首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mouse model is widely used to study the mechanisms of the pathogenesis of, and immunity to, systemic salmonellosis. During infection, Salmonella grows in phagocytic cells that reside in well-defined pathological lesions, are activated by cytokines and control the growth of intracellular bacteria using oxygen and nitrogen derivatives. Salmonella growth in the tissues results in the spatial segregation of bacterial populations and in their continuous distribution to new phagocytes. High bacterial numbers within infected phagocytes are uncommon in vivo.  相似文献   

2.
3.
Intestinal epithelial cells are an important site of the host's interaction with enteroinvasive bacteria. Genes in the chromosomally encoded Salmonella pathogenicity island 2 (SPI 2) that encodes a type III secretion system and genes on the virulence plasmid pSDL2 of Salmonella enteritica serovar Dublin (spv genes) are thought to be important for Salmonella dublin survival in host cells. We hypothesized that genes in those loci may be important also for prolonged Salmonella growth and the induction of apoptosis induced by Salmonella in human intestinal epithelial cells. HT-29 human intestinal epithelial cells were infected with wild-type S. dublin or isogenic mutants deficient in the expression of spv genes or with SPI 2 locus mutations. Neither the spv nor the SPI 2 mutations affected bacterial entry into epithelial cells or intracellular proliferation of Salmonella during the initial 8 h after infection. However, at later periods, bacteria with mutations in the SPI 2 locus or in the spv locus compared to wild-type bacteria, manifested a marked decrease in intracellular proliferation and a different distribution pattern of bacteria within infected cells. Epithelial cell apoptosis was markedly increased in response to infection with wild-type, but not the mutant Salmonella. However, apoptosis of epithelial cells infected with wild-type S. dublin was delayed for approximately 28 h after bacterial entry. Apoptosis was preceded by caspase 3 activation, which was also delayed for approximately 24 h after infection. Despite its late onset, the cellular commitment to apoptosis was determined in the early period after infection as inhibition of bacterial protein synthesis during the first 6 h after epithelial cell infection with wild-type S. dublin, but not at later times, inhibited the induction of apoptosis. These studies indicate that genes in the SPI 2 and the spv loci are crucial for prolonged bacterial growth in intestinal epithelial cells. In addition to their influence on intracellular proliferation of Salmonella, genes in those loci determine the ultimate fate of infected epithelial cells with respect to caspase 3 activation and undergoing death by apoptosis.  相似文献   

4.
Metabolic activity of innate immune cells infected by various doses of Gram-negative (Yersinia pseudotuberculosis, Salmonella enteritidis) and Gram positive (Staphylococcus aureus, Listeria monocytogenes) bacteria has been investigated. Using various animal models we found that in during the initial period (up to 2 days) the changes in cellular responses depend on the type of the pathogen. In response to infection caused by Gram-negative bacteria predominant of neutrophil accumulation in the foci of inflammation was observed, while Gram-positive bacteria induced preferential accumulation of macrophages. The study of metabolism of these cells showed that the response of terminally differentiated primed phagocytes to pathogen appearance was higher than in cells circulating in blood. In addition to the priming state the phagocyte reactivity is influenced by the bacterial load. At a low phagocyte/microbe ratio the cells reaction is almost undetectable, while an excess of microorganisms causes (despite of the increase of the phagocytic parameters) the hyperactivation of cell metabolism and production of maximal amounts of bactericide agents, which exhibit a damaging effect on the cell itself.  相似文献   

