首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
研究冬季和夏季亚热带杉木幼苗在增温5 ℃和减少50%自然降水处理下叶片养分和代谢组分的变化.结果表明: 由于不同季节温度和水分差异,杉木叶片的养分和生理代谢组分在不同季节有不同的表现.冬季杉木叶片碳、氮、磷和钾含量显著高于夏季.夏季减少降水、增温处理对杉木叶片各类抗氧化酶活性均无显著影响,冬季减少降水处理分别显著降低超氧化物歧化酶活性20.7%和过氧化物酶活性17.8%.冬季增温后杉木叶片非酶促的抗坏血酸含量显著增加132.5%.冬季增温+减少降水处理降低杉木碳含量,促进渗透物质脯氨酸和氮含量的累积.夏季增温+减少降水处理显著提高杉木叶片碳含量3.3%.无论是冬季还是夏季,增温+减少降水处理对杉木叶片抗氧化系统无显著影响.植物对夏季增温的适应机制与冬季增温不同,杉木叶片的养分变化对同时增温+减少降水更加敏感.为了更好地管理种植林,以提高植物的生产力,在未来气候变化下,应提高植物对养分供需和对季节响应的关注.  相似文献   

2.
叶片和细根是植物地上和地下部分中最敏感和活跃的部分,对森林生态系统的碳循环起着十分重要的作用。叶片和细根生理代谢特征及其相互关联的变化不仅反映植物在全球变暖背景下的生长状况,也揭示了植物面对环境胁迫的响应特征和适应策略,已经成为全球变化领域研究的热点和难点问题。国内外已开展了大量相关实验,从氧化损伤、抗氧化防御及代谢物的角度探讨了全球变暖条件下植物叶片和细根生理代谢的变化特征和响应机制。目前部分研究认为大气增温将促进叶片体内活性氧类物质的积累,对叶片产生氧化损伤,而对细根的损伤作用不明显,但也有部分研究认为细根受土壤增温的影响更大。总之,植物叶片和细根如何通过调整自身生理代谢特征和器官间的相互协作来响应气候变暖,以及这些响应的内在机制仍未得到充分研究。为此,该文系统综述了全球变暖背景下植物叶片和细根氧化损伤与抗氧化防御特征及其相互关联变化的研究进展,以期为植物对全球变暖的响应和适应机制研究提供参考,并认为今后还应开展以下几个方面的研究:(1)在种群和群落尺度上加强增温对植物氧化损伤与防御特征的研究;(2)结合地上地下物候特征研究增温对植物氧化损伤与防御特征的影响;(3)从更多植物生理指...  相似文献   

3.
川西亚高山森林存在明显的季节性冻土现象, 该地区的土壤经历着初冬冻融、深冬冻结、早春冻融等过程, 同时,该区域冬季受气候变化的影响强烈。为了全面地认识亚高山森林的生态过程, 该研究以川西亚高山针叶林两种主要树种——岷江冷杉(Abies fargesii var. faxoniana)和云杉(Picea asperata)为材料, 研究其叶片及细根内丙二醛含量、渗透调节物质的含量、组织含水量、过氧化物酶活性以及硝酸还原酶活性在季节性冻土期的变化, 同时还比较了冻土期和冻融期细根的比根长, 比表面积, 直径以及组织密度的变化。研究结果显示: 在季节性冻土期, 土壤温度昼夜波动幅度小于空气温度波动幅度, 细根却表现出更强的过氧化物酶活性以及更高的渗透调节物质含量, 说明细根较叶片对季节性冻土更为敏感。与冻结期相比, 冻融期土壤温度、空气温度以及空气相对湿度昼夜波动幅度增加, 促使云杉叶片可溶性糖含量以及两针叶树种叶片内过氧化物酶活性、脯氨酸含量显著增加, 而细根的组织含水量显著降低, 脯氨酸、可溶性蛋白质及可溶性糖含量均显著增加, 表明冻融期对两针叶树种的影响较冻结期更为强烈。岷江冷杉和云杉的过氧化物酶活性及渗透调节物质含量具有相同的变化趋势, 但叶片和细根的膜脂过氧化程度及酶活性变化并不一致, 就岷江冷杉而言, 细根的丙二醛含量显著增加, 而叶片、细根的硝酸还原酶活性均显著降低, 云杉仅叶片的丙二醛含量发生变化, 且显著降低, 说明云杉更能忍耐冻融循环造成的胁迫。研究还发现细根形态在季节性冻土期无显著变化。  相似文献   

