首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulation of murine T cells by engagement of the multi-component T cell antigen receptor or by cross-linking the Thy-1 molecule leads to a similar response characterized by lymphocyte activation and lymphokine production. The early biochemical events induced by engaging these molecules also are similar and begin with activation of a tyrosine kinase pathway and tyrosine phosphorylation of a comparable set of substrates. Previous work demonstrates that the protein tyrosine kinase p60fyn is associated with the antigen receptor and therefore it may participate in the tyrosine phosphorylations that are observed with antigen receptor signaling. In this study we demonstrate that the Thy-1 molecule is also associated with p60fyn in a murine T cell hybridoma and in murine thymocytes. The interaction is independent of antigen receptor expression. Thy-1 is a member of the class of molecules anchored to the plasma membrane by a glycophosphatidylinositol (GPI) group. The association of Thy-1 with p60fyn is dependent on the GPI linkage, since cleavage of the GPI anchor disrupts the interaction. The association of Thy-1 and p60fyn suggests a means by which Thy-1 cross-linking leads to tyrosine phosphorylation and T cell activation.  相似文献   

2.
We have investigated the organization, on the plasma membrane and in detergent-insoluble membrane vesicles, of two neuronal glycosylphosphatidylinositol-anchored (GPI) proteins: Thy-1, a negative regulator of transmembrane signalling; and prion protein, whose rapid endocytosis and Cu(2+) binding suggest that it functions in metal ion uptake. Prion protein occurred on the neuronal surface at high density in domains, located primarily at the cell body, which were relatively soluble in detergent. Thy-1, although much more abundantly expressed on neurons, occurred at lower density over much of the surface of neurites (and in lower abundance at the cell body) in domains that were highly resistant to detergent solubilization. Detergent-insoluble membrane vesicles contained Thy-1 at a density similar to that on the neuronal surface. Vesicles containing each protein could be separated by immunoaffinity isolation; lectin binding showed that they were enriched in different glycoproteins. Our results demonstrate a structural diversity of the domains occupied by functionally different GPI proteins.  相似文献   

3.
Surface molecules and cell interactions   总被引:9,自引:0,他引:9  
Many of the cell surface molecules of lymphocytes or their precursors are expressed in an unpredictable way on a limited set of other cell types. This often seems to involve expression on lymphoid and brain cells. The Thy-1 antigen is in this category, being a major glycoprotein of murine neuronal cells, fibroblasts and thymocytes. Structural studies show that this molecule is homologous with immunoglobulin domains which are the structural sub-units of all immunoglobulin polypeptides. Thy-1 is the size of one immunoglobulin domain and its sequence is most homologous with variable regions of immunoglobulins.It is suggested that Thy-1 is one of a set of surface molecules concerned with triggering interactions between cells and that this is the primitive function of the immunoglobulin domain. Cell interactions could be mediated by domain-like structures and receptors for them in a way which parallels the triggering of immunological effector reactions by the interaction of receptors with immunoglobulin constant regions. If this is so then the structure seen in the immunoglobulin domain would have evolved along with the evolution of cell organisation. The genes specifying the cell interaction molecules could then have provided the genetic material for the evolution of antibody and histocompatibility antigen at the time of vertebrate emergence.  相似文献   

4.
Hydrophilic anchor-deficient Thy-1 is secreted by a class E mutant T lymphoma   总被引:16,自引:0,他引:16  
S H Fatemi  A M Tartakoff 《Cell》1986,46(5):653-657
To investigate the mechanism of glycophospholipid anchoring of the surface antigen Thy-1, we have undertaken a comparative biosynthetic study using a wild-type Thy-1+ murine T lymphoma (BW5147) and a mutant T lymphoma (class E) that synthesizes Thy-1 but fails to express it on the plasma membrane. Labelling experiments with D-[2-3H]mannose demonstrate that, unlike the wild type, the mutant cells are secreting large amounts of Thy-1 and that the secreted molecules are hydrophilic. Moreover, unlike the wild type, they fail to incorporate [3H]palmitic acid into Thy-1. Both wild-type and mutant cells do incorporate labeled galactose and fucose into Thy-1. We conclude that the lack of surface expression of Thy-1 by this mutant results from the failure to add anchor components to Thy-1.  相似文献   

