首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Background aimsThe transmigratory capacity of bone marrow (BM) mesenchymal stromal cells (MSC) through the endothelial cell barrier into various tissues and their differentiation potential makes them ideal candidates for cell therapy. Nevertheless, the mechanisms and agents promoting their migration are not fully understood. We evaluated the effects of several inflammatory cytokines on the migration of BM MSC and matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) production.MethodsThe migratory potential of BM MSC was evaluated using a Boyden chamber coated with Matrigel® in the presence and absence of stromal cell-derived (SDF)-1α, platelet-derived growth factor (PDGF)bb, insulin-like growth factor (IGF)-I and interleukin (IL)-6. The ability of inflammatory cytokines to induce MSC migration was tested in presence of their respective Ab or blocking peptide. We used immunofluorescence to check the expression of cytokine receptors, and MMP/TIMP production was analyzed at the protein (human cytokine array, enzyme-linked immunosorbent assay (ELISA), gelatine zymography and Western blot) and mRNA quantitative real-time polymerase chain reaction (qRT-PCR) levels.ResultsWe have demonstrated that inflammatory cytokines promote the migratory capacity of BM MSC according to the expression of their respective receptors. Higher migration through Matrigel was observed in response to IL-6 and PDGFbb. qRT-PCR and cytokine array revealed that migration was the result of the variable level of MMP/TIMP in response to inflammatory stimuli.ConclusionsOur observations suggest that chemokines and cytokines involved in the regulation of the immunity or inflammatory process promote the migration of MSC into BM or damaged tissues. One of the mechanisms used by MSC to promote their migration though the extracellular matrix is modulation of the production of MMP-1, MMP-2, MMP-13, TIMP-1 and TIMP-2.  相似文献   

2.
Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.  相似文献   

3.
Bone marrow contains cell type termed mesenchymal stem cells (MSC), first recognized in bone marrow by a German pathologist, Julius Cohnheim in 1867. That MSCs have potential to differentiate in vitro in to the various cells lines as osteoblast, chondroblast, myoblast and adipoblast cells lines. Aims of our study were to show in vivo capacity of bone marrow MSC to produce bone in surgically created non critical size mandible defects New Zeland Rabbits, and then in second part of study to isolate in vitro MSC from bone marrow, as potential cell transplantation model in bone regeneration. In vivo study showed new bone detected on 3D CT reconstruction day 30, on all 3 animals non critical size defects, treated with bone marrow MSC exposed to the human Bone Morphogenetic Protein 7 (rhBMP-7). Average values of bone mineral density (BMD), was 530 mg/cm3, on MSC treated animals, and 553 mg/cm3 on control group of 3 animals where non critical size defects were treated with iliac crest autologue bone graft. Activity of the Alkaline Phosphatase enzyme were measurement on 0.5, 14, 21, 30 day and increased activity were detected day 14 on animals treated with bone marrow MSCs compared with day 30 on iliac crest treated animals. That results indicates strong osteoinduction activity of the experimental bone marrow MSCs models exposed to the rhBMP-7 factor Comparing ALP activity, that model showed superiorly results than control group. That result initiates us in opinion that MSCs alone should be alternative for the autolologue bone transplantation and in vitro study we isolated singles MSCs from the bone marrow of rat's tibia and femora and cultivated according to the method of Maniatopoulos et all. The small initial colonies of fibroblast like cells were photo-documented after 2 days of primary culture. Such isolated and cultivated MSCs in future studies will be exposed to the growth factors to differentiate in osteoblast and indicate their clinically potential as alternative for conventional medicine and autologue bone transplantation. That new horizons have potential to minimize surgery and patient donor morbidity, with more success treatment in bone regenerative and metabolism diseases.  相似文献   