5.
Formation of resilient biofilms on medical devices colonized by pathogenic microorganisms is a major cause of health-care associated infection. While in vitro biofilm analyses led to promising anti-biofilm approaches, little is known about their translation to in vivo situations and on host contribution to the in vivo dynamics of infections on medical devices. Here we have developed an in vivo model of long-term bacterial biofilm infections in a pediatric totally implantable venous access port (TIVAP) surgically placed in adult rats. Using non-invasive and quantitative bioluminescence, we studied TIVAP contamination by clinically relevant pathogens, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis, and we demonstrated that TIVAP bacterial populations display typical biofilm phenotypes. In our study, we showed that immunocompetent rats were able to control the colonization and clear the bloodstream infection except for up to 30% that suffered systemic infection and death whereas none of the immunosuppressed rats survived the infection. Besides, we mimicked some clinically relevant TIVAP associated complications such as port-pocket infection and hematogenous route of colonization. Finally, by assessing an optimized antibiotic lock therapy, we established that our in vivo model enables to assess innovative therapeutic strategies against bacterial biofilm infections.  相似文献   

6.
Liver injury was induced after infection with Salmonella choleraesuis 31N-1. In T-cell receptor-delta knockout mice, serum alanine transferase level was significantly decreased in comparison with normal control mice after Salmonella infection. On the contrary, in vivo administration of anti-gammadelta T-cell receptor monoclonal antibody (UC7-13D5) to stimulate gammadelta-T cells in infected mice significantly increased serum alanine transferase level but decreased bacterial growth compared with infected mice given control antibody (UC8; hamster IgG). These data suggest that gammadelta-T cells have effector activities not only for protection but also for liver injury during Salmonella infection.  相似文献   

7.
The outcome of Salmonella infection in the mammalian host favors whoever succeeds best in disturbing the equilibrium between coordinate expression of bacterial (virulence) genes and host defense mechanisms. Intracellular persistence in host cells is critical for pathogenesis and disease, because Salmonella typhimurium strains defective in this property are avirulent. We examined whether similar host defense mechanisms are required for growth control of two S. typhimurium mutant strains. Salmonella pathogenicity island 2 (SPI2) and virulence plasmid-cured Salmonella mutants display similar virulence phenotypes in immunocompetent mice, yet their gene loci participate in independent virulence strategies. We determined the role of TNF-alpha and IFN-gamma as well as different T cell populations in infection with these Salmonella strains. After systemic infection, IFN-gamma was essential for growth restriction of plasmid-cured S. typhimurium, while SPI2 mutant infections were controlled in the absence of IFN-gamma. TNFRp55-deficiency restored systemic virulence to both Salmonella mutants. After oral inoculation, control of plasmid-cured bacteria substantially relied on both IFN-gamma and TNF-alpha signaling while control of SPI2 mutants did not. However, for both mutants, ultimate clearance of bacteria from infected mice depended on alphabeta T cells.  相似文献   

8.
The literature refers to Salmonella enterica as an intracellular bacterial pathogen that proliferates within vacuoles of mammalian cells. However, recent in vivo studies have revealed that the vast majority of infected cells contain very few intracellular bacteria (three to four organisms). Salmonella intracellular growth is also limited in cultured dendritic cells and fibroblasts, two cell types abundant in tissues located underneath the intestinal epithelium. Recently, a Salmonella factor previously known for its role as a negative regulator of intracellular growth has been shown to tightly repress certain pathogen functions upon host colonization and to be critical for virulence. The connection between virulence and the negative control of intracellular growth is further sustained by the fact that some attenuated mutants overgrow in non-phagocytic cells located in the intestinal lamina propria. These findings are changing our classical view of Salmonella as a fast growing intracellular pathogen and suggest that this pathogen may trigger responses directed to reduce the growth rate within the infected cell. These responses could play a critical role in modulating the delicate balance between disease and persistence.  相似文献   