5.
Receptor activation leads to the dynamic remodeling of the plasma membrane. Previous work using immunoelectron microscopy showed that aggregated high-affinity receptor for immunoglobulin E (FcRI) and aggregated Thy-1, a glycerophosphoinositol (GPI)-anchored protein, have distinct membrane distributions. We now report lipidomics analysis of FcRI- and Thy-1-enriched vesicles obtained by magnetic bead isolation in the absence of detergent. Protein analyses show that FcRI domains are enriched in receptors and associated signaling molecules, whereas Thy-1 domains are devoid of FcRI subunits. Positive and negative ion electrospray mass spectrometry demonstrated that both domains retained a complex mixture of phospholipid classes and molecular species, predominantly glycerophosphocholine, glycerophosphoethanolamine (GPE), and sphingomyelin as well as glycerophosphoserine and GPI lipids. Analysis of total acyl groups showed that < 50% of fatty acids in these domains are fully saturated, inconsistent with the recruitment of aggregated receptors or GPI-anchored proteins to liquid ordered domains. However, further analysis showed that FcRI domains contain two times more sphingomyelin and a high ratio of cholesterol to total fatty acid content compared with Thy 1-enriched domains. Remarkably, plasmenyl glycerophosphoethanolamine phospholipids (plasmalogen GPE) were also 2.5-3 times more abundant in FcRI domains than in the Thy-1 microdomains, whereas most diacyl GPE molecular species were equally abundant in the two domains.  相似文献   

6.
Density of Thy-1 on Axonal Membrane of Different Rat Nerves   总被引:5,自引:2,他引:3  
Abstract: The density of the cell surface antigen, Thy-1, has been measured on the axonal plasma membrane of the optic and hypoglossal nerves, and on the sympathetic (preganglionic) chain of the superior cervical ganglion in the rat. For each, the amount of Thy-1 in a standard length of nerve was determined. The amount of axonal plasma membrane in a similar length was then measured by use of a computer graphics system which determined the total length of membrane in electron micrographs of cross sections of nerve. The axons of the two peripheral nerves were found to have a similar density (1100–1500 molecules/μm2) of Thy-1 on their surface, and this was two- to threefold higher than the density on axons of optic nerve (500 molecules/μm2). These figures indicate that the density of Thy-1 on the surface of these axons is somewhat lower than that found on the cells of the lymphoid system. Moreover, contrary to the impression gained from previous determinations of Thy-1 levels, axons in the peripheral nervous system do not necessarily have a lower density of Thy-1 on their surface than do those of the central nervous system.  相似文献   

7.
A large number of glycoproteins in the central nervous system are attached to the cell membrane via covalent linkage to glycosylphosphatidylinositol (GPI). Many of them, including the drosophila fasciclin 1 as well as the mammalian glycoproteins Thy-1, TAG1, N-CAM and F11,F3, contactin are members of the immunoglobulin gene superfamily. These and other GPI-linked molecules have been implicated in key developmental events including selective axonal fasciculation and highly specific growth to and innervation of target tissues. In model systems fasciclin 1, TAG1 and N-CAM have been shown to be capable of mediating cell-cell adhesion via a homophilic binding mechanism confirming their operational classification as cell adhesion molecules (CAMs). However, of these molecules, only N-CAM has been shown to mediate a complex response (neurite outgrowth) via a homophilic binding mechanism. Whether the other molecules in this family mediate biological responses by binding to themselves and/or other molecules remains to be determined. Studies on N-CAM provide an ideal model system for understanding the function of GPI anchors since alternative splicing of the NCAM gene generates both lipid-linked and transmembrane N-CAM isoforms. Recent studies have shown that neurons can recognise and respond (by increased neurite outgrowth) to both lipid-linked and transmembrane N-CAM isoforms expressed on the surface of non-neuronal cells following transfection with appropriate cDNAs. The major determinant of neuronal responsiveness was the level of N-CAM expression rather than the isoform type. Neurite outgrowth in response to transfected N-CAM is mediated by transmembrane N-CAM isoforms expressed by neurons and this involves the activation of classical second messenger pathways in the neurons. One possibility is that GPI anchors are utilised when a cell has simply to provide recognition or positional information to a second cell whereas transmembrane molecules might be required for cells that actively respond to such information. The hypothesis is compatible with all the known information on N-CAM expression and function and may be extended to other adhesive events.  相似文献   

