首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophages under certain stimuli induce matrix metalloproteinase 9 (MMP‐9) expression and protein secretion through the activation of MAPK‐ERK and NF‐κB signaling pathways. Previously, we demonstrated that activated α2‐macroglulin (α2M*) through the interaction with its receptor low‐density lipoprotein receptor‐related protein 1 (LRP1) induces macrophage proliferation mediated by the activation of MAPK‐ERK1/2. In the present work, we examined whether α2M*/LRP1interaction could induce the MMP‐9 production in J774 and Raw264.7 macrophage‐derived cell lines. It was shown that α2M* promoted MMP‐9 expression and protein secretion by LRP1 in both macrophage‐derived cell lines, which was mediated by the activation of MAPK‐ERK1/2 and NF‐κB. Both intracellular signaling pathways activated by α2M* were effectively blocked by calphostin‐C, suggesting involvement of PKC. In addition, we demonstrate that α2M* produced extracellular calcium influx via LRP1. However, when the intracellular calcium mobilization was inhibited by BAPTA‐AM, the α2M*‐induced MAPK‐ER1/2 activation was fully blocked in both macrophage cell lines. Finally, using specific pharmacological inhibitors for PKC, Mek1, and NF‐κB, it was shown that the α2M*‐induced MMP‐9 protein secretion was inhibited, indicating that the MMP production promoted by the α2M*/LRP1 interaction required the activation of both signaling pathways. These findings may prove useful in the understanding of the macrophage LRP1 role in the vascular wall during atherogenic plaque progression. J. Cell. Biochem. 111: 607–617, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Tumor cells secrete factors that modulate macrophage activation and polarization into M2 type tumor-associated macrophages, which promote tumor growth, progression, and metastasis. The mechanisms that mediate this polarization are not clear. Macrophages are phagocytic cells that participate in the clearance of apoptotic cells, a process known as efferocytosis. Milk fat globule- EGF factor 8 (MFG-E8) is a bridge protein that facilitates efferocytosis and is associated with suppression of proinflammatory responses. This study investigated the hypothesis that MFG-E8-mediated efferocytosis promotes M2 polarization. Tissue and serum exosomes from prostate cancer patients presented higher levels of MFG-E8 compared with controls, a novel finding in human prostate cancer. Coculture of macrophages with apoptotic cancer cells increased efferocytosis, elevated MFG-E8 protein expression levels, and induced macrophage polarization into an alternatively activated M2 phenotype. Administration of antibody against MFG-E8 significantly attenuated the increase in M2 polarization. Inhibition of STAT3 phosphorylation using the inhibitor Stattic decreased efferocytosis and M2 macrophage polarization in vitro, with a correlating increase in SOCS3 protein expression. Moreover, MFG-E8 knockdown tumor cells cultured with wild-type or MFG-E8-deficient macrophages resulted in increased SOCS3 expression with decreased STAT3 activation. This suggests that SOCS3 and phospho-STAT3 act in an inversely dependent manner when stimulated by MFG-E8 and efferocytosis. These results uncover a unique role of efferocytosis via MFG-E8 as a mechanism for macrophage polarization into tumor-promoting M2 cells.  相似文献   

