首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excitation of bacterial reaction centers (RCs) at 870 nm by 30 fs pulses induces the nuclear wavepacket motions on the potential energy surface of the primary electron donor excited state P*, which lead to the fs oscillations in stimulated emission from P* [M.H. Vos, M.R. Jones, C.N. Hunter, J. Breton, J.-C. Lambry and J.-L. Martin (1994) Biochemistry 33, 6750-6757] and in Qy absorption band of the primary electron acceptor, bacteriochlorophyll monomer B(A) [A.M. Streltsov, S.I.E. Vulto, A.Y. Shkuropatov, A.J. Hoff, T.J. Aartsma and V.A. Shuvalov (1998) J. Phys. Chem. B 102, 7293-7298] with a set of fundamental frequencies in the range of 10-300 cm(-1). We have found that in pheophytin-modified RCs, the fs oscillations with frequency around 130 cm(-1) observed in the P*-stimulated emission as well as in the B(A) absorption band at 800 nm are accompanied by remarkable and reversible formation of the 1020 nm absorption band which is characteristic of the radical anion band of bacteriochlorophyll monomer B(A)-. These results are discussed in terms of a reversible electron transfer between P* and B(A) induced by a motion of the wavepacket near the intersection of potential energy surfaces of P* and P+B(A)-, when a maximal value of the Franck-Condon factor is created.  相似文献   

2.
Results are presented of a study of primary processes of formation of the charge separated states P+BA - and P+HA - (where P is the primary electron donor, BA and HA the primary and secondary electron acceptors) in native and pheophytin-modified reaction centers (RCs) of Rhodobacter sphaeroides R-26 by methods of femtosecond spectroscopy of absorption changes at low temperature. Coherent oscillations were studied in the kinetics at 935 nm (P* stimulated emission band), at 1020 nm (BA - absorption band), and at 760 nm (HA absorption band). It was found that when the wavepacket created under femtosecond light excitation approaches the intersection between P* and P+BA - potential surfaces at 120- and 380-fsec delays, the formation of two electron states emitting light at 935 nm (P*) and absorbing light at 1020 nm (P+BA -) takes place. At the later time the wavepacket motion has a frequency of 32 cm-1 and is accompanied by electron transfer from P* to BA in pheophytin-modified and native RCs and further to HA in native RCs. It was shown that electron transfer processes monitored by the 1020-nm absorption band development as well as by bleaching of 760-nm absorption band have the enhanced 32 cm-1 mode in the Fourier transform spectra.  相似文献   

3.
We compared the temperature dependency of the rate of the charge recombination reaction in photoreaction centers isolated from Ectothiorhodospira sp. and from Rhodospirillum rubrum G9. We also examined the temperature dependency of the bandwidth and peak wavelength of their far-red absorption band. In both preparations, the peak wavelength and the bandwidth vary monotonically with temperature between 80 and 300 K. However, the rate of the charge recombination reaction has a quite different temperature dependency. In the preparation from R. rubrum, the reaction is accelerated 5-fold in a typical sigmoidal fashion as the temperature is lowered from 300 to 80 K. In the preparation from Ectothiorhodospira sp., the reaction is accelerated monotonically only about 1.5-fold in the same temperature range. At temperatures below 100 K, the rates are similar in the two preparations. We interpret the temperature dependency of the charge recombination reaction in terms of an activationless electron-transfer model formulated by Jortner (Jortner, J. (1980) Biochim. Biophys. Acta 394, 193–230). The minimal model provides a good fit for the temperature dependency of charge recombination in the preparation from Ectothiorhodospira sp. However, to fit the temperature dependency of the R. rubrum preparation with the same model, we must further postulate that the electronic coupling factor varies with temperature in this preparation. We find that, in both preparations, the temperature dependency of the far-red absorption bandwidth is consistent with the assumption that similar vibrational modes are involved in electron transfer and in electronic excitation.  相似文献   

