首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Abstract Human embryonic stem cells (hESC) can differentiate to cardiomyocytes in vitro but with generally poor efficiency. Here, we describe a novel method for the efficient generation of cardiomyocytes from hESC in a scalable suspension culture process. Differentiation in serum-free medium conditioned by the cell line END2 (END2-CM) readily resulted in differentiated cell populations with more than 10% cardiomyocytes without further enrichment. By screening candidate molecules, we have identified SB203580, a specific p38 MAP kinase inhibitor, as a potent promoter of hESC-cardiogenesis. SB203580 at concentrations <10 μM, induced more than 20% of differentiated cells to become cardiomyocytes and increased total cell numbers, so that the overall cardiomyocyte yield was approximately 2.5-fold higher than controls. Gene expression indicated that early mesoderm formation was favored in the presence of SB203580. Accordingly, transient addition of the inhibitor at the onset of differentiation only was sufficient to determine the hESC fate. Patch clamp electrophysiology showed that the distribution of cardiomyocyte phenotypes in the population was unchanged by the compound. Interestingly, cardiomyogenesis was strongly inhibited at SB203580 concentrations ≥15 μM. Thus, modulation of the p38MAP kinase pathway, in combination with factors released by END2 cells, plays an essential role in early lineage determination in hESC and the efficiency of cardiomyogenesis. Our findings contribute to transforming human cardiomyocyte generation from hESC into a robust and scalable process.  相似文献   

2.
The small heat-shock protein HSP25 is expressed in the heart early during development, and although multiple roles for HSP25 have been proposed, its specific role during development and differentiation is not known. P19 is an embryonal carcinoma cell line which can be induced to differentiate in vitro into either cardiomyocytes or neurons. We have used P19 to examine the role of HSP25 in differentiation. We found that HSP25 expression is strongly increased in P19 cardiomyocytes. Antisense HSP25 expression reduced the extent of cardiomyocyte differentiation and resulted in reduced expression of cardiac actin and the intermediate filament desmin and reduced level of cardiac mRNAs. Thus, HSP25 is necessary for differentiation of P19 into cardiomyocytes. In contrast, P19 neurons did not express HSP25 and antisense HSP25 expression had no effect on neuronal differentiation. The phosphorylation of HSP25 by the p38/SAPK2 pathway is known to be important for certain of its functions. Inhibition of this pathway by the specific inhibitor SB203580 prevented cardiomyocyte differentiation of P19 cells. In contrast, PD90589, which inhibits the ERK1/2 pathway, had no effect. Surprisingly, cardiogenesis was only sensitive to SB203580 during the first 2 days of differentiation, before HSP25 expression increases. In contrast to the effect of antisense HSP25, SB203580 reduced the level of expression of the mesodermal marker Brachyury-T during differentiation. Therefore, we propose that the p38 pathway acts on an essential target during early cardiogenesis. Once this initial step is complete, HSP25 is necessary for the functional differentiation of P19 cardiomyocytes, but its phosphorylation by p38/SAPK2 is not required.  相似文献   

3.
Rad is a member of a subclass of small GTP-binding proteins, the RGK family. In the present study we investigated the role of Rad protein in regulating cardiomyocyte viability. DNA fragmentation and TUNEL assays demonstrated that Rad promoted rat neonatal cardiomyocyte apoptosis. Rad silencing fully blocked serum deprivation induced apoptosis, indicating Rad is necessary for trigger cardiomyocyte apoptosis. Rad overexpression caused a dramatic decrease of the anti-apoptotic molecule Bcl-xL, whereas Bcl-xL overexpression protected cardiomyocytes against Rad-induced apoptosis. Rad-triggered apoptosis was mediated by the activation of p38 MAPK. The p38 blocker SB203580 effectively protected cardiomyocytes against Rad-evoked apoptosis.  相似文献   

4.
Cardiomyopathy induced by doxorubicin (DOX) has long been a major impediment of clinical applications of this effective anticancer agent. Previous studies have shown that cardiac-specific metallothionein (MT)-overexpressing transgenic mice are highly resistant to DOX-induced cardiotoxicity. To investigate cellular and molecular mechanisms by which MT participates in this cytoprotection, transgenic mice containing high levels of cardiac MT and non-transgenic controls were treated intraperitoneally with DOX at a single dose of 15 mg/kg and sacrificed on the 4th day after treatment. Myocardial apoptosis was detected by a terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay and confirmed by electron microscopy of immunogold staining of apoptotic nuclei. Dual staining of cardiac alpha-sarcomeric actin using an immunohistochemical method further identified apoptotic myocytes. Apoptosis was significantly inhibited in the transgenic myocardium. The anti-apoptotic effect of MT was further revealed in primary cultures of neonatal mouse cardiomyocytes. Furthermore, DOX activated p38 mitogen-activated protein kinase (MAPK), which was critically involved in the apoptotic process, as demonstrated by inhibition of DOX-induced apoptosis by a p38-specific inhibitor, SB203580. Both DOX-induced p38 MAPK activation and apoptosis were dramatically inhibited in the transgenic cardiomyocytes. The results thus demonstrate that DOX induces apoptosis in cardiomyocytes both in vivo and in vitro and MT suppresses this effect through at least in part inhibition of p38 MAPK activation.  相似文献   