4.
The data concerning the influence of mesenchymal stromal cells (MSCs) on immunoglobulin (Ig) production are contradictory. Most results were obtained using MSC derived from bone marrow. The properties of MSCs obtained from other tissues are not well studied. In the present work, MSC cultures have been established from umbilical cord, adipose tissue, and bone marrow of healthy donors, as well as from bone marrow of patients with autoimmune diseases. MSCs from all these sources exhibited similar surface markers. We assayed the influence of MSC cocultivation at exponential or stationary growth phases on IgM content in Namalva and IgE content in U266 cells. Bone marrow MSCs from healthy donors did not affect IgM and IgE production. Proliferating MSCs from patients with Crohn’s disease and multiple sclerosis stimulated Ig production. Exponentially growing MSCs derived from umbilical cord and adipose tissue also stimulated Ig synthesis. MSCs at stationary cultures enhanced IgM production in Namalva (cells) and suppressed IgE synthesis in U266 cells. Thus, MSCs from various tissues with common phenotypes differed in their capacity to modulate Ig production by B-lymphoid cells. The effect of MSCs depends on their growth stage and may be different for lymphoblastoid and myeloma cells.  相似文献   

5.
Mesenchymal stem cells (MSCs) are non-hematopoietic stem cells with the capacity to differentiate into tissues of both mesenchymal and non-mesenchymal origin. MSCs can differentiate into osteoblastic, chondrogenic, and adipogenic lineages, although recent studies have demonstrated that MSCs are also able to differentiate into other lineages, including neuronal and cardiomyogenic lineages. Since their original isolation from the bone marrow, MSCs have been successfully harvested from many other tissues. Their ease of isolation and ex vivo expansion combined with their immunoprivileged nature has made these cells popular candidates for stem cell therapies. These cells have the potential to alter disease pathophysiology through many modalities including cytokine secretion, capacity to differentiate along various lineages, immune modulation and direct cell-cell interaction with diseased tissue. Here we first review basic features of MSC biology including MSC characteristics in culture, homing mechanisms, differentiation capabilities and immune modulation. We then highlight some in vivo and clinical evidence supporting the therapeutic roles of MSCs and their uses in orthopedic, autoimmune, and ischemic disorders.  相似文献   

6.
目的:研究种间胚胎植入期母体外周血、外周免疫器官(淋巴结、脾脏)、中枢免疫器官(胸腺、骨髓)中总T细胞的百分比变化,并探讨这种变化对种间胚胎植入的影响.方法:利用荧光标记的单克隆抗体染色结合流式细胞术,检测种间、同种胚胎移植以及同期假孕母体外周血、淋巴结、脾脏、胸腺、骨髓中T淋巴细胞的百分率.结果:种间胚胎植入时其外周血T细胞计数极显著低于同种和同期假孕小鼠(P<0.01),而淋巴结、胸腺、骨髓中的T细胞计数则极显著高于同期假孕小鼠(P<0.01).脾脏中同种胚胎植入母体则极显著高于种间和同期假孕小鼠(P<0.01),两后者之间无显著性差异(P>0.05).结论:种间妊娠时早在植入期开始,母体全身免疫系统就开始发生不利于种间妊娠的反应.  相似文献   

7.
Mesenchymal stem cells (MSCs) are a heterogeneous population of non-hematopoietic precursor cells predominantly found in the bone marrow. They have been recently reported to home towards the hypoxic tumor microenvironment in vivo. Interleukin-6 is a multifunctional cytokine normally involved in the regulation of the immune and inflammatory response. In addition to its normal function, IL-6 signaling has been implicated in tumorigenesis. Solid tumors develop hypoxia as a result of inadequate O2 supply. Interestingly, tumor types with increased levels of hypoxia are known to have increased resistance to chemotherapy as well as increased metastatic potential. Here, we present evidence that under hypoxic conditions (1.5% O2) breast cancer cells secrete high levels of IL-6, which serve to activate and attract MSCs. We now report that secreted IL-6 acts in a paracrine fashion on MSCs stimulating the activation of both Stat3 and MAPK signaling pathways to enhance migratory potential and cell survival. Inhibition of IL-6 signaling utilizing neutralizing antibodies leads to attenuation of MSC migration. Specifically, increased migration is dependent on IL-6 signaling through the IL-6 receptor. Collectively, our data demonstrate that hypoxic tumor cells specifically recruit MSCs, which through activation of signaling and survival pathways facilitate tumor progression.  相似文献   