4.
C.A. Wraight 《BBA》1979,548(2):309-327
The photoreduction of ubiquinone in the electron acceptor complex (Q1Q11) of photosynthetic reaction centers from Rhodopseudomonas sphaeroides, R26, was studied in a series of short, saturating flashes. The specific involvement of H+ in the reduction was revealed by the pH dependence of the electron transfer events and by net H+ binding during the formation of ubiquinol, which requires two turnovers of the photochemical act. On the first flash Q11 receives an electron via Q1 to form a stable ubisemiquinone anion (Q??11); the second flash generates Q??1. At low pH the two semiquinones rapidly disproportionate with the uptake of 2 H+, to produce Q11H2. This yields out-of-phase binary oscillations for the formation of anionic semiquinone and for H+ uptake. Above pH 6 there is a progressive increase in H+ binding on the first flash and an equivalent decrease in binding on the second flash until, at about pH 9.5, the extent of H+ binding is the same on all flashes. The semiquinone oscillations, however, are undiminished up to pH 9. It is suggested that a non-chromophoric, acid-base group undergoes a pK shift in response to the appearance of the anionic semiquinone and that this group is the site of protonation on the first flash. The acid-base group, which may be in the reaction center protein, appears to be subsequently involved in the protonation events leading to fully reduced ubiquinol. The other proton in the two electron reduction of ubiquinone is always taken up on the second flash and is bound directly to Q??11. At pH values above 8.0, it is rate limiting for the disproportionation and the kinetics, which are diffusion controlled, are properly responsive to the prevailing pH. Below pH 8, however, a further step in the reaction mechanism was shown to be rate limiting for both H+ binding electron transfer following the second flash.  相似文献   

5.
The selective picosecond excitation of Rhodopseudomonas sphaeroides (R-26) reaction centers (RCs) at 870 nm induces the formation of the transient state within <1 ps followed by the conversion into the state PF (P± Bph±− during 7 ± 2 ps at both 293 K and 110 K. The transient state including the intense bleaching at 800 nm has been shown not to be due: (a) to photon excitation at 870 nm; (b) the excitation of P+; (c) photoselection effects. The transient state is interpreted as the state 1[P+B] in agreement with earlier works. The primary formation of the state 1P+B] and the big effective singlet-triplet splitting in this state correspond to the spectral splitting of the P band at 900 nm in R-26 RCs and at 1000 nm in Rhodopseudomonas viridis RCs found at 4.2 K and attributed to the optical transition to both 1P and 1[P+B] states.  相似文献   

6.
Kumazaki S  Abiko K  Ikegami I  Iwaki M  Itoh S 《FEBS letters》2002,530(1-3):153-157
Primary photochemistry in photosystem I (PS I) reaction center complex from Acaryochloris marina that uses chlorophyll d instead of chlorophyll a has been studied with a femtosecond spectroscopy. Upon excitation at 630 nm, almost full excitation equilibration among antenna chlorophylls and 40% of the excitation quenching by the reaction center are completed with time constants of 0.6(±0.1) and 4.9(±0.6) ps, respectively. The rise and decay of the primary charge-separated state proceed with apparent time constants of 7.2(±0.9) and 50(±10) ps, suggesting the reduction of the primary electron acceptor chlorophyll (A0) and its reoxidation by phylloquinone (A1), respectively.  相似文献   

7.
8.
The initial electron transfer steps in pigment modified reaction centers, where bacteriopheophytin is replaced by plant pheophytin (R26.Phe-a RCs) have been investigated over a wide temperature range by femtosecond time-resolved spectroscopy. The experimental data obtained in the maximum of the bacteriochlorophyll anion band at 1020 nm show the existence of a high and long-lived population of the primary acceptor P+BA even at 10 K. The data suggest a stepwise electron transfer mechanism with BA as primary acceptor also in the low temperature domain. A detailed data analysis suggests that the pigment modification leads to a situation with almost isoenergetic primary and secondary acceptor levels, approximately 450 cm–1 below P*. A Gaussian distribution (with = 400 cm –1) of the G values has to be assumed to account for the strong dispersive character of the kinetics in this sample. Based on these assumptions, a model is presented that reproduces the observed kinetics, heterogeneity and temperature dependence.  相似文献   