5.
Changes in the cytoskeleton of endothelial cells (ECs) play important roles in mediating neutrophil migration during inflammation. Previous studies demonstrated that neutrophil adherence to TNF-alpha-treated pulmonary microvascular ECs induced cytoskeletal remodeling in ECs that required ICAM-1 ligation and oxidant production and was mimicked by cross-linking ICAM-1. In this study, we examined the role of ICAM-1-induced signaling pathways in mediating actin cytoskeletal remodeling. Cross-linking ICAM-1 induced alterations in ICAM-1 distribution, as well as the filamentous actin rearrangements and stiffening of ECs shown previously. ICAM-1 cross-linking induced phosphorylation of the p38 mitogen-activated protein kinase (MAPK) that was inhibited by allopurinol and also induced an increase in the activity of the p38 MAPK that was inhibited by SB203580. However, SB203580 had no effect on oxidant production in ECs or ICAM-1 clustering. ICAM-1 cross-linking also induced phosphorylation of heat shock protein 27, an actin-binding protein that may be involved in filamentous actin polymerization. The time course of heat shock protein 27 phosphorylation paralleled that of p38 MAPK phosphorylation and was completely inhibited by SB203580. In addition, SB203580 blocked the EC stiffening response induced by either neutrophil adherence or ICAM-1 cross-linking. Moreover, pretreatment of ECs with SB203580 reduced neutrophil migration toward EC junctions. Taken together, these data demonstrate that activation of p38 MAPK, mediated by xanthine oxidase-generated oxidant production, is required for cytoskeletal remodeling in ECs induced by ICAM-1 cross-linking or neutrophil adherence. These cytoskeletal changes in ECs may in turn modulate neutrophil migration toward EC junctions.  相似文献   

6.
TBX20 gain-of-function mutations in humans are associated with congenital heart malformations and myocardial defects. However the effects of increased Tbx20 function during cardiac chamber development and maturation have not been reported previously. CAG-CAT-Tbx20 transgenic mice were generated for Cre-dependent induction of Tbx20 in myocardial lineages in the developing heart. βMHCCre-mediated overexpression of Tbx20 in fetal ventricular cardiomyocytes results in increased thickness of compact myocardium, induction of cardiomyocyte proliferation, and increased expression of Bmp10 and pSmad1/5/8 at embryonic day (E) 14.5. βMHCCre-mediated Tbx20 overexpression also leads to increased expression of cardiac conduction system (CCS) genes Tbx5, Cx40, and Cx43 throughout the ventricular myocardium. In contrast, Nkx2.5Cre mediated overexpression of Tbx20 in the embryonic heart results in reduced cardiomyocyte proliferation, increased expression of a cell cycle inhibitor, p21(CIP1), and decreased expression of Tbx2, Tbx5, and N-myc1 at E9.5, concomitant with decreased phospho-ERK1/2 expression. Together, these analyses demonstrate that Tbx20 differentially regulates cell proliferation and cardiac lineage specification in embryonic versus fetal cardiomyocytes. Induction of pSmad1/5/8 at E14.5 and inhibition of dpERK expression at E9.5 are consistent with selective Tbx20 regulation of these pathways in association with stage-specific effects on cardiomyocyte proliferation. Together, these in vivo data support distinct functions for Tbx20 in regulation of cardiomyocyte lineage maturation and cell proliferation at embryonic and fetal stages of heart development.  相似文献   