3.
Tumour necrosis factor (TNF)‐α induces cardiac metabolic disorder and mitochondrial dysfunction. Hydrogen sulphide (H2S) contains anti‐inflammatory and biological effects in cardiomyocytes. This study investigated whether H2S modulates TNF‐α‐dysregulated mitochondrial function and metabolism in cardiomyocytes. HL‐1 cells were incubated with TNF‐α (25 ng/mL) with or without sodium hydrosulphide (NaHS, 0.1 mmol/L) for 24 hours. Cardiac peroxisome proliferator‐activated receptor (PPAR) isoforms, pro‐inflammatory cytokines, receptor for advanced glycation end products (RAGE) and fatty acid metabolism were evaluated through Western blotting. The mitochondrial oxygen consumption rate and adenosine triphosphate (ATP) production were investigated using Seahorse XF24 extracellular flux analyzer and bioluminescence assay. Fluorescence intensity using 2′, 7′‐dichlorodihydrofluorescein diacetate was used to evaluate mitochondrial oxidative stress. NaHS attenuated the impaired basal and maximal respiration, ATP production and ATP synthesis and enhanced mitochondrial oxidative stress in TNF‐α‐treated HL‐1 cells. TNF‐α‐treated HL‐1 cells exhibited lower expression of PPAR‐α, PPAR‐δ, phosphorylated 5′ adenosine monophosphate‐activated protein kinase‐α2, phosphorylated acetyl CoA carboxylase, carnitine palmitoyltransferase‐1, PPAR‐γ coactivator 1‐α and diacylglycerol acyltransferase 1 protein, but higher expression of PPAR‐γ, interleukin‐6 and RAGE protein than control or combined NaHS and TNF‐α‐treated HL‐1 cells. NaHS modulates the effects of TNF‐α on mitochondria and the cardiometabolic system, suggesting its therapeutic potential for inflammation‐induced cardiac dysfunction.  相似文献   

4.
COX‐2 (cyclo‐oxygenase 2), an inducible form of the enzyme that catalyses the first step in the synthesis of prostanoids, is associated with inflammatory diseases and carcinogenesis, which is suspected to promote angiogenesis and tissue invasion of tumours and resistance to apoptosis. COX‐2 is also involved in drug resistance and poor prognosis of many neoplastic diseases or cancers. The activation of the COX‐2/PGE2 (prostaglandin E2)/prostaglandin E receptor signal pathway can up‐regulate the expression of all three ABC (ATP‐binding‐cassette) transporters, MDR1/P‐gp (multidrug resistance/P‐glycoprotein), MRP1 (multidrug‐resistance protein 1) and BCRP (breast‐cancer‐resistance protein), which encode efflux pumps, playing important roles in the development of multidrug resistance. In addition, COX inhibitors inhibit the expression of MDR1/P‐gp, MRP1 and BCRP and enhance the cytotoxicity of anticancer drugs. Therefore we can use the COX inhibitors to potentialize the effects of chemotherapeutic agents and reverse multidrug resistance to facilitate the patient who may benefit from addition of COX inhibitors to standard cytotoxic therapy.  相似文献   

5.
MiR‐16 is a tumour suppressor that is down‐regulated in certain human cancers. However, little is known on its activity in other cell types. In this study, we examined the biological significance and underlying mechanisms of miR‐16 on macrophage polarization and subsequent T‐cell activation. Mouse peritoneal macrophages were isolated and induced to undergo either M1 polarization with 100 ng/ml of interferon‐γ and 20 ng/ml of lipopolysaccharide, or M2 polarization with 20 ng/ml of interleukin (IL)‐4. The identity of polarized macrophages was determined by profiling cell‐surface markers by flow cytometry and cytokine production by ELISA. Macrophages were infected with lentivirus‐expressing miR‐16 to assess the effects of miR‐16. Effects on macrophage–T cell interactions were analysed by co‐culturing purified CD4+ T cells with miR‐16‐expressing peritoneal macrophages, and measuring activation marker CD69 by flow cytometry and cytokine secretion by ELISA. Bioinformatics analysis was applied to search for potential miR‐16 targets and understand its underlying mechanisms. MiR‐16‐induced M1 differentiation of mouse peritoneal macrophages from either the basal M0‐ or M2‐polarized state is indicated by the significant up‐regulation of M1 marker CD16/32, repression of M2 marker CD206 and Dectin‐1, and increased secretion of M1 cytokine IL‐12 and nitric oxide. Consistently, miR‐16‐expressing macrophages stimulate the activation of purified CD4+ T cells. Mechanistically, miR‐16 significantly down‐regulates the expression of PD‐L1, a critical immune suppressor that controls macrophage–T cell interaction and T‐cell activation. MiR‐16 plays an important role in shifting macrophage polarization from M2 to M1 status, and functionally activating CD4+ T cells. This effect is potentially mediated through the down‐regulation of immune suppressor PD‐L1.  相似文献   

