共查询到18条相似文献,搜索用时 62 毫秒
1.
互惠共生微生物多样性研究概况 总被引:1,自引:0,他引:1
所谓互惠共生微生物(mutualistic symbiotic microbes,MSM)是指能定殖其他生物构建互惠共生体系的微生物,主要包括互惠共生细菌、互惠共生放线菌和互惠共生真菌等。MSM种类繁多、分布广泛、物种多样性丰富,涉及原核生物界和真菌界等。MSM定殖人体、动物、植物、藻类或其他真菌,可构建各自相应的互惠共生体系,进而形成范围更加巨大的共生网络,发挥不可替代的生理生态功能。本文在介绍MSM概念的基础上,重点总结了MSM多样性研究进展,指出了目前研究中尚存在的问题,探讨了今后应该开展的工作,MSM多样性研究成果可望为研发MSM应用技术提供依据和材料。 相似文献
2.
共生微生物是一类定殖于宿主体表或体内, 可执行宿主本身无法完成的功能, 并依赖于宿主所提供的生长环境的微生物。众多研究表明, 人体肠道共生微生物与免疫、营养、代谢, 甚至精神健康等生理功能密切相关, 是重要的“微生物器官”。在早期的肠道微生物研究中, 模式动物就已经作为研究工具被使用。随着肠道微生物研究的不断深入, 模式动物作为不可替代的研究对象发挥了越来越重要的作用。本综述主要对几种重要的模式动物如斑马鱼(Danio rerio)、小鼠(Mus musculus)、猪(Sus scrofa domesticus)和猕猴(Macaca mulatta)在肠道微生物研究中的应用进行了总结, 介绍了各种模式动物的发展过程及特点, 各自在应用于研究时的优缺点, 以及利用这些动物模型在共生微生物领域所取得的一些标志性的科研成果。同时, 也就近年来在共生微生物领域新兴的一些模式生物如蜜蜂(Apis)、果蝇(Drosophila)、秀丽隐杆线虫(Caenorhabditis elegans)等进行了一些探讨。旨在让该领域的研究者们了解模式动物与人体在共生微生物方面的异同, 为更好地利用这一研究工具提供参考。 相似文献
3.
植物-微生物互惠共生是一种特殊的合作形式, 在整个生命和陆地生态系统的演化历史中起着至关重要的作用。在全球环境变化背景下, 植物和微生物间的互惠共生对生态系统功能的维持具有重要意义。尽管合作/互惠共生如此重要, 在生物学中却存在着对它的历史偏见与忽视。特别地, 尽管互惠共生的理论与建模发展已有较长的历史, 但不同学科分支间仍存在着多种不同的观点。本综述从两个看似对立的视角概述植物-微生物互惠共生的概念框架, 即微生物学家关心的微观机制和生态系统生态学家关注的宏观影响。宏观模型通常从一组过于简单的假设出发, 便于理论分析。但微观机制是开展定量预测的基础, 因此新一代基于过程的宏观模型需嵌入微观机制, 这对预测全球变化下的生态系统响应至关重要。此外, 希望本文也可以吸引更多学者关注合作/互惠的重要作用, 并将这一概念应用于解决其他生态学和社会学问题。 相似文献
4.
海洋微生物学:新机遇,新挑战 总被引:4,自引:0,他引:4
海洋占地球表面积的71%,海洋微生物对海洋及人类的生活有重大影响。由于特殊的生存环境,海洋微生物能产生陆栖微生物所不能产生的结构新颖、作用特殊的生物活性物质,有潜力应用于医疗、食品、环境保护等各个领域。海洋微生物研究充满了新的机遇,同时也面临着新的挑战。《微生物学通报》本期推出了"海洋微生物学主题刊",旨在展现我国海洋微生物学研究的最新进展和成果,促进我国海洋微生物学的交流和发展。 相似文献
5.
生态系统的组织理论:食物链动态论与互惠共生—控制论 总被引:5,自引:0,他引:5
本文主要介绍生态系统的组织理论,食物链动态理论和互惠共生-控制论,这两种理论代表了进化生态学家与系统生态学家两个学派。前者是建立在达尔文的“生存竞争”思想耻,强调初级生产力是关键变量,捕食作用和食物资源两者随初级生产力梯度的增加交替控制食物网结构,并预报相邻营养级的生物量和周转率为负相关关系,被称作“生态学的中心理论”后者是建立在控制论基础上,认为生态系统是正,负反馈联合构建的,并预报生物量和周转 相似文献
6.