9.
The primary electron transfer processes in isolated reaction centers of Rhodopseudomonas sphaeroides have been investigated with subpicosecond and picosecond spectroscopic techniques. Spectra and kinetics of the absorbance changes following excitation with 0.7-ps 610-nm pulses, absorbed predominantly by bacteriochlorophyll (BChl), indicate that the radical pair state P+BPh?, in which an electron has been transferred from the BChl dimer (P) to a bacteriopheophytin (BPh), is formed with a time constant no greater than 4 ps. The initial absorbance changes also reveal an earlier state, which could be an excited singlet state, or a P+BChl? radical pair.The bleaching at 870 nm produced by 7 ps excitation pulses at 530 nm (absorbed by BPh) or at 600 nm (absorbed predominantly by BChl) shows no resolvable delay with respect to standard compounds in solution, suggesting that the time for energy transfer from BPh to P is less than 7 ps. However, the bleaching in the BPh band at 545 nm following 7-ps 600-nm excitation, exhibits an 8- to 10-ps lag with respect to standard compounds. This finding is qualitatively similar to the 35-ps delay previously observed at 760 nm by Shuvalov at al. (Shuvalov, V.A., Klevanik, A.V., Sharkov, A.V., Matveetz, Y.A. and Kryukov, P.G. (1978) FEBS Lett. 91, 135–139) when 25-ps 880-nm excitation flashes were used. A delay in the bleaching approximately equal to the width of the excitation flash can be explained in terms of the opposing effects of bleaching due to the reduction of BPh, and absorbance increases due to short-lived excited states (probably of BChl) that turn over rapidly during the flash.The decay of the initial bleaching at 800 nm produced by 7-ps 530- or 600-nm excitation flashes shows a fast component with a 30-ps time constant, in addition to a slower component having the 200-ps kinetics expected for the decay of P+BPh?. The dependence on excitation intensity of the absorbance changes due to the 30-ps component indicate that the quantum yield of the state responsible for this step is lower than that observed for the primary electron transfer reactions. This suggests that at least part of the transient bleaching at 800 nm is due to a secondary process, possibly caused by excitation with an excessive number of photons. If the 800-nm absorbing BChl (B) acts as an intermediate electron carrier in the primary photochemical reaction, electron transfer between B and the BPh must have a time constant no greater than 4 ps.  相似文献   

10.
We have measured the rate constant for the formation of the oxidized chlorophyll a electron donor (P680+) and the reduced electron acceptor pheophytin a (Pheo a ) following excitation of isolated Photosystem II reaction centers (PS II RC) at 15 K. This PS II RC complex consists of D1, D2, and cytochrome b-559 proteins and was prepared by a procedure which stabilizes the protein complex. Transient absorption difference spectra were measured from 450–840 nm as a function of time with 500fs resolution following 610 nm laser excitation. The formation of P680+-Pheo a is indicated by the appearance of a band due to P680+ at 820 nm and corresponding absorbance changes at 490, 515 and 546 nm due to the formation of Pheo a . The appearance of the 490 nm and 820 nm bands is monoexponenital with =1.4±0.2 ps. Treatment of the PS II RC with sodium dithionite and methyl viologen followed by exposure to laser excitation results in accumulation of Pheo a . Laser excitation of these prereduced RCs at 15 K results in formation of a transient absorption spectrum assigned to 1*P680. We observe wavelength-dependent kinetics for the recovery of the transient bleach of the Qy absorption bands of the pigments in both untreated and pre-reduced PS II RCs at 15K. This result is attributed to an energy transfer process within the PS II RC at low temperature that is not connected with charge separation.Abbreviations PS I Photosystem I - PS II Photosystem II - RC reaction center - P680 primary electron donor in Photosystem II - Chl a chlorophyll a - Pheo a pheophytin a  相似文献   

11.
The nuclear wavepacket formed by 20-fs excitation on the P* potential energy surface in native and mutant (YM210W and YM210L) reaction centers of Rhodobacter (Rb.) sphaeroides and Chloroflexus (C.) aurantiacus RCs was found to be reversibly transferred to the P+BA- surface at 120, 380, and 640-fs delays (monitored by measurements of BA- absorption at 1020-1028 nm). The reaction centers of YM210W(L) mutant show the most simple pattern of fs oscillations with a period of 230 fs in stimulated emission from P* and in the product P+BA-. The mechanisms of the electron transfer pathway between P* and BA and of the stabilization of the state P+BA- in bacterial reaction centers are discussed.  相似文献   