8.
Glycosylphosphatidylinositol (GPI)-anchored membrane proteins are proposed to interact preferentially with glycosphingolipids and cholesterol to form microdomains, which may play an important role in apical targeting and signal transduction. The objective of the present study was to investigate the interaction of the GPI-anchored protein Thy-1 with phospholipids and a glycosphingolipid. Purified Thy-1 was reconstituted into lipid bilayer vesicles of dimyristoyl-phosphatidylcholine (DMPC) alone or in combination with galactosylceramide (GC). The ability of Thy-1 to perturb the gel to a liquid-crystalline phase transition of DMPC was examined by differential scanning calorimetry. As the mole fraction of Thy-1 increased, the phase transition enthalpy, deltaH, declined. Analysis indicated that each molecule of Thy-1 perturbed over 50 phospholipids, suggesting that, in addition to the anchor insertion into the bilayer, the protein itself may interact with the membrane surface. Inclusion of 5% w/w GC in the bilayer resulted in a striking change in the interaction of Thy-1 with phospholipids. At low Thy-1 content, there was a reduction in the phase transition temperature and an increase in phospholipid cooperativity, suggesting the formation of Thy-1/GC-enriched domains. DeltaH initially decreased with increasing Thy-1 content of the bilayer; however, at higher Thy-1 mole ratios, deltaH rose again. These results are interpreted in terms of a model whereby, at low protein:lipid mole ratios, Thy-1 preferentially sequesters GC to form enriched microdomains. At high protein:lipid mole ratios, Thy-1 may alter its conformation in response to steric crowding within these domains such that its interaction with the bilayer surface is reduced.  相似文献   

9.
Aerolysin is a channel-forming bacterial toxin that binds to glycosylphosphatidylinositol (GPI) anchors on host cell-surface structures. The nature of the receptors and the location of the receptor-binding sites on the toxin molecule were investigated using surface plasmon resonance. Aerolysin bound to the GPI-anchored proteins Thy-1, variant surface glycoprotein, and contactin with similar rate constants and affinities. Enzymatic removal of N-linked sugars from Thy-1 did not affect toxin binding, indicating that these sugars are not involved in the high affinity interaction with aerolysin. Aerolysin is a bilobal protein, and both lobes were shown to be required for optimal binding. The large lobe by itself bound Thy-1 with an affinity that was at least 10-fold weaker than that of the whole toxin, whereas the small lobe bound the GPI-anchored protein at least 1000-fold more weakly than the intact toxin. Mutation analyses provided further evidence that both lobes were involved in GPI anchor binding, with certain single amino acid substitutions in either domain leading to reductions in affinity of as much as 100-fold. A variant with single amino acid substitutions in both lobes of the protein was completely unable to bind the receptor. The membrane protein glycophorin, which is heavily glycosylated but not GPI-anchored, bound weakly to immobilized proaerolysin, suggesting that interactions with cell-surface carbohydrate structures other than GPI anchors may partially mediate toxin binding to host cells.  相似文献   