4.
为揭示亚热带地区杉木(Cunninghamialanceolata)对干旱的响应机制,在福建三明森林生态系统国家野外科学观测研究站,对隔离降水环境下杉木幼树细根生理特征进行研究。结果表明,隔离降水处理的土壤湿度显著下降(P<0.05),但杉木细根超氧阴离子自由基、丙二醛含量变化不显著(P>0.05),表明其细根保持着低水平的膜脂氧化损伤;脯氨酸和谷胱甘肽含量较对照显著增加(P<0.05),并且过氧化氢含量也显著增加(P<0.05),意味着杉木受到一定程度的干旱胁迫并且进行自我调节;长期降水隔离导致的过氧化氢积累一定程度上促使谷胱甘肽显著提高,二者呈极显著正相关(P<0.01);内源激素中细胞分裂素、吲哚乙酸含量显著下降,与杉木生长调控未表现出明显相关性;超氧化物歧化酶活性较对照显著下降21.5%,过氧化物酶活性较对照显著提高16.7%,但抗氧化酶系统对杉木细根的水分缺失适应调控无显著影响。因此,50%降水减少条件下杉木能通过其细根的渗透物质和内源激素等非酶促物质进行综合调节,以有效适应土壤湿度的显著降低。  相似文献   

5.
温度通常被认为是植物生长和生产的重要限制因子, 全球变暖严重影响生态系统, 但全球变暖对亚热带杉木(Cunninghamia lanceolata)叶片膜脂过氧化及保护酶活性的影响并不甚清楚。该研究在野外利用电缆对土壤增温, 设置对照和增温2种处理, 每个处理5个重复。通过测定渗透调节物质、内在水分利用效率、保护酶活性及丙二醛等指标, 探究增温对杉木生理生化特征的影响。研究表明: 1)增温提高渗透调节能力, 但对杉木叶片膜脂过氧化作用不明显; 2)增温显著提高杉木的水分利用效率和固碳效益, 即降低了固碳耗水成本; 3)增温降低超氧化物歧化酶活性和过氧化物酶活性, 却显著提高过氧化氢酶活性和抗坏血酸过氧化酶活性。由此可见, 杉木主要通过提高保护酶(特别是过氧化氢酶和抗坏血酸过氧化酶)活性以减轻高温胁迫伤害, 这有助于维持杉木细胞代谢稳定。因此, 该区域在未来全球变化背景下的温度升高效应值得长期而深入的探讨。  相似文献   

6.
为揭示气候变暖对我国亚热带地区人工林生态系统细根动态过程的影响,在福建三明森林生态系统国家野外科学观测研究站开展成熟杉木(Cunninghamia lanceolata)人工林野外原位土壤增温实验,采用内生长环法探究增温在不同季节对成熟杉木人工林细根生长量、形态及生理代谢特征的影响。结果表明:与对照相比,在雨季,增温处理使得0–1 mm细根生长量及细根(0–2mm)总生长量显著增加109.9%和78.2%,0–1mm细根比根长(SRL)和可溶性糖含量显著增加28.8%和41.5%,而细根比呼吸速率(SRR)和淀粉含量显著降低64.1%和15.9%;在旱季,增温处理使得0–1和1–2mm细根生长量及各形态指标均无显著变化,而0–1 mm细根SRR、1–2 mm细根淀粉和非结构性碳水化合物(NSC)含量显著降低60.7%、43.9%和14.2%。因此,在未来气候变暖背景下,中亚热带地区成熟杉木人工林具有较强的适应能力。雨季,成熟杉木人工林可能通过增加细根SRL,吸收更多资源并促进淀粉向可溶性糖的转化来维持正常生理活动以促进细根生长来响应增温。旱季,成熟杉木人工林则采取降低细根SRR、减少体...  相似文献   