7.
Studies have reported that the intermediate filament protein nestin was expressed in various non-stem/progenitor cells during development, downregulated during postnatal growth and re-expressed following injury. The present study tested the hypothesis that an analogous paradigm was prevalent for ventricular fibroblasts. In the neonatal rat heart, nestin protein levels were significantly higher than the adult heart and the isolation of cardiac cells revealed a selective expression in ventricular fibroblasts. In adult ventricular fibroblasts, nestin protein expression was markedly lower compared to neonatal ventricular fibroblasts. Following ischemic damage to the rat heart, nestin staining was detected in a subpopulation of scar myofibroblasts (37%) and the percentage of immunoreactive cells was greater than adult ventricular fibroblasts (7%) but significantly lower than neonatal ventricular fibroblasts (86%). Moreover, dissimilar rates of (3)H-thymidine uptake were observed among the fibroblast populations and may be related in part to the disparate percentage of nestin(+) cells. To assess the role of nestin in DNA synthesis, neonatal ventricular fibroblasts were infected with a lentivirus containing a shRNAmir directed against the intermediate filament protein. The partial depletion of nestin expression in neonatal ventricular fibroblasts significantly reduced basal DNA synthesis, in the absence of an apoptotic response. Thus, postnatal development of the rat heart was associated with a selective loss of nestin expression in ventricular fibroblasts and subsequent induction in a subpopulation of myofibroblasts following ischemic injury. The re-expression of nestin in scar myofibroblasts may represent an adaptive response to enhance their proliferative rate and accelerate the healing process.  相似文献   

8.
Background aimsHeart failure therapy with human embryonic stem cell (hESC)-derived cardiomyocytes (hCM) has been limited by the low rate of spontaneous hCM differentiation. As others have shown that p38 mitogen-activated protein kinase (p38MAPK) directs neurogenesis from mouse embryonic stem cells, we investigated whether the p38MAPK inhibitor, SB203580, might influence hCM differentiation.MethodsWe treated differentiating hESC with SB203580 at specific time-points, and used flow cytometry, immunocytochemistry, quantitative real-time (RT)–polymerase chain reaction (PCR), teratoma formation and transmission electron microscopy to evaluate cardiomyocyte formation.ResultsWe observed that the addition of inhibitor resulted in 2.1-fold enrichment of spontaneously beating human embryoid bodies (hEB) at 21 days of differentiation, and that 25% of treated cells expressed cardiac-specific α-myosin heavy chain. This effect was dependent on the stage of differentiation at which the inhibitor was introduced. Immunostaining and teratoma formation assays demonstrated that the inhibitor did not affect hESC pluripotency; however, treated hESC gave rise to hCM exhibiting increased expression of sarcomeric proteins, including cardiac troponin T, myosin light chain and α-myosin heavy chain. This was consistent with significantly increased numbers of myofibrillar bundles and the appearance of nascent Z-bodies at earlier time-points in treated hCM. Treated hEB also demonstrated a normal karyotype by array comparative genomic hybridization and viability in vivo following injection into mouse myocardium.ConclusionsThese studies demonstrate that p38MAPK inhibition accelerates directed hCM differentiation from hESC, and that this effect is developmental stage-specific. The use of this inhibitor should improve our ability to generate hESC-derived hCM for cell-based therapy.  相似文献   

9.
Nestin expression during mouse eye and lens development   总被引:3,自引:0,他引:3  
  相似文献   

10.
The cytosolic protein Bax plays a key role in apoptosis by migrating to mitochondria and releasing proapoptotic proteins from the mitochondrial intermembrane space. The present study investigates the movement of Bax in isolated rat neonatal cardiomyocytes subjected to simulated ischaemia (minus glucose, plus cyanide), using green fluorescent protein-tagged Bax as a means of imaging Bax movements. Simulated ischaemia induced Bax translocation from the cytosol to mitochondria, commencing within 20 min of simulated ischaemia and progressing for several hours. Under the same conditions, there was an increase in the active, phosphorylated forms of p38 MAPK (mitogen-activated protein kinase) and AMPK (AMP-activated protein kinase). The AMPK activators AICAR (5-aminoimidazole-4-carboxamide ribonucleoside) and metformin also stimulated Bax translocation. Inhibition of p38 MAPK with SB203580 attenuated the phosphorylation of the downstream substrates, MAPK-activated protein kinases 2 and 3, but not that of the upstream MAPK kinase 3, nor of AMPK. Under all conditions (ischaemia, AICAR and metformin), SB203580 blocked Bax translocation completely. It is concluded that Bax translocation to mitochondria is an early step in ischaemia and that it occurs in response to activation of p38 MAPK downstream of AMPK.  相似文献   

11.
12.
The p38α mitogen-activated protein kinase (MAPK) inhibitor SB203580 had been reported to enhance the cardiomyogenesis of human embryonic stem cells (hESCs). To investigate if tri-substituted imidazole analogues of SB203580 are equally effective inducers for cardiomyogenesis of hESCs, and if there is a correlation between p38α MAPK inhibition and cardiomyogenesis, we designed and synthesized a series of novel tri-substituted imidazoles with a range of p38α MAPK inhibitory activities. Our studies demonstrated that suitably designed analogues of SB203580 can also be inducers of cardiomyogenesis in hESCs and that cell growth is affected by changes in the imidazole structures.  相似文献   