10.
Several proteins that are anchored to the surface of T lymphocytes via a phosphatidylinositol (PI) moiety can initiate cell stimulation upon cross-linking. Inasmuch as these proteins do not traverse the plasma membrane, it is not clear how they are capable of signaling across the membrane. Herein we report two distinct sets of experiments that examine the consequence of cross-linking PI-anchored molecules on murine T cells. We first analyzed the fate of antibody cross-linked TAP (Ly-6A.2) and Thy-1 molecules on T-T hybrids. Using an assay to measure receptor-mediated endocytosis, an intracellular accumulation of 125I labeled anti-TAP and anti-Thy-1 mAb was documented that was specific and Ag dependent. The internalization of these molecules was confirmed by cytotoxicity assays using antibody-toxin conjugates, and electron microscopic studies. Although the PI-anchored proteins lack a cytoplasmic domain that is necessary for the internalization of many receptors, they nevertheless can be induced to enter the cell upon cross-linking. The rate of entry of cross-linked TAP and Thy-1 into cells was shown to be 10 and 2% per hour, respectively, which is considerably less than that observed for the transferrin receptor or TCR/CD3 complex. To assess whether the internalization of TAP and Thy-1 might be of importance in their ability to stimulate T cells, we attempted to cross-link these molecules under conditions where the mAb or its cross-linked complex can not enter the cell. We observed that anti-TAP and anti-Thy-1 mAb conjugated to a cell impermeant matrix fail to stimulate T cells. This loss of stimulatory activity was observed with multiple T-T hybridomas and mAb over a wide titration of antibody concentration and was independent of the mAb isotype. Results from experiments with anti-Ig cross-linking of the mAb-PI anchored protein complex suggested that the loss of T cell stimulation upon mAb immobilization is not simply due to an alteration in the degree of antibody cross-linking. These findings were generalized to three distinct PI-anchored proteins: TAP, Thy-1, and Ly6C on normal T cells. When the same cells were stimulated through the TCR/CD3 complex, only immobilized mAb are stimulatory. These results demonstrate a marked difference in the cross-linking requirements for stimulating T cells through PI-anchored molecules in contrast to the transmembrane TCR complex. Furthermore, these findings raise the possibility that molecular internalization of Ab-PI-anchored complexes may be necessary in signaling through these molecules.  相似文献   

11.
Glycosyl-phosphatidylinositol: a versatile anchor for cell surface proteins   总被引:32,自引:0,他引:32  
M G Low 《FASEB journal》1989,3(5):1600-1608
  相似文献   

12.
Thy-1 is a cell surface glycoprotein containing three N-linked glycosylation sites and a glycosylphosphatidylinositol (GPI) anchor. The effect of the anchor on its N-linked glyco-sylation was investigated by comparing the glycosylation of soluble recombinant Thy-1 (sThy-1) with that of recombinant GPI anchored Thy-1, both expressed in Chinese hamster ovary cells. The sThy-1 was produced in a variety of isoforms including some which lacked carbohydrate on all three sequons whereas the GPI anchored form appeared fully glycosylated like native Thy-1. This was surprising as the attachment of N-linked sugars occurs cotranslationally and it was not expected that the presence of a C-terminal GPI anchor signal sequence would affect sequon occupancy. Furthermore sThy-1 lacking glycosylation could be produced with the inhibitor tunicamycin but in contrast cell surface expression of unglycosylated GPI anchored Thy-1 could not be obtained. The GPI anchored form appeared less processed with almost 4-fold more oligo-mannose oligosaccharides than in sThy-1 and also with less sialylated and core fucosylated biantennary glycans. Possible mechanisms whereby the anchor or the anchor signal sequence, control site occupancy and maturation are discussed.  相似文献   

13.
Thy-1 protein, a member of the Ig superfamily, is bound to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. We demonstrate that following anchor cleavage by phospholipase C, the reactivity of the solubilized Thy-1 with several mAbs is lost, and its reactivity with polyclonal anti-Thy-1 Abs is markedly decreased. Hence, solubilized Thy-1 cannot be detected by a range of mAbs. In contrast, enzymatic cleavage of biotinylated Thy-1 yields an intact solubilized protein that can be detected by streptavidin. These results exclude a possible proteolytic degradation of solubilized Thy-1 and suggest that the marked decrease in Thy-1 immunoreactivity following delipidation is due to conformational changes in the Thy-1 protein. We further demonstrate that addition of phospholipase C to preformed Ab-Ag complexes causes dissociation and removal of Thy-1 from the complex, indicating that delipidation of Thy-1 induces a conformational change in Thy-1 that is sufficient to dissociate bound Ab. The possibility should therefore be considered that the GPI anchor affects the conformation of a protein to which it is linked.  相似文献   