昆虫病原线虫的共生细菌 总被引:1,自引:0,他引:1
昆虫病原线虫与其共生细菌二者互惠共生 :共生细菌需要昆虫病原线虫作为载体以寄生寄主昆虫并做为自己的营养来源 ,而昆虫病原线则需要依靠共生细菌来杀死昆虫。综述了共生细菌的病原作用、抗菌作用与杀虫作用 ,评述了共生细菌的基因工程进展 ,讨论了昆虫共生细菌在昆虫病原线虫致病性的作用。 相似文献
7.
昆虫共生微生物是指与昆虫宿主建立持久互作关系的微生物,这些微生物分布于昆虫的体表、肠道、血腔或者细胞内,参与调节宿主昆虫的多种生理功能。昆虫-共生微生物互作研究涉及多个学科领域的交叉。深入研究昆虫共生微生物的功能及其与宿主的互作关系不仅有助于阐明重要的生命科学机理,还将为害虫治理和虫传病害的防控以及益虫的有效利用提供新的思路和方法。近年来,我国学者在昆虫微生物组研究领域取得显著进展,在多个研究方向取得重要成果。本文概述了国内外昆虫共生微生物研究的最新进展,介绍了本专辑论文的主要研究内容,并提出了值得关注的3个研究方向:(1)昆虫细胞内共生微生物的功能;(2)昆虫调控共生微生物丰度和传播的机制;(3)昆虫共生微生物的遗传改造和应用。 相似文献
8.
基于共生概念的历史变化,目前人们普遍接受了广义共生概念。即共生是包含互利共生(mutualism)、偏利共生(commensalism)和拮抗/寄生(antagonism/parasitism)的共生连续体。本文简述了近20年间,全球9次国际共生学术大会取得的重要成果,对细胞内共生、时间、空间以及多种互作尺度共生关系的研究利用进展进行了评述。同时展望了一些活跃共生领域的研究概况,如共生失调 (dysbiosis)、植物-微生物-昆虫三角共生关系(plant-microbe-insect triangle)、细菌-真菌互作(bacterial- fungal interaction,BFI)、菌根菌-真菌内生细菌-植物多方共生联盟(multipartite symbiosis consortium)以及与共生相关微生物组的集合群落(metacommunity)研究及应用等。共生(symbiosis)正成为当代生物学的核心原则,正以一种与更宏大系统方法相一致的概念,从根本上改变了传统上的一些生物学概念,如孤立性的个体(individuality)概念。基因组测序和高通量RNA技术分析揭示,动、植物与共生微生物的重要互作,打破了迄今为止生物个体的特征边界,挑战了这些学科的定义;共生不仅是一对一的互利共生关系,共生实际是多种共生模式的连续共生体。此外,植物-昆虫-微生物互作的三角关系;菌根-真菌-真菌内生细菌-植物的多方联盟等新关系的发现,更把生命科学推向了快速发展的方向。这些科学进展不仅对生物科学的遗传学、免疫学、进化、发育、解剖学和生理学的研究至关重要,拓宽了新的视野,而且对农业中生物制剂研发,人类微生物组的管理及调控,以及对发酵食品及工业微生物生产的设计和管理将产生积极影响。 相似文献
9.
为探究中国东北地区森林根系和根围土壤中共生真菌的分布状况,分析了黑龙江省五大连池市蒙古栎Quercus mongolica纯林中根内及根围土壤中共生真菌和细菌群落的组成。结果表明,根内真菌的1 295个OTUs中有209个OTUs为共生真菌,隶属于36属,相对丰度25.46%;根围土壤真菌1 513个OTUs中有285个OTUs为共生真菌,隶属于40属,相对丰度59.91%;根内与根围土壤共同拥有共生真菌33属,根内特有3属,根围土壤特有7属。其中,外生菌根真菌为根内和根围土壤中共生真菌的主要类群,分别占共生真菌的98.82%和99.80%。定殖根内的细菌共获得5 550个OTUs,隶属于400属;根围土壤细菌获得8 406个OTUs,隶属于436属,根内细菌群落的Shannon指数和Chao1指数均低于根围土壤的。PICRUSt功能预测分析结果表明,根内的信号转导通路与信号分子和相互作用通路(包括CAM配体、ECM-受体相互作用等通路)的丰度低于根围土壤,而膜运输通路与信号分子和相互作用通路(包括细菌毒素、细胞抗原等通路)的丰度高于根围土壤。根内与根围土壤中菌根辅助细菌组成差异分析结果表明,除慢生根瘤菌属 Bradyrhizobium外,根内其余9属的相对丰度均高于根围土壤,尤其假单胞菌属 Pseudomonas的相对丰度远高于根围土壤。 相似文献
10.