13.
RhoGTPases organize the actin cytoskeleton to generate diverse polarities, from front–back polarity in migrating cells to dendritic spine morphology in neurons. For example, RhoA through its effector kinase, RhoA kinase (ROCK), activates myosin II to form actomyosin filament bundles and large adhesions that locally inhibit and thereby polarize Rac1-driven actin polymerization to the protrusions of migratory fibroblasts and the head of dendritic spines. We have found that the two ROCK isoforms, ROCK1 and ROCK2, differentially regulate distinct molecular pathways downstream of RhoA, and their coordinated activities drive polarity in both cell migration and synapse formation. In particular, ROCK1 forms the stable actomyosin filament bundles that initiate front–back and dendritic spine polarity. In contrast, ROCK2 regulates contractile force and Rac1 activity at the leading edge of migratory cells and the spine head of neurons; it also specifically regulates cofilin-mediated actin remodeling that underlies the maturation of adhesions and the postsynaptic density of dendritic spines.  相似文献   

14.
目的本实验旨在研究瘦素(Leptin)对大鼠主动脉血管平滑肌细胞(VSMC)增殖和移行的影响。方法采用原代细胞培养方法建立VSMC细胞模型;以四甲基偶氮唑盐(MTT)比色法、免疫细胞化学染色等方法观察瘦素对VSMC增殖的影响;采用细胞移行实验观察瘦素对VSMC移行的影响;采用MAPK的抑制剂SB203580观察瘦素对VSMC增殖的抑制作用以探讨MAPK在瘦素促VSMC增殖中的信号转导机理。结果瘦素能显著促进VSMC增殖和移行,而MAPK的抑制剂SB203580可显著抑制瘦素对VSMC的增殖效应。结论瘦素具有明显的促VSMC增殖和移行的作用,其作用机制与激活MAPK信号途径有关。  相似文献   

15.
HL-60 cells are an attractive model for studies of human myeloid cell differentiation. Among the well-examined parameters correlated to differentiation of HL-60 cells are the expression and phosphorylation of the small heat shock protein Hsp27. Here we demonstrate that PMA treatment of HL-60 cells stimulates different MAP kinase cascades, leading to significant activation of ERK2 and p38 reactivating kinase (p38RK). Using the protein kinase inhibitor SB 203580, we specifically inhibited p38RK and, thereby, activation of its target MAP kinase-activated protein kinase 2(MAPKAP kinase 2), which is the major enzyme responsible for small Hsp phosphorylation. As a result, PMA-induced Hsp27 phosphorylation is inhibited in SB 203580-treated HL-60 cells indicating that p38RK and MAPKAP kinase 2 are components of the PMA-induced signal transduction pathway leading to Hsp27 phosphorylation. We further demonstrate that, although PMA-induced phosphorylation is inhibited, SB 203580-treated HL-60 cells are still able to differentiate to the macrophage-like phenotype as judged by decrease in cell proliferation, induction of expression of the cell surface antigen CD11b and changes in cell morphology. These results indicate that, although correlated, Hsp27 phosphorylation is not required for HL-60 cell differentiation. However, the results do not exclude that increased Hsp27 expression is involved in HL-60 cell differentiation.  相似文献   

16.
17.
From human and animal studies, estrogen is known to protect the myocardium from an ischemic insult. However, there is limited knowledge regarding mechanisms by which estrogen directly protects cardiomyocytes. In this report, we employed an in vitro model, in which cultured rat cardiomyocytes underwent prolonged hypoxia followed by reoxygenation (H/R), to study the cardioprotective mechanism of estrogen. 17-beta-estradiol (E2) acting via estrogen receptors inhibited H/R-induced apoptosis of cardiomyocytes. Mitochondrial reactive oxygen species (ROS) generated from H/R activated p38alpha MAPK, and inhibition of p38alpha with SB203580 significantly prevented H/R-induced cell death. E2 suppressed ROS formation and p38alpha activation by H/R and concomitantly augmented the activity of p38beta. Unlike p38alpha, p38beta was little affected by H/R. Dominant negative p38beta protein expression decreased E2-mediated cardiomyocyte survival and ROS suppression during H/R stress. The prosurvival signaling molecule, phosphoinositol-3 kinase (PI3K), has previously been linked to cell survival following ischemia-reperfusion injury. Here, E2-activated PI3K was found to inhibit ROS generated from H/R injury, leading to inhibition of downstream p38alpha. We further linked these signaling pathways in that p38beta was activated by E2 stimulation of PI3K. Thus, E2 differentially modulated two major isoforms of p38, leading to cardiomyocyte survival. This was achieved by signaling through PI3K, integrating cell survival mediators.  相似文献   