7.
红砂对CO_2浓度升高及降水变化的生理生长响应   总被引:1,自引:0,他引:1  
该研究以2年生红砂为试验材料,利用开顶式CO_2控制气候室,研究了不同降水条件(+30%、+15%、0、-15%、-30%)和CO_2浓度(350μmol·mol~(-1)、550μmol·mol~(-1)、700μmol·mol~(-1))协同作用下,红砂的抗氧化酶活性、渗透调节物质及生物量的变化规律。结果表明:(1)CO_2浓度升高及降水变化在6月和8月对红砂抗氧化酶活性,可溶性糖(SS)和脯氨酸(Pro)及生物量均有显著影响,但在8月份并不影响可溶性蛋白(SP)。(2)随着CO_2浓度升高,红砂体内抗氧化酶活性,渗透调节物质、根生物量和地上生物量呈增加趋势,且随着时间延长(8月份)对气候变化逐渐适应,丙二醛(MDA)和根冠比则呈下降趋势。(3)随着降水减少,红砂的抗氧化酶活性和丙二醛呈增加的趋势,地上生物量呈下降趋势,而渗透调节物质、根生物量和根冠比无论降水增加或减少都会增加。(4)高浓度CO_2和降水减少时,红砂通过调整自身生长和生物量分配,加大根冠比,提高吸水和保水能力;且有利于红砂渗透调节物质的积累,而且能促进其抗氧化酶活性的表达,使膜脂过氧化程度降低,丙二醛含量减少,对植物的氧化损伤有一定的保护作用。研究认为,CO_2浓度升高在一定程度上可以提高干旱半干旱地区红砂的抗旱能力,增强红砂对未来气候变化的适应。  相似文献   

8.
通过防雨棚池栽试验,以不同花生品种为试材,研究了不同生育时期非充分灌溉对花生品种各生育期叶片膜脂过氧化、渗透调节物质含量和抗氧化酶活性的影响.结果表明,苗期和花针期灌水,叶片抗氧化酶活性、渗透调节物质和丙二醛(MDA)含量均有不同程度的降低.随生育期推进和土壤水分降低,其活性升高,但升幅因品种、抗氧化酶和渗透调节物质类型有异,两品种叶片超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、可溶性糖(SS)、可溶性蛋白质(Pr)、游离氨基酸(AA)和脯氨酸(Pro)含量均以对水分最为敏感的花针期升幅较大,且花育27号的SOD、CAT、Pr和AA的升幅大于花育20号;结荚期灌水后,各抗氧化酶和渗透调节物质未表现降低.两品种全生育期灌水处理与苗期灌水处理间的抗氧化酶活性、渗透调节物质和MDA含量差异均不显著.水分胁迫初期,抗氧化酶活性升高,但随胁迫时间延长其活性明显降低;而渗透调节物质和MDA含量显著高于各生育期灌水处理.POD活性变化对灌水处理响应较弱,SOD和CAT是花生适应土壤水逆境的主要保护酶.灌水处理对花生叶片抗氧化及渗透调节能力表现为花针期>结荚期>苗期,各渗透物质调节能力依次表现为脯氨酸、可溶性蛋白质>可溶性糖>游离氨基酸.  相似文献   

9.
采用营养液培养方法,以‘定莜6号’裸燕麦为材料,研究外源一氧化氮供体硝普钠(SNP)对100 mmol·L-1Na Cl胁迫下裸燕麦幼苗生长、活性氧代谢和渗透溶质积累的影响。结果表明:5μmol·L-1SNP能明显缓解Na Cl胁迫对幼苗生长的抑制作用,显著提高Na Cl胁迫下裸燕麦叶片超氧化物歧化酶、过氧化物酶和抗坏血酸过氧化物酶活性及谷胱甘肽和抗坏血酸含量,降低丙二醛、过氧化氢、超氧阴离子和游离氨基酸含量及过氧化氢酶活性,提高可溶性糖、可溶性蛋白质和脯氨酸含量及K+/Na+比。分析表明,外源一氧化氮通过提高抗氧化能力和渗透溶质积累以及维持K+、Na+平衡,缓解盐胁迫诱导的氧化伤害和生长抑制,从而提高裸燕麦的耐盐性。  相似文献   