8.
Mesenchymal stromal cells(MSCs) are currently being investigated for use in a wide variety of clinical applications. For most of these applications, systemic delivery of the cells is preferred. However, this requires the homing and migration of MSCs to a target tissue. Although MSC hominghas been described, this process does not appear to be highly efficacious because only a few cells reach the target tissue and remain there after systemic administration. This has been ascribed to low expression levels of homing molecules, the loss of expression of such molecules during expansion, and the heterogeneity of MSCs in cultures and MSC culture protocols. To overcome these limitations, different methods to improve the homing capacity of MSCs have been examined. Here, we review the current understanding of MSC homing, with a particular focus on homing to bone marrow. In addition, we summarize the strategies that have been developed to improve this process. A better understanding of MSC biology, MSC migration and homing mechanisms will allow us to prepare MSCs with optimal homing capacities. The efficacy of therapeutic applications is dependent on efficient delivery of the cells and can, therefore, only benefit from better insights into the homing mechanisms.  相似文献   

9.
Mesenchymal stem cells (MSCs) are non-haematopoeitic, stromal cells that are capable of differentiating into mesenchymal tissues such as bone and cartilage. They are rare in bone marrow, but have the ability to expand many-fold in culture, and retain their growth and multi-lineage potential. The properties of MSCs make them ideal candidates for tissue engineering. It has been shown that MSCs, when transplanted systemically, can home to sites of injury, suggesting that MSCs possess migratory capacity; however, mechanisms underlying migration of these cells remain unclear. Chemokine receptors and their ligands play an important role in tissue-specific homing of leukocytes. Here we define the cell surface chemokine receptor repertoire of murine MSCs from bone marrow, with a view to determining their migratory activity. We also define the chemokine receptor repertoire of human MSCs from bone marrow as a comparison. We isolated murine MSCs from the long bones of Balb/c mice by density gradient centrifugation and adherent cell culture. Human MSCs were isolated from the bone marrow of patients undergoing hip replacement by density gradient centrifugation and adherent cell culture. The expression of chemokine receptors on the surface of MSCs was studied using flow cytometry. Primary murine MSCs expressed CCR6, CCR9, CXCR3 and CXCR6 on a large proportion of cells (73+/-11%, 44+/-25%, 55+/-18% and 96+/-2% respectively). Chemotaxis assays were used to verify functionality of these chemokine receptors. We have also demonstrated expression of these receptors on human MSCs, revealing some similarity in chemokine receptor expression between the two species. Consequently, these murine MSCs would be a useful model to further study the role of chemokine receptors in in vivo models of disease and injury, for example in recruitment of MSCs to inflamed tissues for repair or immunosuppression.  相似文献   

10.
Human mesenchymal stem cells (hMSCs) are multipotent cells that are found in the bone marrow. Inflammation and tissue damage mobilize MSCs and induce their migration towards the damaged site through mechanisms that are not well defined. Toll-like receptor-9 (TLR9) is a cellular receptor for microbial and vertebrate DNA. Stimulation of TLR9 induces inflammatory and invasive responses in TLR9-expressing cells. We studied here the expression of TLR9 in human MSCs and the effects of synthetic TLR9-agonists on their invasion. Constitutive expression of TLR9 was detected in human MSCs but the expression was suppressed when MSCs were induced to differentiate into osteoblasts. Using standard invasion assays and a novel organotypic culture model based on human myoma tissue, we discovered that stimulation with the TLR9 agonistic, CpG oligonucleotides increased the invasion capacity of undifferentiated MSCs. Simultaneously, an increase in MMP-13 synthesis and activity was detected in the CpG-activated MSCs. Addition of anti-MMP-13 antibody significantly diminished the CpG-induced hMSC invasion. We conclude that treatment with TLR9-ligands increases MSC invasiveness, and this process is at least partially MMP-13-mediated.  相似文献   

11.

Background and Aims

Several reports described the migration of human mesenchymal stromal cells (MSCs) towards tumor-released factors. Autocrine motility factor (AMF) is produced by several tumors including hepatocellular carcinoma (HCC). The aim of this study was to analyze AMF involvement on MSC migration towards human HCC.

