comparison of indices from hearts under Beta blockade with controls showed that following 30 min ischemia and recovery, the Bevantolol treated group had reduced aortic pressure (p < .01) and end diastolic pressure (p < .05) and increased percent developed pressure and percent dP/dtmax (p < .001) relative to control. In the propranolol treated group, end diastolic pressure was reduced and percent developed pressure (p < .01) and percent dP/dtmax (p < .001) were increased relative to unblocked hearts. Following 60 min ischemia and 30 min reperfusion, reduction in all functional indices occurred, however dP/dtmax was unchanged from baseline in the Propranolol and Bevantolol treated groups. Comparison between groups showed that the Bevantolol treated group had significantly better dP/dtmax and developed pressure (p < .05), whereas the Propranolol group shows no significant difference from baseline (p > .05) (K-H). We conclude that following short periods of ischemia, Beta blockade protects the heart from deleterious function effects of ischemia but that the protective effect is diminished in Bevantolol relative to Propranolol treatments following prolonged ischemia. The data indicates that the beneficial effects of Beta blockade in reducing ischemic induced damage occurs early during conditions of ischemia such as would be present in the setting of acute myocardial infarction.  相似文献   

18.
Magnesium-diltiazem cardioplegia was evaluated in the intact, perfused rat heart to determine whether the joint administration of these agents would adversely affect myocardial contractile and high-energy phosphate recovery following intermittent, normothermic global ischemic arrest. Sequential metabolic and functional analyses were performed on isolated perfused rat hearts during each phase of the experimental protocol: control (10 min), normoxic cardioplegia (10 min), intermittent global ischemic arrest (two 15-min periods separated by 2 min infusion of the normoxic cardioplegic perfusate), and normoxic postischemic control reperfusion (60 min). Four different cardioplegic solutions were evaluated: 30 mM KCl, 30 mM KCl with 2 mg diltiazem/liter, 20 mM MgCl2, and 20 mM MgCl2 with 2 mg diltiazem/liter. Myocardial phosphatic metabolite levels and intracellular pH were analyzed nondestructively in the intact hearts by phosphorus-31 NMR spectroscopy. Corresponding measurements of peak left intraventricular pressure, rate of peak pressure development (dP/dt), and contraction frequency were performed at the midpoint during each 5-min interval of 31P NMR signal averaging. Magnesium plus diltiazem-treated hearts were distinguished from all other groups by a marked delay in postischemic functional recovery consisting of a prolonged depression in contractility (34% of control, P less than 0.01) that persisted throughout the first 50 min of postischemic reperfusion. Diltiazem in combination with magnesium cardioplegia was detrimental to postischemic functional recovery, despite a rapid restoration of high-energy phosphate stores. The apparent adverse interactive effects of excess magnesium and diltiazem suggest that elective ischemic arrest with magnesium cardioplegia in combination with diltiazem may be contraindicated clinically. The mechanistic basis and drug specificity of this response require further clarification. The present findings appear to exclude ATP and PCr production, and structural causes as the basis for the observed aberrant functional recovery from global ischemia of magnesium plus diltiazem-arrested hearts.  相似文献   

19.
Blunted beta-adrenergic inotropism in stunned myocardium is restored by pharmacological (N-acetylcysteine) and metabolic (pyruvate) antioxidants. The ketone body acetoacetate is a natural myocardial fuel and antioxidant that improves contractile function of prooxidant-injured myocardium. The impact of acetoacetate on postischemic cardiac function and beta-adrenergic signaling has never been reported. To test the hypothesis that acetoacetate restores contractile performance and beta-adrenergic inotropism of stunned myocardium, postischemic Krebs-Henseleit-perfused guinea pig hearts were treated with 5 mM acetoacetate and/or 2 nM isoproterenol at 15-45 and 30-45 min of reperfusion, respectively, while cardiac power was monitored. The myocardium was snap frozen, and its energy state was assessed from phosphocreatine phosphorylation potential. Antioxidant defenses were assessed from GSH/GSSG and NADPH/NADP(+) redox potentials. Stunning lowered cardiac power and GSH redox potential by 90 and 70%, respectively. Given separately, acetoacetate and isoproterenol each increased power and GSH redox potential three- to fivefold. Phosphocreatine potential was 70% higher in acetoacetate- vs. isoproterenol-treated hearts (P < 0.01). In combination, acetoacetate and isoproterenol synergistically increased power and GSH redox potential 16- and 7-fold, respectively, doubled NADPH redox potential, and increased cAMP content 30%. The combination increased cardiac power four- to sixfold vs. the individual treatments without a coincident increase in phosphorylation potential. Potentiation of isoproterenol's inotropic actions endured even after acetoacetate was discontinued and GSH potential waned, indicating that temporary enhancement of redox potential persistently restored beta-adrenergic mechanisms. Thus acetoacetate increased contractile performance and potentiated beta-adrenergic inotropism in stunned myocardium without increasing energy reserves, suggesting its antioxidant character is central to its beneficial actions.  相似文献   

20.
The aim was to determine whether enalaprilat (0.08 mg/kg/min) or losartan (0.01 mg/kg/min) administration before ischemia can improve postischemic systolic and diastolic dysfunction ('stunned myocardium') and attenuate the hyperfunction phase at the beginning of reperfusion. An isolated isovolumic rabbit heart preparation was subjected to 15 min of ischemia followed by 30 min of reperfusion without (group 1) or with pretreatment with enalaprilat (group 2) or losartan (group 3). Left ventricular developed pressure and end-diastolic pressure (diastolic stiffness) were measured and the time constant of isovolumic relaxation (t, Tau) and the ratio between +dP/dt and –dP/dt were calculated. In comparison to the stunned group (group 1) both enalaprilat (group 2) and losartan (group 3) exerted a significant protective effect on postischemic recovery of contractile state and diastolic stiffness. Only enalaprilat attenuated the hypercontractile phase. However, both enalaprilat and losartan failed to improve myocardial relaxation. In summary, these data strongly suggest a direct deleterious action of the local renin- angiotensin system on ischemic myocardium and diminution of myocardial stunning with its successful blockade. Although, we can not exclude the possibility that bradykinin has some cardioprotective effect, these data suggest that angiotensin exacerbates myocardial injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号