10.
本研究以成年侧柏和刺槐为对象,分析春季干旱胁迫对叶片、根系形态和生理特性的影响,比较2树种在干旱胁迫下的适应策略。结果表明:春季干旱胁迫下,侧柏叶片脯氨酸和可溶性蛋白含量及SOD和POD活性显著低于刺槐叶片(P0.05),可溶性糖含量和CAT活性显著高于刺槐叶片(P0.05),两树种叶片丙二醛含量无显著差异(P0.05);侧柏根系脯氨酸和可溶性蛋白含量及POD和CAT活性显著低于刺槐根系(P0.05),可溶性糖和丙二醛含量显著高于刺槐根系(P0.05)。侧柏比叶重和根系活力显著高于刺槐(P0.05),刺槐根长密度和根面积指数显著高于侧柏(P0.05)。这说明春季干旱胁迫下成年侧柏和刺槐的渗透调节物质含量及抗氧化酶活性不同,春季干旱对两树种叶片伤害程度相似,而对侧柏根系伤害更大;成年侧柏主要采取耐旱策略,刺槐主要采用避旱策略。  相似文献   

11.
郭安琪  周瑞莲  宋玉  马会雷 《生态学报》2018,38(10):3495-3503
通过对黑麦草(Lolium perenne L)在轻度、中度、重度、全割刈割处理6 d和12 d后,残留叶片和叶片再生部分生长速率,超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活力,丙二醛、可溶性糖、脯氨酸含量的分析以揭示在刈割胁迫后叶片抗氧护酶活力和渗透调节物含量与其补偿性生长的关系,以及牧草耐刈性的生理调控机理。结果表明,轻度和中度及全割后叶片生长速率均高于对照,重度刈割低于对照。全割后叶片补偿性生长最明显、轻度和中度次之,重度刈割无补偿性生长。对照黑麦草叶片各部位抗氧化酶和渗透调节物含量不同,叶片顶部MDA含量较高,伴随着较高的SOD、CAT活力和较高的脯氨酸含量;叶片基部MDA含量最低,SOD、CAT活力及脯氨酸含量也较低。与对照相比,不同强度刈割6 d黑麦草再生叶和叶片平均MDA含量、SOD和CAT活力、可溶性糖和脯氨酸含量均较低。而不同强度刈割12 d,黑麦草再生叶和叶片平均MDA含量仍较低,但SOD和CAT活力增高,脯氨酸含量增加,POD活力和可溶性糖含量低于对照。这表明刈割在减少了叶面积,降低光合能力的同时,刈割伤害胁迫启动了牧草补偿性生长使残留叶片快速生长,而且残留叶片面积与其补偿生长速率成正相关。另外,虽然不同强度刈割下叶片补偿性生长速率不同,但不同强度刈割(12 d)均激活残留叶片抗氧化保护酶系统和促进脯氨酸积累。在补偿生长过程中,CAT和SOD能及时清除残留叶片中积累的氧自由基,维持较低的膜脂过氧化和细胞膜完整性,积累的脯氨酸能维护细胞水分平衡。因此,抗氧化酶(SOD和CAT)和渗透调节物(脯氨酸)在黑麦草刈割后受伤部位快速自愈及残留叶片快速补偿生长中起重要生理保护作用。  相似文献   