Methods

Production of AMF by HCC tumors was evaluated by western analysis. The effects of AMF on MSCs from different sources (bone marrow, adipose tissue and perivascular cells from umbilical cord) were analyzed using in vitro migration assay; metalloproteinase 2 (MMP2) activity and expression of critical genes were studied by zymography and qRT-PCR, respectively. To assess AMF involvement on the in vivo MSC migration, noninvasive fluorescence imaging was performed. To test the effect of AMF-primed MSCs on tumor development, in vitro proliferation and spheroids growth and in vivo tumor volume were evaluated.

Results

AMF produced by HCC was found to induce migration of different MSCs in vitro and to enhance their MMP2 activity. Stimulation of MSCs with recombinant AMF (rAMF) also induced the in vitro adhesion to endothelial cells in coincidence with changes in the expression levels of MMP3, AMF receptor, caveolin-1, and -2 and GDI-2. Importantly, stimulation of MSCs with rAMF increased the in vivo migration of MSCs towards experimental HCC tumors. AMF-priming of MSCs did not induce a pro-tumorigenic effect on HCC cells neither in vivo nor in vitro.

Conclusion

AMF plays a role in MSC recruitment towards HCC. However, its ability to increase MSC migration to HCC for therapeutic purposes merits further evaluation.  相似文献   

12.
Mesenchymal stem cells (MSCs) of nonembryortic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the fate of stem ceils, and MSCs derived from different origins exhibited different expression profiles individually to a certain extent. In this study, ChiP-on-chip was used to generate genome-wide historic H3-Lys9 acetylation and dimethylation profiles at gene promoters in human bone marrow MSCs. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways,cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. These data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal and multi-potency.  相似文献   

13.
Kim J  Shin JM  Jeon YJ  Chung HM  Chae JI 《PloS one》2012,7(5):e32350
Mesenchymal stem cells (MSCs) are one of the most attractive therapeutic resources in clinical application owing to their multipotent capability, which means that cells can differentiate into various mesenchymal tissues such as bone, cartilage, fat, tendon, muscle and marrow stroma. Depending on the cellular source, MSCs exhibit different application potentials according to their different in vivo functions, despite similar phenotypic and cytological characteristics. To understand the different molecular conditions that govern the different application or differentiation potential of each MSC according to cellular source, we generated a proteome reference map of MSCs obtained from bone marrow (BM), umbilical cord blood (CB) and peripheral blood (PB). We identified approximately 30 differentially regulated (or expressed) proteins. Most up-regulated proteins show a cytoskeletal and antioxidant or detoxification role according to their functional involvement. Additionally, these proteins are involved in the increase of cell viability, engraftment and migration in pathological conditions in vivo. In summary, we examined differentially expressed key regulatory factors of MSCs obtained from several cellular sources, demonstrated their differentially expressed proteome profiles and discussed their functional role in specific pathological conditions. With respect to the field of cell therapy, it may be particularly crucial to determine the most suitable cell sources according to target disease.  相似文献   

14.
Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response to SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies.  相似文献   

15.
Mesenchymal Stromal Cells (MSCs) represent promising tools for cellular therapy owing to their multipotentiality and ability to localize to injured, inflamed sites and tumor. Various approaches to manipulate expression of MSC surface markers, including adhesion molecules and chemokine receptors, have been explored to enhance homing of MSCs. Recently, Neural Cell Adhesion Molecule (NCAM) has been found to be expressed on MSCs yet its function remains largely elusive. Herein, we show that bone marrow-derived MSCs from NCAM deficient mice exhibit defective migratory ability and significantly impaired adipogenic and osteogenic differentiation potential. We further explore the mechanism governing NCAM mediated migration of MSCs by showing the interplay between NCAM and Fibroblast Growth Factor Receptor (FGFR) induces activation of MAPK/ERK signaling, thereby the migration of MSCs. In addition, re-expression of NCAM180, but not NCAM140, could restore the defective MAPK/ERK signaling thereby the migration of NCAM deficient MSCs. Finally, we demonstrate that NCAM180 expression level could be manipulated by pro-inflammatory cytokine Tumor Necrosis Factor (TNF)-α treatment. Overall, our data reveal the vital function of NCAM in MSCs migration and differentiation thus raising the possibility of manipulating NCAM expression to enhance homing and therapeutic potential of MSCs in cellular therapy.  相似文献   

