共查询到20条相似文献,搜索用时 0 毫秒
1.
Intercalation is the process whereby cells located at the boundary of a wound interact to stimulate proliferation and the restoration of the structures between the boundaries that were lost during wounding. Thus, intercalation is widely considered to be the mechanism of regeneration. When a salamander limb is amputated, the entire cascade of regeneration events is activated, and the missing limb segments and their boundaries (joints) as well as the structures within each segment are regenerated. Therefore, in an amputated limb it is not possible to distinguish between intersegmental regeneration (formation of new segments/joints) and intrasegmental regeneration (formation of structures within a given segment), and it is not possible to study the differential regulation of these two processes. We have used two models for regeneration that allow us to study these two processes independently, and report that inter- and intrasegmental regeneration are different processes regulated by different signaling pathways. New limb segments/joints can be regenerated from cells that dedifferentiate to form blastema cells in response to signaling that is mediated in part by fibroblast growth factor. 相似文献
2.
Monaghan JR Walker JA Page RB Putta S Beachy CK Voss SR 《Journal of neurochemistry》2007,101(1):27-40
In contrast to mammals, salamanders have a remarkable ability to regenerate their spinal cord and recover full movement and function after tail amputation. To identify genes that may be associated with this greater regenerative ability, we designed an oligonucleotide microarray and profiled early gene expression during natural spinal cord regeneration in Ambystoma mexicanum. We sampled tissue at five early time points after tail amputation and identified genes that registered significant changes in mRNA abundance during the first 7 days of regeneration. A list of 1036 statistically significant genes was identified. Additional statistical and fold change criteria were applied to identify a smaller list of 360 genes that were used to describe predominant expression patterns and gene functions. Our results show that a diverse injury response is activated in concert with extracellular matrix remodeling mechanisms during the early acute phase of natural spinal cord regeneration. We also report gene expression similarities and differences between our study and studies that have profiled gene expression after spinal cord injury in rat. Our study illustrates the utility of a salamander model for identifying genes and gene functions that may enhance regenerative ability in mammals. 相似文献
3.
4.
Camilo Riquelme-Guzmn Timon Beck Sandra Edwards-Jorquera Raimund Schlüßler Paul Müller Jochen Guck Stephanie Mllmert Tatiana Sandoval-Guzmn 《Open biology》2022,12(6)
In processes such as development and regeneration, where large cellular and tissue rearrangements occur, cell fate and behaviour are strongly influenced by tissue mechanics. While most well-established tools probing mechanical properties require an invasive sample preparation, confocal Brillouin microscopy captures mechanical parameters optically with high resolution in a contact-free and label-free fashion. In this work, we took advantage of this tool and the transparency of the highly regenerative axolotl to probe its mechanical properties in vivo for the first time. We mapped the Brillouin frequency shift with high resolution in developing limbs and regenerating digits, the most studied structures in the axolotl. We detected a gradual increase in the cartilage Brillouin frequency shift, suggesting decreasing tissue compressibility during both development and regeneration. Moreover, we were able to correlate such an increase with the regeneration stage, which was undetected with fluorescence microscopy imaging. The present work evidences the potential of Brillouin microscopy to unravel the mechanical changes occurring in vivo in axolotls, setting the basis to apply this technique in the growing field of epimorphic regeneration. 相似文献
5.
Elizabeth R. Zielins Ryan C. Ransom Tripp E. Leavitt Michael T. Longaker 《Organogenesis》2016,12(1):16-27
Limb regeneration is a complex yet fascinating process observed to some extent in many animal species, though seen in its entirety in urodele amphibians. Accomplished by formation of a morphologically uniform intermediate, the blastema, scientists have long attempted to define the cellular constituents that enable regrowth of a functional appendage. Today, we know that the blastema consists of a variety of multipotent progenitor cells originating from a variety of tissues, and which contribute to limb tissue regeneration in a lineage-restricted manner. By continuing to dissect the role of stem cells in limb regeneration, we can hope to one day modulate the human response to limb amputation and facilitate regrowth of a working replacement. 相似文献
6.
The tail of the Xenopus tadpole contains major axial structures, including a spinal cord, notochord and myotomes, and regenerates within 2 weeks following amputation. The tail regeneration in Xenopus can provide insights into the molecular basis of the regeneration mechanism. The regenerated tail has some differences from the normal tail, including an immature spinal cord and incomplete segmentation of the muscle masses. Lineage analyses have suggested that the tail tissues are reconstructed with lineage-restricted stem cells derived from their own tissues in clear contrast to urodele regeneration, in which multipotent blastema cells derived from differentiated cells play a major role. Comprehensive gene expression analyses resulted in the identification of a panel of genes involved in sequential steps of the regeneration. Manipulation of genes' activities suggested that the tail regeneration is regulated through several major signaling pathways. 相似文献
7.