蚂蚁是陆地生态系统中数量和种类最为丰富的昆虫类群之一.随着显微镜和测序技术的发展,人们逐渐发现一部分蚂蚁类群与微生物建立了长期稳定的共生关系.这些拥有稳定且特异共生微生物的蚂蚁类群被视为进化谱系中的共生热点.为了理解共生微生物对蚂蚁多样性在生态和进化上的影响,本文总结了处于共生热点的蚂蚁类群中不同的微生物类型,分别描述这些类群中共生微生物的多样性、生物学功能、与宿主互惠共生关系维持的机制.这些处于共生热点的蚂蚁类群通常生活在特化的营养生态位,推测蚂蚁可能利用共生微生物多样的代谢功能来应对营养失衡的挑战,未来的研究需要扩大研究物种的范围并囊括不同社会等级的个体,还需要在共生微生物基因组测序和功能预测的基础上,补充功能验证实验,不断拓展人们对蚂蚁共生微生物功能的认识.同时,还需要借助已经开展的蚂蚁类群高分辨率的系统发育分析,进一步探究共生微生物最初定殖蚂蚁类群的时间、与宿主互作的进化历史,从而更好地理解微生物在整个蚁科的进化过程中所扮演的角色. 相似文献
11.
白蚁是热带生态系统重要的木质纤维素降解者。白蚁种类丰富,可分成高等白蚁和低等白蚁,食性也具有各自特点。白蚁自身可以产生纤维素酶,主要是GHF9的内切葡聚糖酶(EG),也有β-葡萄糖苷酶(GB)。低等白蚁共生的原虫中已发现丰富的纤维素酶基因,属于GHF5,7和45。同时还有其他相关功能基因,如木聚糖酶和果胶类物质水解酶。高等白蚁肠道中没有共生原虫。高等培菌白蚁可以利用共生蚁巢伞属真菌促进木质纤维素降解,真菌可以产生纤维素酶,果胶质水解酶类、木聚糖酶,同时还产生可能与木质素分解相关的一种漆酶,但是从分子水平,关于共生真菌纤维素水解酶的研究还较少。白蚁肠道已分离出许多具有木质纤维素降解能力的菌株,最近的研究也发现了大量细菌纤维素酶基因。白蚁-共生系统丰富的木质纤维素水解酶类为发展生物方法开发纤维素乙醇这一思路提供有价值的资源。 相似文献
12.
林木共生菌系统及其作用机制——以杨树为例 总被引:1,自引:0,他引:1
杨树(Populus)是重要造林树种,也是研究林木基础生物学性状的模式材料。不仅如此,杨树可与多种细菌(内生细菌、内生固氮菌和根际促生菌)和真菌(外生菌根真菌、丛枝菌根真菌和内生真菌)类群建立共生关系,为揭示树木和微生物之间的互惠共生机制提供了理想模型。这些共生菌能积极调控林木生长发育、营养吸收和生理生态过程。目前在杨树-双色蜡蘑(Laccaria bicolor)形成的外生菌根发育、提高杨树耐盐、耐重金属的生理与分子机制、叶片内生真菌群落结构与病害发生、菌根辅助细菌和菌丝内共生细菌-真菌-杨树形成的三重跨界共生等方面取得多项突破。近年来,一批模式草本植物微生物组(microbiome)计划相继实施,对共生菌群落结构和功能的认识有了革命性的进步。以美洲黑杨、毛果杨和胶杨为代表的林木微生物组研究也已启动,表明宿主基因型和环境因子可显著影响共生菌群落结构与物种组成;在根际(rhizosphere)和内生(endosphere)环境存在结构和功能迥异的菌群。另一方面,以根系为诱饵,通过宿主表型来推测菌群功能的反向钓鱼策略将推动林木根际微生物工程研究,为揭示杨树-微生物群落的相互关系、菌群进化搭建了研究模型。总之,深入认识多元微生物对林木表型和生理代谢的表观遗传学调控机制将为今后创制新型菌剂并用于高效育苗和抗性育种提供新的思路,具有重要的科学意义和应用价值。 相似文献
13.
Large proteins are usually expressed in a eukaryotic system while smaller ones are expressed in prokaryotic systems. For proteins that require glycosylation, mammalian cells, fungi or the baculovirus system is chosen. The least expensive, easiest and quickest expression of proteins can be carried out in Escherichia coli. However, this bacterium cannot express very large proteins. Also, for S–S rich proteins, and proteins that require post-translational modifications, E. coli is not the system of choice. The two most utilized yeasts are Saccharomyces cerevisiae and Pichia pastoris. Yeasts can produce high yields of proteins at low cost, proteins larger than 50 kD can be produced, signal sequences can be removed, and glycosylation can be carried out. The baculoviral system can carry out more complex post-translational modifications of proteins. The most popular system for producing recombinant mammalian glycosylated proteins is that of mammalian cells. Genetically modified animals secrete recombinant proteins in their milk, blood or urine. Similarly, transgenic plants such as Arabidopsis thaliana and others can generate many recombinant proteins. 相似文献
14.