14.
Ectopic expression of various members of the human carcinoembryonic antigen (CEA) family of intercellular adhesion molecules in murine myoblasts either blocks (CEA, CEACAM6) or allows (CEACAM1) myogenic differentiation. These surface glycoproteins form a subset of the immunoglobulin (Ig) superfamily and are very closely related, but differ in the precise sequence of their external domains and in their mode of anchorage to the cell membrane. CEA and CEACAM6 are glycophosphatidyl-inositol (GPI) anchored, whereas CEACAM1 is transmembrane (TM) anchored. Overexpression of GPI-linked neural cell adhesion molecule (NCAM) p125, also an adhesion molecule of the Ig superfamily, accelerates myogenic differentiation. The molecular requirements for the myogenic differentiation block were investigated using chimeric constructs in which the COOH-terminal hydrophobic domains of CEA, CEACAM1, and NCAM p125 were exchanged. The presence of the GPI signal sequence specifically from CEA in the chimeras was sufficient to convert both CEACAM1 and NCAM into differentiation-blocking proteins. Conversely, CEA could be converted into a neutral protein by exchanging its GPI anchor for the TM anchor of CEACAM1. Since the external domains of CEA, CEACAM1, and NCAM can all undergo homophilic interactions, and mutations in the self-adhesive domains of CEA abrogate its differentiation-blocking activity, the structural requirements for differentiation-inhibition are any self-adhesive domains attached to the specific GPI anchor derived from CEA. We therefore suggest that biologically significant functional information resides in the processed extreme COOH terminus of CEA and in the GPI anchor that it determines.  相似文献   

15.
A glycophosphatidylinositol (GPI)-linked differentiation antigen expressed on guinea pig T and B lymphocytes was identified by several monoclonal antibodies; it has been shown previously that this membrane protein induced strong polyclonal T cell proliferation upon antibody binding and costimulation by PMA. Purification by immunoadsorption and microsequencing revealed that this T-cell-activating protein is the homologue of Thy-1 or CD90. In contrast to the Thy-1 antigen of most other species, guinea pig Thy-1 has a much higher molecular weight, which is due to a more extensive N-linked glycosylation, bringing the molecular weight of the total antigen up to 36 kDa. Molecular cloning of guinea pig Thy-1 indicated that the deduced molecular weight of the protein backbone is 12,777 after removal of an N-terminal 19-amino-acid leader peptide and cleavage of the 31 amino acids for GPI anchoring the C-terminal end. Sequence comparison showed that guinea pig Thy-1 has an 82% homology to human and a 72% homology to mouse Thy-1 on the amino acid level. Immunohistological staining of cryostat sections revealed intensive staining with the monoclonal antibody H154 on fibroblasts, fibrocytes, Kupffer cells, alveolar macrophages, and mesangial cells. As observed in the human, mouse, and rat, Thy-1 is abundant in the guinea pig brain. Unlike Thy-1 expression in other species, guinea pig Thy-1 is strongly expressed on most resting, nonactivated B cells and, to a lesser extent, on erythrocytes. While treatment of erythrocytes and lymphocytes with GPI-specific phospholipase C largely decreased reactivity with mAb H154, T cells retained the proliferative response to antibody and phorbol esters.  相似文献   