The Mexican axolotl (Ambystoma mexicanum) provides a well-defined set of color genes which are useful for various types of analyses. These include the a (albino), m (melanoid), ax (axanthic), and d (white) genes. In addition, various combinations of these genes and a number of as yet undescribed mutants also exist. Three of these mutants (a, ax, and m) have defects associated with specific neural-crest-derived pigment cell types. The fourth mutant (d) appears to provide an unsuitable environment for the migration and maintenance of pigment cells. In one case (m), detailed information concerning the specific nature of the genetic defect is available. The goal of this article is to demonstrate ways in which the existing information on the axolotl color genes can best be utilized in terms of understanding not only the mutant phenotypes, but basic concepts in the cell and developmental biology of pigmentation as well. Thus, an attempt has been made to sort through the genetic and biochemical data relevant to these mutants in order to stimulate renewed interest in a more detailed pursuit of such studies. 相似文献
8.
Panagiotis A. Tsonis Kathleen Doane Katia Del Rio-Tsonis 《Development, growth & differentiation》1997,39(1):9-14
Limb regeneration in urodeles is achieved through the dedifferentiation of tissues at the amputation plane and through the production of the blastema. This tissue breakdown is possible by extensive alterations in molecules of the extracellular matrix. In this respect we describe the regulation of several integrins during such events. It was found that α1 and β1 integrins were down-regulated as blastema formation proceeded. In contrast, the expression of α3, α6 and αv integrins were upregulated in the blastema. These data are consistent with the roles of integrins in developmental phenomena and are discussed in light of the mechanisms of dedifferentiation. 相似文献
9.
Ghosh S Roy S Séguin C Bryant SV Gardiner DM 《Development, growth & differentiation》2008,50(4):289-297
Urodele amphibians are unique adult vertebrates because they are able to regenerate body parts after amputation. Studies of urodele limb regeneration, the key model system for vertebrate regeneration, have led to an understanding of the origin of blastema cells and the importance of positional interactions between blastema cells in the control of growth and pattern formation. Progress is now being made in the identification of the signaling pathways that regulate dedifferentiation, blastema morphogenesis, growth and pattern formation. Members of the Wnt family of secreted proteins are expressed in developing and regenerating limbs, and have the potential to control growth, pattern formation and differentiation. We have studied the expression of two non-canonical Wnt genes, Wnt-5a and Wnt-5b . We report that they are expressed in equivalent patterns during limb development and limb regeneration in the axolotl ( Ambystoma mexicanum ), and during limb development in other tetrapods, implying conservation of function. Our analysis of the effects of ectopic Wnt-5a expression is consistent with the hypothesis that canonical Wnt signaling functions during the early stages of regeneration to control the dedifferentiation of stump cells giving rise to the regeneration-competent cells of the blastema. 相似文献
10.
11.
Donald R. Ferris Akira Satoh Berhan Mandefro Gillian M. Cummings David M. Gardiner Elizabeth L. Rugg 《Development, growth & differentiation》2010,52(8):715-724
Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate structurally complete and fully functional limbs. Regeneration is a stepwise process that requires interactions between keratinocytes, nerves and fibroblasts. The formation of a wound epithelium covering the amputation site is an early and necessary event in the process but the molecular mechanisms that underlie the role of the wound epithelium in regeneration remain unclear. We have developed an ex vivo model that recapitulates many features of in vivo wound healing. The model comprises a circular explant of axolotl (Ambystoma mexicanum) limb skin with a central circular, full thickness wound. Re‐epithelialization of the wound area is rapid (typically <11 h) and is dependent on metalloproteinase activity. The ex vivo wound epithelium is viable, responds to neuronal signals and is able to participate in ectopic blastema formation and limb regeneration. This ex vivo model provides a reproducible and tractable system in which to study the cellular and molecular events that underlie wound healing and regeneration. 相似文献
12.
Andrei Kochegarov Ashley Moses William Lian Jessica Meyer Michael C Hanna Larry F Lemanski 《Journal of biomedical science》2013,20(1):20
Background
A recessive mutation “c” in the Mexican axolotl, Ambystoma mexicanum, results in the failure of normal heart development. In homozygous recessive embryos, the hearts do not have organized myofibrils and fail to beat. In our previous studies, we identified a noncoding Myofibril-Inducing RNA (MIR) from axolotls which promotes myofibril formation and rescues heart development.Results
We randomly cloned RNAs from fetal human heart. RNA from clone #291 promoted myofibril formation and induced heart development of mutant axolotls in organ culture. This RNA induced expression of cardiac markers in mutant hearts: tropomyosin, troponin and α-syntrophin. This cloned RNA matches in partial sequence alignment to human microRNA-499a and b, although it differs in length. We have concluded that this cloned RNA is unique in its length, but is still related to the microRNA-499 family. We have named this unique RNA, microRNA-499c. Thus, we will refer to this RNA derived from clone #291 as microRNA-499c throughout the rest of the paper.Conclusions
This new form, microRNA-499c, plays an important role in cardiac development. 相似文献13.