6.
Efferocytosis is a unique phagocytic process for macrophages to remove apoptotic cells in inflammatory loci. This event is maintained by milk fat globule-EGF factor 8 (MFG-E8), but attenuated by high mobility group box 1 (HMGB1). Alcohol abuse causes injury and inflammation in multiple tissues. It alters efferocytosis, but precise molecular mechanisms for this effect remain largely unknown. Here, we showed that acute exposure of macrophages to alcohol (25 mmol/L) inhibited MFG-E8 gene expression and impaired efferocytosis. The effect was mimicked by hydrogen peroxide. Moreover, N-acetylcysteine (NAC), a potent antioxidant, blocked acute alcohol effect on inhibition of macrophage MFG-E8 gene expression and efferocytosis. In addition, recombinant MFG-E8 rescued the activity of alcohol-treated macrophages in efferocytosis. Together, the data suggest that acute alcohol exposure impairs macrophage efferocytosis via inhibition of MFG-E8 gene expression through a reactive oxygen species dependent mechanism. Alcohol has been found to suppress or exacerbate immune cell activities depending on the length of alcohol exposure. Thus, we further examined the role of chronic alcohol exposure on macrophage efferocytosis. Interestingly, treatment of macrophages with alcohol for seven days in vitro enhanced MFG-E8 gene expression and efferocytosis. However, chronic feeding of mice with alcohol caused increase in HMGB1 levels in serum. Furthermore, HMGB1 diminished efferocytosis by macrophages that were treated chronically with alcohol, suggesting that HMGB1 might attenuate the direct effect of chronic alcohol on macrophage efferocytosis in vivo. Therefore, we speculated that the balance between MFG-E8 and HMGB1 levels determines pathophysiological effects of chronic alcohol exposure on macrophage efferocytosis in vivo.  相似文献   

7.
Accumulating evidence indicates that abnormal deposition of amyloid‐β (Aβ) peptide in the brain is responsible for endothelial cell damage and consequently leads to blood–brain barrier (BBB) leakage. However, the mechanisms underlying BBB disruption are not well described. We employed an monolayer BBB model comprising bEnd.3 cell and found that BBB leakage was induced by treatment with Aβ1–42, and the levels of tight junction (TJ) scaffold proteins (ZO‐1, Claudin‐5, and Occludin) were decreased. Through comparisons of the effects of the different components of Aβ1–42, including monomer (Aβ1–42‐Mono), oligomer (Aβ1–42‐Oligo), and fibril (Aβ1–42‐Fibril), our data confirmed that Aβ1–42‐Oligo is likely to be the most important damage factor that results in TJ damage and BBB leakage in Alzheimer's disease. We found that the incubation of bEnd.3 cells with Aβ1–42 significantly up‐regulated the level of receptor for advanced glycation end‐products (RAGE). Co‐incubation of a polyclonal antibody to RAGE and Aβ1–42‐Oligo in bEnd.3 cells blocked RAGE suppression of Aβ1–42‐Oligo‐induced alterations in TJ scaffold proteins and reversed Aβ1–42‐Oligo‐induced up‐regulation of RAGE, matrix metalloproteinase (MMP)‐2, and MMP‐9. Furthermore, we found that these effects induced by Aβ1–42‐Oligo treatment were effectively suppressed by knockdown of RAGE using small interfering RNA (siRNA) transfection. We also found that GM 6001, a broad‐spectrum MMP inhibitor, partially reversed the Aβ1–42‐Oligo‐induced inhibitor effects in bEnd.3 cells. Thus, these results suggested that RAGE played an important role in Aβ‐induced BBB leakage and alterations of TJ scaffold proteins, through a mechanism that involved up‐regulation of MMP‐2 and MMP‐9.

