首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
To study the effects of microRNA‐98 (miR‐98) on human bone mesenchymal stromal cells (hBMSCs). The patients undergoing hip arthroplasty were selected by inclusion/exclusion criteria for this study. The extracted hBMSCs were detected of osteogenic differentiation by alizarin red S staining, and of cell phenotype by flow cytometry. Bioinformatics, dual luciferase report, western blotting, RT‐PCR and immunoblotting were used in our study. The hBMSCs were divided into miR‐98 mimics, miR‐98 negative control (NC), miR‐98 inhibitors, Mock and miR‐98 inhibitors + siBMP2 groups. Human bone mesenchymal stromal cells were extracted and purified in vitro and had specific cytological morphology, surface markers and abilities of self‐renewal and differentiation. Compared with the NC group and Mock group, the miR‐98 mimics group showed increased miR‐98 level while the miR‐98 inhibitors group decreased miR‐98 level (both P < 0.01). Dual luciferase reporter showed BMP2 was the target gene of miR‐98. The levels of mRNA and protein expression of BMP2, protein expression of RUNX2, alkaline phosphatase activity and osteocalcin content significantly decreased in the miR‐98 mimics group while increased in the miR‐98 inhibitors group and showed no changes in the NC group and Mock group (all P < 0.05). The miR‐98 mimics group showed obviously declined stained red particles and the miR‐98 inhibitors group showed opposite result. After lowering the expression of miR‐98, osteogenic differentiation ability of hBMSCs rose, which was weakened by the transfection with siBMP2. miR‐98 may regulate osteogenic differentiation of hBMSCs by targeting BMP2.  相似文献   

5.
The osteogenesis of bone marrow stromal cells (BMSCs) is of paramount importance for the repair of large‐size bone defects, which may be compromised by the dietary‐accumulated all‐trans retinoic acid (ATRA). We have shown that heterodimeric bone morphogenetic protein 2/7 (BMP2/7) could induce bone regeneration in a significantly higher dose‐efficiency in comparison with homodimeric BMPs. In this study, we evaluated the effects of ATRA and BMP2/7 on the proliferation, differentiation, mineralization and osteogenic genes. ATRA and BMP2/7 exhibited both antagonistic and synergistic effects on the osteogenesis of BMSCs. ATRA significantly inhibited proliferation and expression of osteocalcin but enhanced the activity of alkaline phosphatase of BMSCs. On day 21, 50 ng/mL BMP2/7 could antagonize the inhibitive effects of ATRA and significantly enhance osteogenesis of BMSCs. These findings suggested a promising application potential of heterodimeric BMP2/7 in clinic to promote bone regeneration for the cases with dietary accumulated ATRA.  相似文献   

6.
7.
8.
9.
Bone morphogenetic proteins (BMPs) have been shown to regulate both osteoblasts and osteoclasts. We previously reported that BMP2 could directly enhance RANKL-mediated osteoclast differentiation by increasing the size and number of osteoclasts. Similarly, genetic deletion of the BMP antagonist Twisted gastrulation (TWSG1) in mice, resulted in an enhancement of osteoclast formation, activity and osteopenia. This was accompanied by increased levels of phosphorylated Smad (pSmad) 1/5/8 in Twsg1(-/-) osteoclasts in vitro. The purpose of this study was to develop an adenoviral vector overexpressing Twsg1 as a means of inhibiting osteoclast activity. We demonstrate that overexpressing TWSG1 in primary osteoclasts decreased the size and number of multinuclear TRAP-positive osteoclasts, expression of osteoclast genes, and resorption ability. Overexpression of TWSG1 did not affect osteoclast proliferation or apoptosis. However, overexpression of TWSG1 decreased the levels of pSmad 1/5/8 in osteoclasts. Addition of exogenous BMP2 to osteoclasts overexpressing TWSG1 rescued the size and levels of pSmad 1/5/8 compared to cultures infected with a control virus. Finally, TWSG1 overexpression in osteoclasts isolated from the Twsg1(-/-) mice rescued size of the osteoclasts while further addition of exogenous BMP2 reversed the effect of TWSG1 overexpression and increased the size of the osteoclasts similar to control virus infected cells. Taken together, we demonstrate that overexpressing TWSG1 in osteoclasts via an adenoviral vector results in inhibition of osteoclastogenesis and may provide a potential therapy for inhibiting osteoclast activity in a localized manner.  相似文献   

10.
Cell responses to bone morphogenetic proteins (BMP) depend on the expression and surface localisation of transmembrane receptors BMPR-IA, -IB and -II. The present study shows that all three antigens are readily detected in human bone cells. However, only BMPR-II was found primarily at the plasma membrane, whereas BMPR-IA was expressed equally in the cytoplasm and at the cell surface. Notably, BMPR-IB was mainly intracellular, where it was associated with a number of cytoplasmic structures and possibly the nucleus. Treatment with transforming growth factor β1 (TGF-β1) caused rapid translocation of BMPR-IB to the cell surface, mediated via the p38 mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) pathways. The TGF-β1-induced increase in surface BMPR-IB resulted in significantly elevated BMP-2 binding and Smad1/5/8 phosphorylation, although the receptor was subsequently internalised and the functional response to BMP-2 consequently down-regulated. The results show, for the first time, that BMPR-IB is localised primarily in intracellular compartments in bone cells and that TGF-β1 induces rapid surface translocation from the cytoplasm to the cell surface, resulting in increased sensitivity of the cells to BMP-2.  相似文献   