12.
海滨滨麦叶片和根对不同厚度沙埋的生理响应差异分析   总被引:1,自引:0,他引:1  
以烟台海岸抗风沙植物滨麦为研究材料,通过对不同厚度沙埋下其叶片和根部抗氧化酶活力(超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT))、丙二醛(MDA)含量和渗透调节物含量变化的分析,探讨了叶片和根部对沙埋生理响应的差异。试验按滨麦成株株高(约40 cm)对其进行了轻度沙埋(在株高1/4处)、中度沙埋(2/4处)和重度沙埋(3/4处)。在沙埋第6天,分别测定了不同厚度沙埋处理下,植株各段叶片和根抗氧化酶活力、MDA和渗透调节物含量。结果表明,轻度和中度沙埋均加速植株生长。与对照相比,经轻度、中度沙埋处理6 d,叶片平均MDA含量增加,在重度沙埋下降低。不同厚度沙埋6 d,叶片平均SOD活力和脯氨酸含量增加,而CAT活力、可溶性糖和可溶性蛋白质含量下降。但不同厚度沙埋均使沙上叶片MDA、脯氨酸、可溶性蛋白质含量和SOD和CAT活力增加,尤其是叶片顶部增加最为明显,使沙下叶片MDA、可溶性糖、可溶性蛋白质含量和CAT活力下降,导致同株沙上和沙下叶片MDA、脯氨酸、可溶性糖、可溶性蛋白质含量和SOD和CAT活力差异显著(P0.05)。与叶片相比,根中MDA、可溶性蛋白质含量和SOD和CAT活力较低,而POD活力和可溶性糖含量较高并与叶片差异显著(P0.05)。不同厚度沙埋6 d,滨麦根中MDA和可溶性蛋白质含量变化较小,可溶性糖含量和CAT、POD、SOD活力略有降低。研究表明,滨麦根和叶片对不同厚度沙埋的生理响应不同。沙埋直接作用于叶片并诱发叶内氧自由基积累,但叶片通过快速激活的抗氧化酶保护系统(CAT、SOD)维持氧自由基代谢平衡,以及渗透调节物(脯氨酸、可溶性糖)的积累维护细胞水分代谢平衡,并满足能量的需求和快速生长。但在不同厚度沙埋下,由于根系不受沙埋直接影响而生理变化较小,并且还维持较低的膜脂过氧化水平,这可能是根能维持正常的吸水输水功能并在沙埋处理过程中和沙埋后地上叶片快速生长摆脱沙埋的重要物质基础。  相似文献   

13.
以烟台海岸生态断带滨麦(Leymus mollis)和肾叶打碗花(Calystegia soldanella)为材料,在远离高潮线不同位置上取土样和植物材料,通过测定土壤Na+和两植物根叶Na+含量、丙二醛(MDA)含量、抗氧化酶(SOD、POD、CAT)活性和渗透调节物含量,以揭示滨麦和肾叶打碗花根叶中Na+在其适应海岸盐环境中的生理调控机制。结果表明,在高潮线土壤Na+含量最高,滨麦根叶Na+含量较高,两植物根叶中MDA和水分含量、抗氧化酶活力均较低,但渗透调节物含量均较高。随远离高潮线土壤Na+含量下降,滨麦根叶Na+含量下降,而肾叶打碗花根中Na+含量上升,其根叶Na+含量较滨麦分别高637%和319%。同时两植物根叶MDA含量、叶片含水量增加;两植物根中POD和SOD活力增加;两植物根叶可溶性糖和脯氨酸含量下降。但不同生态断带滨麦叶片平均含水量相对较低,MDA含量、POD和CAT和SOD活力、脯氨酸和可溶性糖含量相对较高。在盐土环境中滨麦通过降低Na+的吸收和提高抗氧化酶活力和有机渗透调节物含量维持氧自由基代谢平衡和水分平衡。而肾叶打碗花是泌盐植物,在不同生态断带其叶片Na+含量、平均含水量相对较高,叶MDA含量、POD和CAT活力、脯氨酸和可溶性糖含量均相对较低。泌盐植物的肾叶打碗花依赖根叶中积累的Na+作为无机渗透调节剂维护其离子平衡和水分平衡及正常生长。因此,积累在根叶中的Na+离子既作为无机渗透调节剂维护细胞离子平衡和水分平衡,又引发细胞生理干旱促进有机渗透调节物合成;另外还作为氧自由基诱发剂促使活性氧自由基(ROS)积累,通过积累的ROS激活抗氧化保护酶系统抑制膜脂过氧化、维护氧自由基代谢平衡。海岸沙地土壤中高浓度Na+是海滨滨麦和肾叶打碗花能长期在盐土环境中生存的依靠元素,其对植物的生理调控作用可能是滨麦和肾叶打碗花适应盐土生存的重要生理适应机理。  相似文献   