  相似文献   


8.
Pro‐aging effects of endogenous advanced glycation end‐products (AGEs) have been reported, and there is increasing interest in the pro‐inflammatory and ‐fibrotic effects of their binding to RAGE (the main AGE receptor). The role of dietary AGEs in aging remains ill‐defined, but the predominantly renal accumulation of dietary carboxymethyllysine (CML) suggests the kidneys may be particularly affected. We studied the impact of RAGE invalidation and a CML‐enriched diet on renal aging. Two‐month‐old male, wild‐type (WT) and RAGE?/? C57Bl/6 mice were fed a control or a CML‐enriched diet (200 μg CML/gfood) for 18 months. Compared to controls, we observed higher CML levels in the kidneys of both CML WT and CML RAGE?/? mice, with a predominantly tubular localization. The CML‐rich diet had no significant impact on the studied renal parameters, whereby only a trend to worsening glomerular sclerosis was detected. Irrespective of diet, RAGE?/? mice were significantly protected against nephrosclerosis lesions (hyalinosis, tubular atrophy, fibrosis and glomerular sclerosis) and renal senile apolipoprotein A‐II (ApoA‐II) amyloidosis (p < 0.001). A positive linear correlation between sclerosis score and ApoA‐II amyloidosis score (r = 0.92) was observed. Compared with old WT mice, old RAGE?/? mice exhibited lower expression of inflammation markers and activation of AKT, and greater expression of Sod2 and SIRT1. Overall, nephrosclerosis lesions and senile amyloidosis were significantly reduced in RAGE?/? mice, indicating a protective effect of RAGE deletion with respect to renal aging. This could be due to reduced inflammation and oxidative stress in RAGE?/? mice, suggesting RAGE is an important receptor in so‐called inflamm‐aging.  相似文献   

9.
The level of circulating endotoxin is related to the severity of cardiovascular disease. One of the indexes for the prognosis of cardiovascular disease is the plasma aldosterone level. Recently, the Toll‐like receptors (TLRs), lipopolysaccharide (LPS)‐regulated receptors, were found not only to mediate the inflammatory response but also to be important in the adrenal stress response. Whether LPS via TLRs induced aldosterone production in adrenal zona glomerulosa (ZG) cells was not clear. Our results suggest that LPS‐induced aldosterone secretion in a time‐ and dose‐dependent manner and via TLR2 and TLR4 signaling pathway. Administration of LPS can enhance steroidogenesis enzyme expression such as scavenger receptor‐B1 (SR‐B1), steroidogenic acute regulatory protein (StAR) and P450 side chain cleavage (P450scc) enzyme. LPS‐induced SR‐B1 and StAR protein expression are abolished by TLR2 blocker. Furthermore, we demonstrated that phosphorylation of Akt was elevated by LPS treatment and reduced by TLR2 blockers, TLR4 blockers, and LY294002 (PI3K inhibitor). Those inhibitors of PI3K/Akt pathways also abolish LPS‐induced aldosterone secretion and SR‐B1 protein level. In conclusion, LPS‐induced aldosterone production and SR‐B1 proteins expression are through the TLR2 and TLR4 related PI3K/Akt pathways in adrenal ZG cells. J. Cell. Biochem. 111: 872–880, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Mice deficient in the neural cell adhesion molecule (NCAM) show behavioral abnormalities as adults, including altered exploratory behavior, deficits in spatial learning, and increased intermale aggression. Here, we report increased anxiety‐like behavior of homozygous (NCAM−/−) and heterozygous (NCAM+/−) mutant mice in a light/dark avoidance test, independent of genetic background and gender. Anxiety‐like behavior was reduced in both NCAM+/+ and NCAM−/− mice by systemic administration of the benzodiazepine agonist diazepam and the 5‐HT1A receptor agonists buspirone and 8‐OH‐DPAT. However, NCAM−/− mice showed anxiolytic‐like effects at lower doses of buspirone and 8‐OH‐DPAT than NCAM+/+ mice. Such increased response to 5‐HT1A receptor stimulation suggests a functional change in the serotonergic system of NCAM−/− mice, likely involved in the control of anxiety and aggression. However, 5‐HT1A receptor binding and tissue content of serotonin and its metabolite 5‐hydroxyindolacetic acid were found unaltered in every brain area of NCAM−/− mice investigated, indicating that expression of 5‐HT1A receptors as well as synthesis and release of serotonin are largely unchanged in NCAM−/− mice. We hypothesize a critical involvement of endogenous NCAM in serotonergic transmission via 5‐HT1A receptors and inwardly rectifying K+ channels as the respective effector systems. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 343–355, 1999  相似文献   