9.
Salmonella enterica serovar Typhimurium (S. typhimurium) infects a wide variety of mammalian hosts and in rodents causes a typhoid-like systemic disease involving replication of bacteria inside macrophages within reticuloendothelial tissues. Previous studies demonstrated that the mig-14 and virK genes of Salmonella enterica are important in bacterial resistance to anti-microbial peptides and are necessary for continued replication of S. typhimurium in the liver and spleen of susceptible mice after orogastric inoculation. In this work we report that inflammatory signalling via interferon-gamma (IFN-gamma) is crucial to controlling replication of mig-14 mutant bacteria within the liver and spleen of mice after oral infection. Using a Salmonella persistence model recently developed in our laboratory, we further demonstrate that mig-14 contributes to long-term persistence of Salmonella in the spleen and mesenteric lymph nodes of chronically infected mice. Both mig-14 and virK contribute to the survival of Salmonella in macrophages treated with IFN-gamma and are necessary for resistance to cathelin-related anti-microbial peptide (CRAMP), an anti-microbial peptide expressed at high levels in activated mouse macrophages. We also show that both Mig-14 and VirK inhibit the binding of CRAMP to Salmonella, and demonstrate that Mig-14 is an inner membrane-associated protein. We further demonstrate by transmission electron microscopy that the primary locus of CRAMP activity appears to be intracytoplasmic, rather than at the outer membrane, suggesting that Mig-14 may prevent the penetration of the inner membrane by CRAMP. Together, these data indicate an important role for mig-14 in anti-microbial peptide resistance in vivo, and show that this resistance is important to the survival of Salmonella in systemic sites during both acute and persistent infection.  相似文献   

10.
Colony counts, counts of immunostained cells, fluorescent assays for cell viability and titration of a superinfecting bacteriophage were incorporated into a protocol for studying the growth kinetics of produce-associated bacteria in vivo. A set of equations was assembled for measuring the true rates of birth, death and emigration of the bacteria within the frame of a "transit growth" model, thus allowing the independent measurement of the carrying capacity of the substrate and of the overall productivity of the system. Implementation of the protocol on two species of cultivated mushrooms inoculated with Salmonella enterica serovar Typhimurium showed that large bacterial populations developed on Agaricus bisporus A15 but emigration was not detected, whereas resident populations on Agrocybe aegerita FAR142 amounted to 79.7%, 65.1% and 80.7% of the cultivable, dead and total bacterial cells produced, owing to emigration.  相似文献   

11.
Systems allowing tightly regulated expression of prokaryotic genes in vivo are important for performing functional studies of bacterial genes in host-pathogen interactions and establishing bacteria-based therapies. We integrated a regulatory control circuit activated by acetyl salicylic acid (ASA) in attenuated Salmonella enterica that carries an expression module with a gene of interest under control of the XylS2-dependent Pm promoter. This resulted in 20-150-fold induction ex vivo. The regulatory circuit was also efficiently induced by ASA when the bacteria resided in eukaryotic cells, both in vitro and in vivo. To validate the circuit, we administered Salmonella spp., carrying an expression module encoding the 5-fluorocytosine-converting enzyme cytosine deaminase in the bacterial chromosome or in a plasmid, to mice with tumors. Induction with ASA before 5-fluorocytosine administration resulted in a significant reduction of tumor growth. These results demonstrate the usefulness of the regulatory control circuit to selectively switch on gene expression during bacterial infection.  相似文献   

12.
Salmonella Typhimurium harbors two Salmonella pathogenicity islands (SPIs), each encoding a type three secretion system for virulence proteins. Although there is increasing evidence of postinvasion roles for SPI-1, it has been generally accepted that SPI-1 genes are downregulated following the invasion process. Here, we analyzed the expression and translocation of SopB in vitro, in cell culture and in vivo. To this end, a sopB-FLAG-tagged strain of Salmonella Typhimurium was obtained by epitope tagging. Tagged proteins were detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting with anti-FLAG antibodies. SopB expression was observed in vitro under cultured conditions that mimic the intestinal niche and different intracellular environments. In agreement, bacteria isolated from infected monolayers expressed and translocated SopB for at least 24?h postinoculation. For in vivo experiments, BALB/c mice were inoculated intraperitoneally with the tagged strain of Salmonella Typhimurium. Infecting bacteria and infected cells were recovered from mesenteric lymph nodes. Our results showed that SopB continues to be synthesized in vivo during 5 days after inoculation. Interestingly, translocation of SopB was detected in the cytosol of cells isolated from lymph nodes 1 day after infection. Altogether, these findings indicate that the expression and translocation of SopB during Salmonella infection is not constrained to the initial host-bacteria encounter in the intestinal environment as defined previously.  相似文献   