Ryo Nakamura Kazuko Koshiba‐Takeuchi Megumi Tsuchiya Mizuyo Kojima Asuka Miyazawa Kohei Ito Hidesato Ogawa Jun K. Takeuchi 《Development, growth & differentiation》2016,58(4):367-382
Some organisms, such as zebrafish, urodele amphibians, and newborn mice, have a capacity for heart regeneration following injury. However, adult mammals fail to regenerate their hearts. To know why newborn mice can regenerate their hearts, we focused on epigenetic factors, which are involved in cell differentiation in many tissues. Baf60c (BRG1/BRM‐associated factor 60c), a component of ATP‐dependent chromatin‐remodeling complexes, has an essential role for cardiomyocyte differentiation at the early heart development. To address the function of Baf60c in postnatal heart homeostasis and regeneration, we examined the detailed expression/localization patterns of Baf60c in both mice and axolotls. In the mouse heart development, Baf60c was highly expressed in the entire heart at the early stages, but gradually downregulated at the postnatal stages. During heart regeneration in neonatal mice and axolotls, Baf60c expression was strongly upregulated after resection. Interestingly, the timing of Baf60c upregulation after resection was consistent with the temporal dynamics of cardiomyocyte proliferation. Moreover, knockdown of Baf60c downregulated proliferation of neonatal mouse cardiomyocytes. These data suggested that Baf60c plays an important role in cardiomyocyte proliferation in heart development and regeneration. This is the first study indicating that Baf60c contributes to the heart regeneration in vertebrates. 相似文献
14.
Charles H. Washabaugh Panagiotis A. Tsonis 《Development, growth & differentiation》1995,37(5):497-503
Vitamin D is essential for normal metabolism of phosphorus and calcium, and differentiation of skeletal elements. 1,25 dihydroxyvitamin-D3 , the biologically active metabolite, acts as an induction/proliferation switch in various cell types and promotes chondrogenesis of chick limb bud mesenchymal cells. The function of vitamin D is mediated through its nuclear receptor, the vitamin D receptor (VDR). The proliferative actions of 1,25(OH)2 -D3 on limb bud mesenchymal cells are similar to the ones produced by retinoids, such as all- trans retinoic acid (RA) or 9- cis retinoic acid (9- cis ). The retinoids have been shown to be compounds of extreme importance in the field of limb development and regeneration. In order to examine possible roles of vitamin D metabolites on limb regeneration, the effects of 1,25(OH)2 -D3 , 24,25(OH)2 -D3 and KH1060 (a more potent metabolite) alone or in conjunction with all- trans RA or 9- cis RA on the regenerating axolotl limb. Vitamin D affects limb morphogenesis by generating abnormalities in skeletal elements. Synergism of vitamin D with retinoic acid in affecting pattern formation is suggested by the results. 相似文献
15.
Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species. 相似文献
16.
17.
18.
The primary aim of these experiments was to follow the cells descended from limb skin through the process of limb regeneration to determine what range of differentiations these cells may assume. Triploid hindlimb or forelimb skin was grafted to the denuded thighs of diploid host axolotls that had previously received 3000 R of X irradiation across both hindlimbs and the intervening pelvic area. The host limbs were then amputated through their grafts and permitted to regenerate. Cartilage, perichondrium, joint connective tissue, general connective tissue, dermis, and epidermis were present in all the regenerated limbs, but only 10% of the regenerates contained muscle. Tabulation of nucleolar numbers showed that the majority of cells in each regenerated tissue originated from the grafted skin. A strong correlation was demonstrated between the forelimb or hindlimb origin of the skin grafts and the number of digits regenerated. 相似文献
19.
We screened a partial genomic library enriched for microsatellites and characterized nine loci for the Mexican species of Ambystoma for studies of population structure. We tested marker variability in two metamorphic (A. granulosum, A. altamirani) and two paedomorphic (A. andersoni, A. mexicanum) species of the A. tigrinum complex. Our microsatellites were developed from pooled genomic DNA from three species, and may work on all species in the A. tigrinum complex in Mexico. These markers will be important for studies of conservation genetics in this radiation. 相似文献
20.
The segmental series of somites in the vertebrate embryo gives rise to the axial skeleton. In amniote models, single vertebrae are derived from the sclerotome of two adjacent somites. This process, known as resegmentation, is well‐studied using the quail–chick chimeric system, but the presumed generality of resegmentation across vertebrates remains poorly evaluated. Resegmentation has been questioned in anamniotes, given that the sclerotome is much smaller and lacks obvious differentiation between cranial and caudal portions. Here, we provide the first experimental evidence that resegmentation does occur in a species of amphibian. Fate mapping of individual somites in the Mexican axolotl (Ambystoma mexicanum) revealed that individual vertebrae receive cells from two adjacent somites as in the chicken. These findings suggest that large size and segmentation of the sclerotome into distinct cranial and caudal portions are not requirements for resegmentation. Our results, in addition to those for zebrafish, indicate that resegmentation is a general process in building the vertebral column in vertebrates, although it may be achieved in different ways in different groups. J. Morphol. 275:141–152, 2014. © 2013 Wiley Periodicals, Inc. 相似文献