11.
We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G‐protein gated inwardly rectifying potassium channels (Kir3) and directly compared the effects of co‐expression of G‐protein coupled receptor kinase (GRK) and arrestin on agonist‐dependent desensitization of the receptor response. We found, as described previously, that co‐expression of a GRK and an arrestin synergistically increased the rate of agonist‐dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin‐dependent GRK‐independent desensitization of D2R‐Kir3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin‐dependent GRK‐independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist‐dependent desensitization even after GRK co‐expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor.

  相似文献   


12.
Of the five mammalian muscarinic acetylcholine (ACh) receptors, M5 is the only subtype expressed in midbrain dopaminergic neurons, where it functions to potentiate dopamine release. We have identified a direct physical interaction between M5 and the AP‐3 adaptor complex regulator AGAP1. This interaction was specific with regard to muscarinic receptor (MR) and AGAP subtypes, and mediated the binding of AP‐3 to M5. Interaction with AGAP1 and activity of AP‐3 were required for the endocytic recycling of M5 in neurons, the lack of which resulted in the downregulation of cell surface receptor density after sustained receptor stimulation. The elimination of AP‐3 or abrogation of AGAP1–M5 interaction in vivo decreased the magnitude of presynaptic M5‐mediated dopamine release potentiation in the striatum. Our study argues for the presence of a previously unknown receptor‐recycling pathway that may underlie mechanisms of G‐protein‐coupled receptor (GPCR) homeostasis. These results also suggest a novel therapeutic target for the treatment of dopaminergic dysfunction.  相似文献   

13.
The β2‐AR (β2‐adrenergic receptor) is an important target for respiratory and CVD (cardiovascular disease) medications. Clinical studies suggest that N‐terminal polymorphisms of β2‐AR may act as disease modifiers. We hypothesized that polymorphisms at amino acids 16 and 27 result in differential trafficking and down‐regulation of β2‐AR variants following β‐agonist exposure. The functional consequences of the four possible combinations of these polymorphisms in the human β2‐AR (designated β2‐AR‐RE, β2‐AR‐GE, β2‐AR‐RQ and β2‐AR‐GQ) were studied using site‐directed mutagenesis and recombinant expression in HEK‐293 cells (human embryonic kidney cells). Ligand‐binding assays demonstrated that after 24 h exposure to 1 μM isoprenaline, isoforms with Arg162‐AR‐RE and β2‐AR‐RQ) underwent increased down‐regulation compared with isoforms with Gly162‐AR‐GE and β2‐AR‐GQ). Consistent with these differences in down‐regulation between isoforms, prolonged isoprenaline treatment resulted in diminished cAMP response to subsequent isoprenaline challenge in β2‐AR‐RE relative to β2‐AR‐GE. Confocal microscopy revealed that the receptor isoforms had similar co‐localization with the early endosomal marker EEA1 following isoprenaline treatment, suggesting that they had similar patterns of internalization. None of the isoforms exhibited significant co‐localization with the recycling endosome marker Rab11 in response to isoprenaline treatment. Furthermore, we found that prolonged isoprenaline treatment led to a higher degree of co‐localization of β2‐AR‐RE with the lysosomal marker LAMP1 (lysosome‐associated membrane protein 1) compared with that of β2‐AR‐GE. Taken together, these results indicate that a mechanism responsible for differential responses of these receptor isoforms to the β‐agonist involves differences in the efficiency with which agonist‐activated receptors are trafficked to the lysosomes for degradation, or differences in degradation in the lysosomes.  相似文献   