兰科植物的种子原地和迁地共生萌发技术是近年发展起来的开展兰科植物种子和共生真菌研究的有效方法。该研究对兰属(Cymbidium)附生植物硬叶兰(C. mannii)开展了种子的迁地共生萌发研究, 试图获得其种子萌发的有效真菌。利用硬叶兰成年植株根部周围的树皮、苔藓、枯枝落叶、腐殖质等作为培养基质, 进行种子的共生培养。在培养133天后, 成功地获得了处于不同阶段的已萌发种子、原球茎和幼苗, 并从原球茎中分离得到一种瘤菌根菌属(Epulorhiza)真菌。用所分离到的FCb4菌株和一种从兜唇石斛(Dendrobium aphyllum)分离到的胶膜菌属(Tulasnella) FDaI7菌株和硬叶兰种子在燕麦琼脂培养基上进行共生萌发, 设置不接菌作为对照处理, 以检验FCb4菌株对硬叶兰种子萌发的有效性。经过58天的培养, 不接菌的对照处理中种子没有萌发, 接种FCb4和FDaI7菌株的处理都有很高的种子萌发率, 两种接菌处理在不同光照条件下的种子萌发率均无显著性差异。但暗培养条件下, 种子萌发形成原球茎后, 表现出生长停滞的趋势, 仅有很少的原球茎继续生长达到幼苗阶段, 说明原球茎发育后期与幼苗发育阶段需要光照。在光照条件下, 接种FCb4菌株处理中达到幼苗阶段种子的比例为(25.67 ± 9.27)%, 显著高于接种FDaI7菌株处理的(3.04 ± 2.27)% (W = 56, p = 0.026, Mann-Whitney U-test), 表明此研究中分离到的瘤菌根菌属真菌能有效地促使硬叶兰种子萌发并生长发育到幼苗阶段。 相似文献
15.
The field of synthetic biology seeks to program living cells to perform novel functions with applications ranging from environmental biosensing to smart cell-based therapeutics. Bacteria are an especially attractive chassis organism due to their rapid growth, ease of genetic manipulation, and ability to persist across many environmental niches. Despite significant progress in bacterial synthetic biology, programming bacteria to perform novel functions outside the well-controlled laboratory context remains challenging. In contrast to planktonic laboratory growth, bacteria in nature predominately reside in the context of densely packed communities known as biofilms. While biofilms have historically been considered environmental and biomedical hazards, their physiology and emergent behaviors could be leveraged for synthetic biology to engineer more capable and robust bacteria. Specifically, bacteria within biofilms participate in complex emergent behaviors such as collective organization, cell-to-cell signaling, and division of labor. Understanding and utilizing these properties can enable the effective deployment of engineered bacteria into natural target environments. Toward this goal, this review summarizes the current state of synthetic biology in biofilms by highlighting new molecular tools and remaining biological challenges. Looking to future opportunities, advancing synthetic biology in biofilms will enable the next generation of smart cell-based technologies for use in medicine, biomanufacturing, and environmental remediation. 相似文献
16.
17.
昆虫菌业(fungiculture)是一种类似于人类种植业的昆虫种植体系,包括种植、耕作、收获和营养依赖4个过程,可分为高级的社会性昆虫如切叶蚂蚁、白蚁等和低级的非社会性昆虫如食菌小蠹虫、卷叶象甲、蜥蜴甲虫、树蜂等,它们均能种植并取食真菌。近年来随着组学及微生物组技术的发展,植菌昆虫与其共生真菌协同进化的分子机制研究方面取得了重要进展。系统发育分析阐明了植菌昆虫的起源与进化历程,并显示出与共生真菌系统发育的一致性;共生真菌细胞核数量也从双核增加到最多17个核,而染色体倍型也从单倍体增加为二倍体甚至多倍体;组学分析则揭示了植菌昆虫与其共生真菌在精氨酸、碳水化合物、木质素及几丁质合成或降解等方面显示出了高度的协同进化。本文系统综述了植菌昆虫及其共生真菌的系统进化、核进化及基因组进化进展,并探讨这种协同进化机制的生物学意义。 相似文献