12.
The relation between exciton motion in the LH1 antenna and primary charge separation in the reaction center of purple bacteria is briefly reviewed. It is argued that in models based on hopping excitons described strictly by Förster theory, transfer-to-trap-limited kinetics is quite unlikely according to the relation between the exciton trapping kinetics and N, the size of the photosynthetic unit in such models. Because the results of several recent experiments have been interpreted in terms of transfer-to-trap limited kinetics, this presents a conflict between these experimental interpretations and strictly Förster-based theoretical models. Two possible resolutions are proposed. One arises from the random phase-redistribution trapping kinetics of partially coherent excitons, a kinetics uniquely independent of both N and the rate constant for primary charge separation in the reaction center. The other comes from multiple-pathways models of the multipicosecond nonexponentiality of the decay of P*, the electronically excited primary electron donor in the reaction center. In these models, because it depends only on a certain averaged electron-transfer time constant, the exciton lifetime may be relatively insensivive to variations of individual electrontransfer rate constants-thereby undercutting the argument appearing in recent literature that by default the exciton kinetics must be transfer-to-trap limited.  相似文献   

13.
Photo-excitation of membrane-bound Rhodobacter sphaeroides reaction centres containing the mutation Ala M260 to Trp (AM260W) resulted in the accumulation of a radical pair state involving the photo-oxidised primary electron donor (P). This state had a lifetime of hundreds of milliseconds and its formation was inhibited by stigmatellin. The absence of the QA ubiquinone in the AM260W reaction centre suggests that this long-lived radical pair state is P+QB, although the exact reduction/protonation state of the QB quinone remains to be confirmed. The blockage of active branch (A-branch) electron transfer by the AM260W mutation implies that this P+QB state is formed by electron transfer along the so-called inactive branch (B-branch) of reaction centre cofactors. We discuss how further mutations may affect the yield of the P+QB state, including a double alanine mutation (EL212A/DL213A) that probably has a direct effect on the efficiency of the low yield electron transfer step from the anion of the B-branch bacteriopheophytin (HB) to the QB ubiquinone.  相似文献   

14.
A capacitor microphone was used to measure the enthalpy and volume changes that accompany the electron transfer reactions, PQAhv P+Q?A and PQAQBhv P+QAQ?B, following flash excitation of photosynthetic reaction centers isolated from Rhodopseudomonas sphaeroides. P is a bacteriochlorophyll dimer (P-870), and QA and QB are ubiquinones. In reaction centers containing only QA, the enthalpy of P+Q?A is very close to that of the PQA ground state (ΔHr = 0.05 ± 0.03 eV). The free energy of about 0.65 eV that is captured in the photochemical reaction evidently takes the form of a substantial entropy decrease. In contrast, the formation of P+QAQ?B in reaction centers containing both quinones has a ΔHr of 0.32 ± 0.02 eV. The entropy change must be near zero in this case. In the presence of o-phenanthroline, which blocks electron transfer between Q?A and QB, ΔHr for forming P+Q?AQB is 0.13 ± 0.03 eV. The influence of flash-induced proton uptake on the results was investigated, and the ΔHr values given above were measured under conditions that minimized this influence. Although the reductions of QA and QB involve very different changes in enthalpy and entropy, both reactions are accompanied by a similar volume decrease of about 20 ml/mol. The contraction probably reflects electrostriction caused by the charges on P+ and Q?A or Q?B.  相似文献   

15.
Mammalian cytochrome c can effectively replace bacterial cytochrome c2 as the electron donor to the bacterial photosynthetic reaction center in either the natural chromatophore or a reconstituted reaction center/phospholipid membrane. In this paper, the reconstituted membrane was used to describe the nature of cytochrome c binding to the reaction center, the location of bound cytochrome c in the membrane profile and the perturbation of the reaction center and phospholipid profile structures induced by cytochrome c binding. These structural studies utilized the combined techniques of X-ray and neutron diffraction.  相似文献   