18.
中间纤维蛋白巢蛋白(nestin)在各种胚胎前体细胞及成熟组织中均有表达.近年一些研究显示,巢蛋白的表达上调和一些恶性肿瘤的病理特征有相关性.但是,巢蛋白在干细胞分化及肿瘤发生中的作用还不为人知.在本研究中,我们运用短发卡状的RNA为工具,以大鼠神经胶质瘤细胞系C6为模型,对巢蛋白的功能进行了研究.划痕实验和迁移实验的结果均显示,巢蛋白基因沉默可以促进C6细胞的迁移.同时,BrdU渗入实验显示,此过程伴随着细胞增殖的增加.进一步研究显示,细胞周期依赖性激酶cdk5的活性在此过程中有显著的增加.此外,巢蛋白基因沉默所引起的迁移改变可以被cdk5特异性抑制剂roscovitine所回复, 而对细胞增殖则没有显著影响.综上所述,本研究揭示了巢蛋白基因沉默与神经胶质瘤细胞的迁移和增殖相关,而cdk5是此过程的重要调节因子.  相似文献   

19.
The signaling mechanisms leading to phorbol ester myristate (PMA)-induced differentiation of HL-60 cells to the macrophagelike phenotype were investigated by using different protein kinase inhibitors. The protein kinase C inhibitor Ro 31-8220 specifically blocks PMA-induced differentiation, activation of the p42/44ERK- and p38RK-MAP kinase cascades and Hsp27-phosphorylation in HL-60 cells. Because Ro 31-8220 does not inhibit activation of the MAP kinase cascades by protein kinase C (PKC)-independent signals such as epidermal growth factor (EGF), heat shock, or anisomycin in these cells, only PMA-induced activation of the MAP kinases can be downstream of PKC. The MEK1 inhibitor PD 098059 and the p38RK inhibitor SB 203580 also were used to analyze whether the PMA-induced PKC-dependent activation of MAP kinases is involved in the differentiation process. Under certain conditions, PD 098059 can completely block the PMA-induced activation of the p42ERK as monitored by imunoprecipitation kinase assay by using the substrate myelin basic protein. SB 203580 specifically inhibits activation of p38RK as judged by MAPKAP kinase 2 activity against the substrate Hsp27 and also blocks Hsp27 phosphorylation in the cells. In contrast, neither PD 098059 nor SB 203580 nor both inhibitors together prevent PMA-induced differentiation of the HL-60 cells to the macrophagelike phenotype. The results suggest the existence of a diversification of PMA-induced signaling in HL-60 cells downstream of PKC, leading to activation of MAP kinases that are not essential for differentiation and to phosphorylation of other, so far unidentified, targets responsible for differentiation. J. Cell. Physiol. 173:310–318, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Nuclear factor-kappaB (NF-kappaB) is the main target of anti-inflammatory therapies in human chronic inflammatory bowel diseases (IBD), Crohn disease, and ulcerative colitis. This study investigates the molecular anti-inflammatory mechanisms of SB203580, an inhibitor of the mitogen-activated protein kinase p38. The murine trinitrobenzene sulfonic acid (TNBS)-induced colitis was used as an established model of human Crohn disease. Here we show that SB203580 improved the clinical condition, reduced intestinal inflammation, and suppressed mRNA levels of pro-inflammatory cytokines elevated upon induction of colitis. Besides p38 kinase activity, the "classical" IkappaB-dependent NF-kappaB pathway was strongly up-regulated during colitis induction, whereas the "alternative" was not. SB203580 treatment resulted in a drastic down-regulation of p38 and NF-kappaB activity. The molecular analysis of NF-kappaB activation revealed that Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK), a key component of a pathway leading to NF-kappaB induction, is also strongly inhibited by SB203580. In contrast, SB203580 had no effect on the colitis-induced activation of other potential NF-kappaB-activating kinases such as protein kinase C (PKC), mixed lineage kinase 3, and the oncogene product Cot/TPL2. Thus, the inhibitory effect of SB203580 on NF-kappaB activation is to a large extent mediated by RICK inhibition. RICK is the effector kinase of the intracellular receptor of bacterial peptidoglycan NOD. Because bacterial products are suggested to be the key pathogenic agents triggering IBD, inhibition of the NOD/RICK pathway may serve as a novel target of future therapies in human IBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号