13.
The effect of murine cytomegalovirus (MCMV) infection on susceptibility to bacterial infection was studied in mice by a combination of intraperitoneal (ip) inoculation of a sublethal dose of MCMV with subsequent ip challenge of 2 X 10(3) cfu of a strain of Klebsiella pneumoniae (KP). When given alone, KP produced a mortality of 30-40%. Mortality was increased when KP was given 1 to 7 days after MCMV injection with the peak increase at the 4th to 5th day when 100% mortality occurred. Virus levels in various organs of mice infected with MCMV alone, or superinfected with KP did not differ. Bacterial counts on the other hand, showed that increased mortality in mixed MCMV and KP infected mice was due to an uncontrolled growth of bacteria at the site of primary lodgment, i.e., the peritoneum, and severe systemic infection. Neutrophil response to growth of KP during the first 3 days of bacterial infection was defective in MCMV infected mice. While the initial clearance of KP from the blood was more efficient in MCMV infected mice, probably due to activated reticuloendothelial function, it did not protect the mice against KP infection. Using the in vivo model, it was shown that poor neutrophil response and possibly other defective neutrophil functions were responsible for increased mortality to KP infection in MCMV infected mice.  相似文献   

14.
Salmonella phosphothreonine lyase SpvC inactivates the dual-phosphorylated host mitogen-activated protein kinases (MAPK) through β-elimination. While SpvC can be secreted in vitro by both Salmonella pathogenicity island (SPI)-1 and SPI-2 type III secretion systems (T3SSs), translocation of this protein into the host cell cytosol has only been demonstrated by SPI-2 T3SS. In this study, we show that SpvC can be delivered into the host cell cytoplasm by both SPI-1 and SPI-2 T3SSs. Dephosphorylation of the extracellular signal-regulated protein kinases (ERK) was detected in an SPI-1 T3SS-dependent manner 2 h post infection. Using a mouse model for Salmonella enterocolitis, which was treated with streptomycin prior to infection, we observed that mice infected with Salmonella enterica serovar Typhimurium strains lacking the spvC gene showed pronounced colitis when compared with mice infected with the wild-type strain 1 day after infection. The effect of SpvC on the development of colitis was characterized by reduced mRNA levels of the pro-inflammatory cytokines and chemokines, and reduced inflammation with less infiltration of neutrophils. Furthermore, the reduction in inflammation by SpvC resulted in increased bacterial dissemination in spleen of mice infected with Salmonella. Collectively, our findings suggest that SpvC exerts as an anti-inflammatory effector and the attenuation of intestinal inflammatory response by SpvC is involved in systemic infection of Salmonella.  相似文献   

15.
目的通过对实验猴细菌性感染疾病脏器病理改变的观察和分析,完善实验猴病理检测资料,为实验动物病理检测标准的制定提供依据。方法选取86例实验猴按5种必检细菌性感染疾病(沙门菌病;志贺菌病;结核杆菌病;小肠结肠炎耶尔森菌病;空肠弯曲菌病)病原种类分组,对脏器标本进行病理剖检,HE染色观察记录病变,建立实验猴必检细菌性疾病病理检测资料。结果病理检测结果显示:沙门菌病表现为伤寒肉芽肿,结核杆菌病表现为结核肉芽肿,小肠结肠炎耶尔森菌病表现为纵行溃疡、急性炎及化脓性肉芽肿;志贺菌病、空肠弯曲菌病表现为急性炎和表浅溃疡。结论感染5种必检细菌的实验猴分别表现出不同的病理变化,病理检测对疾病的分析诊断有重要价值,检测结果补充了实验猴细菌性疾病病理检测资料,为制定实验动物病理检测指南提供了相关依据。  相似文献   