14.
沙芥属植物活性氧清除系统对干旱胁迫的响应   总被引:3,自引:0,他引:3  
以沙芥属植物沙芥和斧形沙芥幼苗为试材,采用盆栽控水干旱方法,分析其在不同干旱胁迫强度下根和叶的活性氧水平、抗氧化酶活性和抗氧化剂含量的变化,并利用隶属函数法和抗旱系数法综合评价沙芥和斧形沙芥的抗旱性。结果表明: (1)随着干旱胁迫程度的加剧,沙芥和斧形沙芥的根和叶中O-·2产生速率及·OH、H2O2、MDA含量总体呈逐渐升高的趋势,且干旱胁迫下沙芥比斧形沙芥产生了更多的ROS和MDA。(2)随着干旱胁迫程度的加剧,沙芥和斧形沙芥的根和叶中POD、APX、GST活性及叶中GR活性均先升高后降低,叶中的SOD活性以及根中GR、GPX活性均先降低后升高,根和叶中的CAT活性、叶中的GPX活性和根中SOD活性均逐渐升高;但根和叶中的SOD、POD、CAT活性在各干旱处理下均表现为斧形沙芥高于沙芥。(3)沙芥和斧形沙芥的根和叶中AsA含量随着干旱胁迫程度的加剧而先升高后降低,GSH含量逐渐升高,CAR含量逐渐降低,而VE含量在叶中逐渐升高,在根中却逐渐降低;但斧形沙芥比沙芥合成更多的AsA和GSH,其植物体内AsA GSH循环系统能清除更多的ROS。(4)沙芥和斧形沙芥的根和叶中总抗氧化能力(T AOC)均随着干旱加剧逐渐增强,且斧形沙芥的总抗氧化能力强于沙芥;活性氧清除系统的平均隶属度和综合抗旱系数显示,轻度干旱胁迫下沙芥抗旱性强于斧形沙芥,中度和重度干旱胁迫下斧形沙芥的抗旱性强于沙芥。研究认为,在干旱胁迫条件下,斧形沙芥根叶中ROS和MDA含量明显低于沙芥,而其大部分抗氧化酶活性和抗氧化剂含量高于沙芥,斧形沙芥植株体内抗氧化系统表现出更强的活性氧清除能力,从而表现出更强的抗旱性。  相似文献   

15.
通过桉树的水培实验,测定了不同浓度Zn胁迫下桉树的生物量,根和叶中Zn、巯基物质(非蛋白巯基,谷胱甘肽和植物络合素)和丙二醛(MDA)的含量,以及根中抗氧化酶的活性。从巯基物质含量和抗氧化酶活性的角度,探讨了桉树抵御Zn胁迫造成氧化性伤害的机制。实验结果表明,Zn浓度较低(20 mg/L和40 mg/L)时,根中MDA含量非显著性增加,抗氧化酶超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性上升,叶中巯基物质含量非显著性增加。Zn浓度较高(120 mg/L和140 mg/L)时,根中MDA含量显著性增加,SOD、POD和CAT的活性下降,叶中巯基物质含量显著性增加。因此,低浓度Zn胁迫时,桉树中巯基物质和抗氧化酶系统对氧化性伤害有较好的缓解作用;高浓度Zn胁迫时,大量过氧化物积累,桉树中巯基物质和抗氧化酶系统对氧化损伤的缓解作用降低。  相似文献   