14.
Non‐tuberculous mycobacteria (NTM), also known as an environmental and atypical mycobacteria, can cause the chronic pulmonary infectious diseases. Macrophages have been suggested as the main host cell to initiate the innate immune responses to NTM infection. However, the molecular mechanism to regulate the antimicrobial immune responses to NTM is still largely unknown. Current study showed that the NTM clinical groups, Mycobacterium abscessus and Mycobacterium smegmatis, significantly induced the M1 macrophage polarization with the characteristic production of nitric oxide (NO) and marker gene expression of iNOS, IFNγ, TNF‐α, IL1‐β and IL‐6. Interestingly, a non‐histone nuclear protein, HMGN2 (high‐mobility group N2), was found to be spontaneously induced during NTM‐activated M1 macrophage polarization. Functional studies revealed that HMGN2 deficiency in NTM‐infected macrophage promotes the expression of M1 markers and the production of NO via the enhanced activation of NF‐κB and MAPK signalling. Further studies exhibited that HMGN2 knock‐down also enhanced IFNγ‐induced M1 macrophage polarization. Finally, we observed that silencing HMGN2 affected the survival of NTM in macrophage, which might largely relevant to enhanced macrophage polarization into M1 phenotype under the NTM infection. Collectively, current studies thus suggested a novel function of HMGN2 in regulating the anti‐non‐tuberculous mycobacteria innate immunity of macrophage.  相似文献   

15.
A new series of 1H‐imidazol‐1‐yl substituted 8‐phenylxanthine analogs has been synthesized to study the effects of the imidazole group on the binding affinity of compounds for adenosine receptors. Competition binding studies of these compounds were carried out in vitro with human cloned receptors using [3H]DPCPX and [3H]ZM 241385 as radioligands at A1 and A2A adenosine receptors, respectively. The effect of the substitution pattern of the (imidazolyl)alkoxy group on various positions of the phenyl ring at C(8) was also studied. The xanthine derivatives displayed varying degrees of affinity and selectivity towards A1 and A2A receptor subtypes despite a common but variedly substituted Ar C(8).  相似文献   

16.
In the present study, the 5‐HT2A and 5‐HT1A receptors functional activity and 5‐HT2A receptor gene expression were examined in the brain of ASC/Icg and congenic AKR.CBAD13Mit76C mouse strains (genetically predisposed to catalepsy) in comparison with the parental catalepsy‐resistant AKR/J and catalepsy‐prone CBA/Lac mouse strains. The significantly reduced 5‐HT2A receptor functional activity along with decreased 5‐HT2A receptor gene expression in the frontal cortex was found in all mice predisposed to catalepsy compared with catalepsy‐resistant AKR/J. 5‐HT2A agonist DOI (0.5 and 1 mg/kg, i.p.) significantly reduced catalepsy in ASC/Icg and CBA/Lac, but not in AKR.CBAD13Mit76C mice. Essential increase in 5‐HT1A receptor functional activity was shown in catalepsy‐prone mouse strains in comparison with catalepsy‐resistant AKR/J mice. However, in AKR.CBAD13Mit76C mice it was lower than in ASC/Icg and CBA/Lac mice. The inter‐relation between 5‐HT2A and 5‐HT1A receptors in the regulation of catalepsy was suggested. This suggestion was confirmed by prevention of DOI anticataleptic effect in ASC/Icg and CBA/Lac mice by pretreatment with 5‐HT1A receptor antagonist p‐MPPI (3 mg/kg, i.p.). At the same time, the activation of 5‐HT2A receptor led to the essential suppression of 5‐HT1A receptor functional activity, indicating the opposite effect of 5‐HT2A receptor on pre‐ and postsynaptic 5‐HT1A receptors. Thus, 5‐HT2A/5‐HT1A receptor interaction in the mechanism of catalepsy suppression in mice was shown.  相似文献   