16.
《Cytotherapy》2023,25(9):956-966
Background aimsMesenchymal stromal cells (MSCs) are used to treat immune-related disorders, including graft-versus-host disease. Upon intravenous infusion, MSCs trigger the instant blood-mediated inflammatory response, resulting in activation of both complement and coagulation cascades, and are rapidly cleared from circulation. Despite no/minimal engraftment, long-term immunoregulatory properties are evident. The aim of this study was to establish the effects of blood exposure on MSC viability and immunomodulatory functions.MethodsHuman, bone marrow derived MSCs were exposed to human plasma +/– heat inactivation or whole blood. MSC number, viability and cellular damage was assessed using the JC-1 mitochondrial depolarization assay and annexin V staining. C3c binding and expression of the inhibitory receptors CD46, CD55 and CD59 and complement receptors C3aR and C5aR were evaluated by flow cytometry. MSCs pre-exposed to plasma were cultured with peripheral blood mononuclear cells (PBMCs) and monocyte subsets characterized by flow cytometry. The PBMC and MSC secretome was assessed using enzyme-linked immunosorbent assays against tumor necrosis factor alpha, interleukin (IL)-6 and IL-10. Monocyte recruitment towards the MSC secretome was evaluated using Boyden chambers and screened for chemotactic factors including monocyte chemoattractant protein (MCP)-1. MSC effects on the peripheral immune repertoire was also evaluated in whole blood by flow cytometry.ResultsPlasma induced rapid lysis of 57% of MSCs, which reduced to 1% lysis with heat inactivation plasma. Of those cells that were not lysed, C3c could be seen bound to the surface of the cells, with a significant swelling of the MSCs and induction of cell death. The MSC secretome reduced monocyte recruitment, in part due to a reduction in MCP-1, and downregulated PBMC tumor necrosis factor alpha secretion while increasing IL-6 levels in the co-culture supernatant. A significant decrease in CD14+ monocytes was evident after MSC addition to whole blood alongside a significant increase in IL-6 levels, with those remaining monocytes demonstrating an increase in classical and decrease in non-classical subsets. This was accompanied by a significant increase in both mononuclear and polymorphonuclear myeloid-derived suppressor cells.ConclusionsThis study demonstrates that a significant number of MSCs are rapidly lysed upon contact with blood, with those surviving demonstrating a shift in their phenotype, including a reduction in the secretion of monocyte recruitment factors and an enhanced ability to skew the phenotype of monocytes. Shifts in the innate immune repertoire, towards an immunosuppressive profile, were also evident within whole blood after MSC addition. These findings suggest that exposure to blood components can promote peripheral immunomodulation via multiple mechanisms that persists within the system long after the infused MSCs have been cleared.  相似文献   

17.
Mesenchymal progenitor cells derived from cord blood (unrestringated somatic stem cells, USSC) and bone marrow (mesenchymal stem cells, MSC) are able to differentiate under defined culture conditions into at least bone, cartilage, adipose and muscle cells in vitro. The culture media and other in vitro conditions influence the osteogenic differentiation potency of both cell types. To increase and expand the number of osteoblasts in vitro an optimization of culture conditions is required. The aim of this study was to evaluate different culture media toward their osteogenic promoting capacity on human USSCs and MSCs in vitro. Immunohistochemical stainings against osteonectin (ON), osteopontin (OP) served as markers for an osteoblastic differentiation. Cellular morphology was analysed by light microscopy technique. We found significant differences between bone marrow and cord blood derived stem cells towards an osteoblastic differentiation. Considering the number of osteoblasts MesenCult seems to have advantages in bone marrow progenitor cells, whereas low glucose DMEM and HAMS-F12 promoted an osteoblastic differentiation in cord blood derived cells more than other tested media.  相似文献   