16.
以3龄樟子松幼树为材料,2013年在科尔沁沙地研究了不同沙埋深度下其株高、叶片膜透性、渗透调节物质含量及保护酶活性变化,以揭示沙埋条件下樟子松幼树生长及其对逆境的生理响应特征。结果显示:(1)在沙埋深度低于株高以上2cm时被埋樟子松幼树能够正常生长,其株高和芽长均明显高于非沙埋对照,并以沙埋深度为株高的50%时增长幅度最大;当沙埋深度超过株高2cm以上时,虽然植株高度和芽长也较埋前有一定增长,但均低于对照,且所有处理植株均未破土,后来全部死亡。(2)所有沙埋处理的叶片可溶性糖含量均显著低于对照,而POD活性显著高于对照,可溶性蛋白质和脯氨酸含量也高于对照。(3)随沙埋深度增加,叶片相对含水量总体呈增加趋势,但大多数处理与对照差异不显著;丙二醛含量基本呈显著下降趋势,可溶性蛋白和脯氨酸含量先增加后下降,而大多数处理的膜透性与对照差异不显著;随着沙埋深度增加,叶片可溶性糖含量显著下降,SOD和POD活性均先增加后下降。(4)相关分析显示,樟子松幼树叶片膜透性变化与MDA含量变化相关性几乎为零,可溶性蛋白与脯氨酸含量呈显著正相关关系,可溶性糖含量与脯氨酸含量呈显著负相关关系。研究表明,沙埋深度低于樟子松株高以上2cm能够促进其幼树生长;沙埋并没有导致樟子松幼树体内的膜脂过氧化,也没有引起细胞膜的损伤,在受到沙埋胁迫时,樟子松幼树体内SOD、POD以及可溶性蛋白和脯氨酸分别在防止其膜脂过氧化和维持细胞膨压中起到重要作用,而可溶性糖含量在沙埋过程中没有起到渗透调节作用。  相似文献   

17.
为探讨砧木对提高番茄嫁接苗耐盐性的作用机理,以耐盐性较敏感的‘中杂9号’(S)为接穗,耐盐性较强的‘OZ-006’(R)为砧木,采用劈接法形成嫁接苗(RS)以及接穗自嫁接苗(SS)、砧木自嫁接苗(RR)3个试验材料,在175 mmol·L-1 NaCl处理下测定植株生长、Na+积累、氨基酸含量和活性氧代谢的变化。结果表明: NaCl胁迫导致番茄幼苗的盐害指数和Na+含量均显著提高,幼苗生长速率和叶绿素含量显著降低,但不同嫁接苗的类型差异显著,在盐害表型上表现为SS>RS>RR的规律。NaCl胁迫诱导嫁接苗的叶片和根系总氨基酸含量显著提高,其中RR、RS叶片有9种、根系有8种氨基酸含量显著高于对照,以脯氨酸含量变化最为显著,而SS叶片中仅有2种、根系中仅有4种氨基酸含量显著高于对照;幼苗间的氨基酸含量呈现RR>RS>SS的规律,RR、RS叶片的氨基酸含量分别比SS叶片上升了32.8%、16.6%,根系分别比SS上升了53.1%和32.5%。NaCl胁迫造成活性氧代谢的变化,幼苗叶片和根系的抗氧化酶活性、超氧阴离子产生速率、丙二醛含量均显著提高,以RR叶片和根系中抗氧化酶活性的增幅最大,其次为RS;SS和抗氧化酶活性的增幅最小,品种间活性氧水平表现为SS>RS>RR。综上,砧木通过抑制Na+向上运输、提高氨基酸水平和抗氧化酶活性缓解了盐胁迫对嫁接苗的伤害,但不同砧穗组合的耐盐性差异较大,以RR的耐盐性最强,其次为RS,SS最弱。因此,番茄嫁接苗的耐盐性主要受砧木耐盐性的影响,其次为接穗,同时,其与番茄体内的氨基酸和活性氧代谢调控密切相关。  相似文献   

18.
棒叶落地生根对干旱与复水的生理响应   总被引:2,自引:0,他引:2  
为探讨棒叶落地生根(Kalanchoe tubiflora)耐旱的机制,在干旱与复水条件下,对其叶片的一些生理生化指标进行了测定。结果表明,随干旱时间延长,棒叶落地生根叶片中O2-·生成速率增大,H2O2含量升高,导致脂质过氧化产物MDA含量增高;同时SOD活性升高,CAT活性降低;可溶性糖与脯氨酸含量增加,但复水后这些指标均恢复到干旱前的水平。这说明棒叶落地生根能够耐受干旱环境是通过积累渗透调节物质,提高活性氧的清除能力,从而减少氧化胁迫造成的伤害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号