17.
Mitochondrial dynamics—fission and fusion—are associated with ischaemic heart disease (IHD). This study explored the protective effect of vagal nerve stimulation (VNS) against isoproterenol (ISO)‐induced myocardial ischaemia in a rat model and tested whether VNS plays a role in preventing disorders of mitochondrial dynamics and function. Isoproterenol not only caused cardiac injury but also increased the expression of mitochondrial fission proteins [dynamin‐related peptide1 (Drp1) and mitochondrial fission protein1 (Fis‐1)) and decreased the expression of fusion proteins (optic atrophy‐1 (OPA1) and mitofusins1/2 (Mfn1/2)], thereby disrupting mitochondrial dynamics and leading to increase in mitochondrial fragments. Interestingly, VNS restored mitochondrial dynamics through regulation of Drp1, Fis‐1, OPA1 and Mfn1/2; enhanced ATP content and mitochondrial membrane potential; reduced mitochondrial permeability transition pore (MPTP) opening; and improved mitochondrial ultrastructure and size. Furthermore, VNS reduced the size of the myocardial infarction and ameliorated cardiomyocyte apoptosis and cardiac dysfunction induced by ISO. Moreover, VNS activated AMP‐activated protein kinase (AMPK), which was accompanied by phosphorylation of Ca2+/calmodulin‐dependent protein kinase kinase β (CaMKKβ) during myocardial ischaemia. Treatment with subtype‐3 of muscarinic acetylcholine receptor (M3R) antagonist 4‐diphenylacetoxy‐N‐methylpiperidine methiodide or AMPK inhibitor Compound C abolished the protective effects of VNS on mitochondrial dynamics and function, suggesting that M3R/CaMKKβ/AMPK signalling are involved in mediating beneficial effects of VNS. This study demonstrates that VNS modulates mitochondrial dynamics and improves mitochondrial function, possibly through the M3R/CaMKKβ/AMPK pathway, to attenuate ISO‐induced cardiac damage in rats. Targeting mitochondrial dynamics may provide a novel therapeutic strategy in IHD.  相似文献   

18.
19.
20.
Free fatty acid receptor G protein‐coupled receptor 120 (GPR120) is highly expressed in macrophages and was reported to inhibit lipopolysaccharide (LPS)‐stimulated cytokine expression. Under inflammation, macrophages exhibit striking functional changes, but changes in GPR120 expression and signaling are not known. In this study, the effects of LPS treatment on macrophage GPR120 expression and activation were investigated. The results showed that LPS inhibited GPR120 expression in mouse macrophage cell line Ana‐1 cells. Moreover, LPS treatment inhibited GPR120 expression in mouse alveolar macrophages both in vitro and in vivo. The inhibitory effect of LPS on GPR120 expression was blocked by Toll‐like receptor 4 (TLR4) inhibitor TAK242 and p38 mitogen‐activated protein kinase inhibitor LY222820, but not by ERK1/2 inhibitor U0126 and c‐Jun N‐terminal kinase inhibitor SP600125. LPS‐induced inhibition of GPR120 expression was not attenuated by GPR120 agonists TUG891 and GW9508. TUG891 inhibited the phagocytosis of alveolar macrophages, and LPS treatment counteracted the effects of TUG891 on phagocytosis. These results indicate that pretreatment with LPS inhibits GPR120 expression and activation in macrophages. It is suggested that LPS‐induced inhibition of GPR120 expression is a reaction enhancing the LPS‐induced pro‐inflammatory response of macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号