18.
Mesenchymal stem cells (MSCs) can differentiate not only into mesenchymal lineage cells but also into various other cell lineages. As MSCs can easily be isolated from bone marrow, they can be used in various tissue engineering strategies. In this study, we assessed whether MSCs can differentiate into multiple skin cell types including keratinocytes and contribute to wound repair. First, we found keratin 14-positive cells, presumed to be keratinocytes that transdifferentiated from MSCs in vitro. Next, we assessed whether MSCs can transdifferentiate into multiple skin cell types in vivo. At sites of mouse wounds that had been i.v. injected with MSCs derived from GFP transgenic mice, we detected GFP-positive cells associated with specific markers for keratinocytes, endothelial cells, and pericytes. Because MSCs are predominantly located in bone marrow, we investigated the main MSC recruitment mechanism. MSCs expressed several chemokine receptors; especially CCR7, which is a receptor of SLC/CCL21, that enhanced MSC migration. Finally, MSC-injected mice underwent rapid wound repaired. Furthermore, intradermal injection of SLC/CCL21 increased the migration of MSCs, which resulted in an even greater acceleration of wound repair. Taken together, we have demonstrated that MSCs contribute to wound repair via processes involving MSCs differentiation various cell components of the skin.  相似文献   

19.
转录因子Snail是调控肿瘤细胞迁徙转移的重要调控分子,基于干细胞与肿瘤细胞分子机制的重叠性,提出通过借鉴肿瘤细胞迁移的相关机制以用于提高骨髓基质干细胞向缺氧受损组织迁移能力的假设和研究思路,探讨Snail基因在人骨髓基质干细胞(MSCs)中的转染和表达情况,及转染后对基质干细胞促迁移作用、骨架结构的稳定作用及对无血清培养诱导细胞凋亡的保护作用。密度梯度离心法及细胞体外培养分离纯化人骨髓MSCs,脂质体法将重组表达载体pCAGGSneo-Snail-HA转染MSCs,G418筛选稳定表达,流式细胞仪检测MSCs表面抗原,采用免疫荧光染色技术检测转染后MSCs报告基因HA及目的基因Snail表达,Transwell细胞迁移实验和Western-blot评估细胞迁移能力和检测有关细胞信号转导通路分子水平变化,荧光染色分析细胞骨架,Sub-G1凋亡峰流式细胞仪检测细胞凋亡率并评估细胞抗凋亡能力。经流式细胞仪选择检测分离纯化扩增MSCs表面分子特点为CD34(-)/CD29( ),Snail及报告基因在转染后MSCs呈阳性表达,Snail质粒转染MSCs(MSCs-Sna)较对照空质粒转染MSCs(MSCs-neo)细胞迁移率增加(P<0.05),PI-3K信号通路特异性抑制剂Wortmannin能显著抑制此迁移率的增加,无血清培养72h后,MSCs-Sna凋亡率较MSCs-neo低(P<0.05)。经Snail基因转染,MSCs迁移能力、骨架结构的稳定性及在无血清培养环境中抗凋亡能力增加。  相似文献   

20.
Umbilical cord (UC) and placenta (P) have been suggested as alternatives to bone marrow (BM) as sources of mesenchymal stem cells (MSC) for cell therapy, with both UC‐ and P‐MSC possess immunophenotypic and functional characteristics similar to BM‐MSC. However, their migration capacity, which is indispensable during tissue regeneration process, is unclear. Under defined conditions, the migration capacity of BM‐ and P‐MSC was found 5.9‐ and 3.2‐folds higher than that of UC‐MSC, respectively. By the use of 2‐DE and combined MS and MS/MS analysis, six differentially expressed proteins were identified among these MSC samples, with five of them known to be involved in cell migration as migration enhancing or inhibiting proteins. Consistent with their migration capacity, the levels of migration enhancing proteins including cathepsin B, cathepsin D and prohibitin,were significantly lower in UC‐MSC when compared with those in BM‐ and P‐MSC. For the migration inhibiting proteins such as plasminogen activator inhibitor‐1 (PAI‐1) and manganese superoxide dismutase, higher expression was found in the UC‐MSC. We also showed that the overexpression of the PAI‐1 impaired the migration capacity of BM‐ and P‐MSC while silencing of PAI‐1 enhanced the migration capacity of UC‐MSC. Our study indicates that PAI‐1 and other migration‐related proteins are pivotal in governing the migration capacity of MSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号