16.
The Thy-1 membrane glycoprotein from rat brain is shown to have structural and sequence homologies with immunoglobulin (Ig) domains on the basis of the following evidence. 1. The two disulphide bonds of Thy-1 are both consistent with the Ig-fold. 2. The molecule contains extensive beta-structure as shown by the c.d. spectrum. 3. Secondary structure prediction locates beta-strands along the sequence in a manner consistent with the Ig-fold. 4. On the basis of rules derived from known beta-sheet structures, a three-dimensional structure with the Ig-fold is predicted as favourable for Thy-1. 5. Sequences in the proposed beta-strands of Thy-1 and known beta-strands of Ig domains show significant sequence homology. This homology is statistically more significant than for the comparison of proposed beta-strand sequences of beta 2-microglobulin with Ig domains. An hypothesis is presented for the possible functional significance of an evolutionary relationship between Thy-1 and Ig. It is suggested that both Thy-1 and Ig evolved from primitive molecules, with an Ig fold, which mediated cell--cell interactions. The present-day role of Thy-1 may be similar to that of the primitive domain.  相似文献   

17.
A serologic cross-reacting homolog to rodent Thy-1 glycoproteins has been isolated from hemocyte cell surfaces of the advanced invertebrate group of tunicates. The Thy-1.1 cross-reacting antigenic activity was followed during purification by inhibiting the binding of MRC OX7 monoclonal antibody to pure rat brain Thy-1 in a soluble phase radioimmunoassay. After solubilization in deoxycholate, tunicate hemocyte Thy-1.1 antigenic activity was purified by affinity chromatography using an MRC OX7 monoclonal antibody affinity column, followed by gel filtration. A 602-fold enrichment in the Thy-1.1 antigenic activity, with a yield of 55.6% compared to the starting crude membrane fraction, was obtained. The antigenic activity was associated with a single glycoprotein of molecular size of 3.1 nm and molecular weight estimated at 27,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (15% gels). Amino acid composition of the purified molecule was compared by the S delta Q index of differences in composition to mammalian and non-mammalian Thy-1 glycoproteins, Ig, major histocompatibility complex-encoded polypeptides, beta 2-microglobulin, and other recognition molecules. With this parameter, the tunicate hemocyte Thy-1 homology revealed significant relatedness to avian and mammalian Thy-1 molecules and was interestingly more related to mu chains of primitive vertebrates and to HLA class I and II encoded polypeptides than to Thy-1 molecules of higher vertebrates. Based upon these observations, the tunicate hemocyte Thy-1 homolog seems to represent an ancestral Thy-1 molecule which, in structural terms, may represent an invertebrate member of the Ig superfamily.  相似文献   

18.
Summary The cell surface differentiation antigen, Thy-1, has been demonstrated by immunofluorescence to be associated with some collagen-based connective tissue. In the rat, the basement membrane of kidney collecting tubules and of certain blood vessels, reticulin of the lamina propria, loose connective tissue in the dermis, and collagen fibres within certain nerve cell tumours, bear the antigen. Other, apparently similar, connective tissue (especially that of muscle and liver) lacked Thy-1. In the mouse, only the connective tissue of the skin was found to bear the antigen. The possible origin of this extracellular Thy-1, and its implications for the function of the molecule, are discussed.Part of this work was supported by grant no. NS10861 from the National Institute of Health and no. BNS 77-15818 from the National Science Foundation, awarded to Dr. S.E. Pfeiffer  相似文献   

19.
We have purified from chicken forebrain a membrane glycoprotein that is enriched in purified synaptic membranes and has an apparent mol.wt. of 22 800 in 15% sodium dodecyl sulphate/polyacrylamide gels. This molecule was compared with rat and human brain Thy-1 glycoproteins purified by the same procedure in order to determine whether it could be a homologue of Thy-1. Although polyvalent heterologous antisera raised against the rat and chicken molecules showed no immunological cross-reactivity with the other glycoprotein, a great deal of physical and chemical similarity was demonstrated between the chicken glycoprotein and rat Thy-1. Their apparent molecular weights, subcellular localization and amino acid and amino sugar compositions are very similar. C.d. spectra show that both molecules contain predominantly a beta-sheet and structure with no detectable alpha-helix. Electrophoretic analysis of the CNBr-cleaved molecules under reducing and non-reducing conditions shows that both molecules contain intramolecular disulphide bridges. Taken together these results suggest that the chicken brain glycoprotein is an immunologically distinct homologue of the mammalian Thy-1 glycoproteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号