16.
Salmonella enterica translocates virulent factors into host cells using type III secretion systems to promote host colonization, intracellular bacterial replication and survival, and disease pathogenesis. Among many effectors, the type III secretion system encoded in Salmonella pathogenicity island 2 translocates a Salmonella-specific protein, designated Salmonella secreted factor L (SseL), a putative virulence factor possessing deubiquitinase activity. In this study, we attempt to elucidate the mechanism and the function of SseL in vitro, in primary host macrophages and in vivo in infected mice. Expression of SseL in mammalian cells suppresses NF-kappaB activation downstream of IkappaBalpha kinases and impairs IkappaBalpha ubiquitination and degradation, but not IkappaBalpha phosphorylation. Disruption of the gene encoding SseL in S. enterica serovar typhimurium increases IkappaBalpha degradation and ubiquitination, as well as NF-kappaB activation in infected macrophages, compared with wild-type bacteria. Mice infected with SseL-deficient bacteria mount stronger inflammatory responses, associated with increased production of NF-kappaB-dependent cytokines. Thus, SseL represents one of the first bacterial deubiquitinases demonstrated to modulate the host inflammatory response in vivo.  相似文献   

17.
Traditionally macrophages (MPhi) have been considered to be the key type of antigen presenting cells (APC) to combat bacterial infections by phagocytosing and destroying bacteria and presenting bacteria-derived antigens to T cells. However, data in recent years have demonstrated that dendritic cells (DC), at their immature stage of differentiation, are capable of phagocytosing particulate antigens including bacteria. Thus, DC may also be important APC for initiating an immune response to bacterial infections. Our studies focus on studying how DC and MPhi process antigens derived from bacteria with no known mechanism of phagosomal escape (i.e. Salmonella typhimurium) for T cell stimulation as well as what role these APC types have in Salmonella infection in vivo. Using an in vitro antigen processing and presentation assay with bone marrow-derived (BM) APC showed that, in addition to peritoneal elicited MPhi and BMMPhi, BMDC can phagocytose and process Escherichia coli and S. typhimurium for peptide presentation on major histocompatibility complex (MHC) class I (MHC-I) and class II MHC-II. These studies showed that both elicited peritoneal MPhi and BMMPhi use an alternate MHC-I presentation pathway that does not require the transporter associated with antigen processing (TAP) or the proteasome and involves peptide loading onto a preformed pool of post-Golgi MHC-I molecules. In contrast, DC process E. coli and S. typhimurium for peptide presentation on MHC-I using the cytosolic MHC-I presentation pathway that requires TAP, the proteasome and uses newly synthesized MHC-I molecules. We further investigated the interaction of Salmonella with BMDC and BMMPhi by analyzing surface molecule expression and cytokine secretion following S. typhimurium infection of BMDC and BMMPhi. These data reveal that Salmonella co-incubation with BMDC as well as BMMPhi results in upregulation of MHC-I and MHC-II as well as several co-stimulatory molecules including CD80 and CD86. Salmonella infection of BMDC or BMMPhi also results in secretion of cytokines including IL-6 and IL-12. Finally, injecting mice with BMDC that have been loaded in vitro with S. typhimurium primes na?ve CD4(+) and CD8(+) T cells to Salmonella-encoded antigens. Taken together, our data suggest that DC may be an important type of APC that contributes to the immune response to Salmonella.  相似文献   