11.
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
The human gene encoding the mature form of bone morphogenetic protein-2 (hBMP-2), a dimeric disulfide-bonded protein of the cystine knot growth factor family, was expressed in recombinant Escherichia coli using a temperature-inducible expression system. The recombinant protein was produced in the form of cytoplasmic inclusion bodies and the effect of different variables on the renaturation of rhBMP-2 was investigated. In particular, variables such as pH, redox conditions, protein concentration, temperature, the presence of different types of aggregation suppressors, and host cell contaminants were studied with respect to their effect on aggregation during refolding and on the final renaturation yield of rhBMP-2. It is shown that the renaturation yield is particularly sensitive to pH, temperature, protein concentration, and the presence of aggregation suppressors. In contrast, little effect of the redox conditions and the ionic strength on the renaturation yield was observed, as equal yields were obtained in a broad range of reduced to oxidized glutathione ratios and concentrations of NaCl, respectively. The aggregation suppressor 2-(cyclohexylamino)ethanesulfonic acid (CHES) proved to be superior with respect to the final renaturation yield, although, in comparison to the more common arginine, it was less efficient in preventing aggregation of rhBMP-2 during refolding. Detergent washing of inclusion bodies was sufficient, as further purification of rhBMP-2 prior to refolding was without effect on the final renaturation yield. An increase in the concentration of renatured rhBMP-2 was achieved by a pulsed refolding procedure by which up to a total amount of 2.1 mg mL(-1) rhBMP-2 could be transferred in seven pulses into the renaturation buffer with an overall refolding yield of 38%, corresponding to 0.8 mg mL(-1) renatured dimeric rhBMP-2. Furthermore, a simplified purification procedure is presented that also includes freeze-drying for long-term storage of biologically active rhBMP-2. Finally, it is shown that the appearance of rhBMP-2 variants could be avoided by using a host strain overexpressing rare codon tRNAs.  相似文献   

14.
15.
骨形态发生蛋白9(bone morphogenetic protein 9,BMP9)具有很强的诱导间充质干细胞定向成骨分化的能力.但对于其所涉及的相关分子机理了解并不深入.利用BMP9重组腺病毒感染间充质干细胞,Western blot检测ERK1/2激酶的磷酸化,ERK1/2的特异性抑制剂PD98059阻断ERK1/2活性,或以RNA干扰抑制ERK1/2表达,通过体外细胞实验和体内动物实验,初步分析和揭示ERK1/2对于BMP9诱导的间充质干细胞成骨分化的调控作用及其可能机制.结果发现:BMP9可以促进ERK1/2激酶的磷酸化,ERK1/2抑制剂PD98059可增强由BMP9诱导的碱性磷酸酶(alkaline phosphatase,ALP)活性、骨桥蛋白(osteopontin,OPN)表达和钙盐沉积,并促进由BMP9诱导的Runx2基因的表达和转录活性,以及Smad经典途径的活化;而RNA干扰导致ERK1/2基因沉默同样也可进一步促进BMP9诱导的ALP活性和钙盐沉积,并促进BMP9诱导的间充质干细胞在裸鼠皮下异位成骨.因此,BMP9可以促进ERK1/2蛋白激酶的活化,而阻断ERK1/2蛋白激酶可进一步增强BMP9诱导的成骨分化,ERK1/2极可能对于BMP9诱导的间充质干细胞成骨分化起着负向调控作用.  相似文献   

16.
The mechanism by which extracellular molecules control serotonergic cell fate remains elusive. Recently, we showed that noggin, which inactivates bone morphogenetic proteins (BMPs), induces serotonergic differentiation of mouse embryonic (ES) and induced pluripotent stem cells with coordinated gene expression along the serotonergic lineage. Here, we created a rapid assay for serotonergic induction by generating knock‐in ES cells expressing a naturally secreted Gaussia luciferase driven by the enhancer of Pet‐1/Fev, a landmark of serotonergic differentiation. Using these cells, we performed candidate‐based screening and identified BMP type I receptor kinase inhibitors LDN‐193189 and DMH1 as activators of luciferase. LDN‐193189 induced ES cells to express the genes encoding Pet‐1, tryptophan hydroxylase 2, and the serotonin transporter, and increased serotonin release without altering dopamine release. In contrast, TGF‐β receptor inhibitor SB‐431542 selectively inhibited serotonergic differentiation, without changing overall neuronal differentiation. LDN‐193189 inhibited expression of the BMP signaling target gene Id, and induced the TGF‐β target gene Lefty, whereas the opposite effect was observed with SB‐431542. This study thus provides a new tool to investigate serotonergic differentiation and suggests that inhibition of BMP type I receptors and concomitant activation of TGF‐β receptor signaling are implicated in serotonergic differentiation.

  相似文献   


17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号