16.
Kinetics of electron transfer, following variation of actinic light intensity, for photosynthetic reaction centers (RCs) of purple bacteria (isolated and membrane-bound) were analyzed by measuring absorbance changes in the primary photoelectron donor absorption band at 865 nm. The bleaching of the primary photoelectron donor absorption band in RCs, following a sudden increase of illumination from the dark to an actinic light intensity of I exp, obeys a simple exponential law with the rate constant , in which α is a parameter relating the light intensity, measured in mW/cm2, to a corresponding theoretical rate in units of reciprocal seconds, and k rec is the effective rate constant of the charge recombination in the photosynthetic RCs. In this work, a method for determining the α parameter value is developed and experimentally verified for isolated and membrane-bound RCs, allowing for rigorous modeling of RC macromolecule dynamics under varied photoexcitation conditions. Such modeling is necessary for RCs due to alterations of the forward photoexcitation rates and relaxation rates caused by illumination history and intramolecular structural dynamics effects. It is demonstrated that the classical Bouguer–Lambert–Beer formalism can be applied for the samples with relatively low scattering, which is not necessarily the case with strongly scattering media or high light intensity excitation. An erratum to this article can be found at  相似文献   

17.
A reaction-center pigment-protein complex of the green bacterium Prosthecochloris aestuarii was studied by means of nanosecond-flash spectroscopy. In this complex electron transfer between the primary and secondary acceptor is blocked. The spectra and kinetics of the absorption changes induced by a short flash indicated the formation of the radical pair P-840+I?, which decayed in 20–35 ns, mainly to the triplet state of the primary electron donor P-840. The absorption difference spectrum of the initial absorption change indicated that the primary acceptor I is either bacteriopheophytin c or another pigment with absorption maximum at 665 nm.  相似文献   

18.
H.-J. Apell  M. Snozzi  R. Bachofen 《BBA》1983,724(2):258-277
(1) Reaction center-lipid complexes were extracted into octane solutions. Different methods for generating an assymetric membrane distribution of reaction centers are discussed, which allow the measurement of electrical signals upon illumination. (2) The dichroism of the chromophoric groups in the reaction centers was investigated in planar lipid bilayers and the angle β between each transition moment and the normal to the membrane could be determined to be β(757 nm) = 29.5 ± 1.2, β(801 nm) = 34 ± 1.0 and β(860 nm) = 41.3 ± 0.9°. (3) The kinetics of the reaction centers from Rhodopseudomonas sphaeroides were analysed by electrical measurements and the relevant rate constants could be determined. In addition, the interaction between reaction centers and the intramembrane, ubiquinone-containing pool was investigated and described in a kinetic model. (4) The interaction between the electron-donating ferrocytochromes exhibited two distinguishable sources, a fast accessible, membrane-bound pool, which is limited by diffusion, and a pool consisting of an aqueous solution of ferrocytochrome c, which is accessible with a slower rate constant.  相似文献   

19.
The temperature dependences of the P870+Q?A → P870QA and P870+Q?B → P870QB recombination reactions were measured in reaction centers from Rhodopseudomonas sphaeroides. The data indicate that the P870+Q?B state decays by thermal repopulation of the P870+Q?A state, followed by recombination. ΔG° for the P870+Q?A → P870+Q?B reaction is ?6.89 kJ · mol?1, while ΔH° = ?14.45 kJ · mol?1 and ?TΔS° = + 7.53 kJ · mol?1. The activation ethalpy, H3, for the P870+Q?A Δ P870+Q?B reaction is +56.9 kJ · mol?1, while the activation entropy is near zero. The results permit an estimate of the shape of the potential energy curve for the P870+Q?A → P870+Q?B electron transfer reaction.  相似文献   

20.
The magnitudes of inter-chromophore interactions in bacterial photosynthetic reaction centers are investigated by measuring absorption and Stark spectra of reaction centers in which monomeric chromophores are modified and in a novel triplet mutant which lacks the special pair. The circular dichroism spectrum of the triple mutant reaction center was also measured. Only small changes in the spectroscopic properties are observed, as has also been found for several types of reaction centers in which the absorption or chemical properties of a chromophore are altered by site-specific mutations. We conclude that the electronic absorption, circular dichroism and Stark features of the special pair and the monomeric chromophores in the reaction center are relatively insensitive to inter-chromophore interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号