18.
Salmonella enterica serovar typhimurium contaminated vegetables and fruits are considerable sources of human infections. Bacteria present in raw plant-derived nutrients cause salmonellosis, the world wide most spread food poisoning. This facultative endopathogen enters and replicates in host cells and actively suppresses host immune responses. Although Salmonella survives on plants, the underlying bacterial infection mechanisms are only poorly understood. In this report we investigated the possibility to use Arabidopsis thaliana as a genetically tractable host system to study Salmonella-plant interactions. Using green fluorescent protein (GFP) marked bacteria, we show here that Salmonella can infect various Arabidopsis tissues and proliferate in intracellular cellular compartments. Salmonella infection of Arabidopsis cells can occur via intact shoot or root tissues resulting in wilting, chlorosis and eventually death of the infected organs. Arabidopsis reacts to Salmonella by inducing the activation of mitogen-activated protein kinase (MAPK) cascades and enhanced expression of pathogenesis related (PR) genes. The induction of defense responses fails in plants that are compromised in ethylene or jasmonic acid signaling or in the MKK3-MPK6 MAPK pathway. These findings demonstrate that Arabidopsis represents a true host system for Salmonella, offering unique possibilities to study the interaction of this human pathogen with plants at the molecular level for developing novel drug targets and addressing current safety issues in human nutrition.  相似文献   

19.
Salmonella entry into epithelial host cells results from the host actin cytoskeleton reorganization that is induced by a group of bacterial proteins delivered to the host cells by the Salmonella type III secretion system. SopE, SopE2 and SopB activate CDC42 and Rac1 to intercept the signal transduction pathways involved in actin cytoskeleton rearrangements. SipA and SipC directly bind actin to modulate the actin dynamics facilitating bacterial entry. Biochemical studies have indicated that SipA decreases the critical concentration for actin polymerization and may be involved in promoting the initial actin polymerization in Salmonella-induced actin reorganization. In this report, we conducted experiments to analyze the in vivo function(s) of SipA during Salmonella invasion. SipA was found to be preferentially associated with peripheral cortical actin filaments but not stress fibres using permeabilized epithelial cells. When polarized Caco-2 cells were infected with Salmonella, actin cytoskeleton rearrangements induced by the wild-type strain had many filopodia structures that were intimately associated with the bacteria. In contrast, ruffles induced by the sipA null mutant were smoother and distant from the bacteria. We also found that the F-actin content in cells infected with the sipA mutant decreased nearly 80% as compared to uninfected cells or those infected with the wild-type Salmonella strain. Furthermore, expression of either the full-length or the SipA(459-684) actin-binding fragment induced prominent punctuate actin assembly in the cortical region of COS-1 cells. These results indicate that SipA is involved in modulating actin dynamics in cultured epithelial cells during Salmonella invasion.  相似文献   

20.
Gram-negative bacteria produce membrane vesicles (MVs) from their outer membrane during growth, although the mechanism for MV production and the advantage that MVs provide for bacterial survival in vivo remain unknown. MVs function as an alternate secretion pathway for Gram-negative bacteria; therefore, MV production in vivo may be one method by which bacteria interact with eukaryotic cells. However, the interactions between MVs and cells of the innate and adaptive immune systems have not been studied extensively. In this study, we demonstrate that MVs from Salmonella typhimurium potently stimulated professional APCs in vitro. Similar to levels induced by bacterial cells, MV-stimulated macrophages and dendritic cells displayed increased surface expression of MHC-II and CD86 and enhanced production of the proinflammatory mediators NO, TNF-alpha, and IL-12. MV-mediated dendritic cell stimulation occurred by TLR4-dependent and -independent signals, indicating the stimulatory properties of Salmonella MVs, which contain LPS, do not strictly rely on signaling through TLR4. In addition to their strong proinflammatory properties, MVs contained Ags recognized by Salmonella-specific B cells and CD4(+) T cells; MV-vaccinated mice generated Salmonella-specific Ig and CD4(+) T cell responses in vivo and were significantly protected from infectious challenge with live Salmonella. Our findings demonstrate that MVs possess important inflammatory properties as well as B and T cell Ags known to influence the development of Salmonella-specific immunity to infection in vivo. Our findings also reveal MVs are a functional nonviable complex vaccine for Salmonella by their ability to prime protective B and T cell responses in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号