首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ejaculates were collected form three mixed-breed male dogs daily for 3 d. The semen was diluted in either a nonfat dried milk solid-glucose (NFDMS-G) or egg yolk citrate (EYC) extender at a concentration of 25 x 10(6) sperm/ml. The diluted samples were exposed to three different storage temperatures (35, 22 and 4 degrees C). Three cooling rates (-1.0, -0.3 and -0.1 degrees C/min) were also investigated at the lowest storage temperature (4 degrees C). The semen was evaluated for total motility, progressive motility and velocity at 0, 6, 12, 24, 48, 72, 96 and 120 h after collection by two independent observers. Interactions between extenders, temperatures and time after collection were found for each of the variables. Nonfat dried milk solid-glucose diluent was superior to EYC (P<0.05) in preservating sperm motility parameters that were evaluated for most of the observations. The evaluated sperm motility parameters were also significantly superior (P<0.05) in semen stored at 4 degrees C than at 35 or 22 degrees C for most of the observations. The progressive motility and velocity of sperm in semen cooled at 4 degrees C in NFDMS-G were higher (P<0.05) at the fast and medium cooling rates (-1.0 and -0.3 degrees C) than at the slow cooling rate (-0.1 degrees C/min) at 24 and 72 h, and at 48 h, respectively. In conclusion, the present study suggests that canine spermatozoal motility is well preserved when a NFDMS-glucose extender is added to the semen and the semen is cooled at a medium or fast rate to a storage temperature of 4 degrees C. Additional studies are needed to evaluate the fertility of semen stored in this manner.  相似文献   

2.
The survival and development of cow eggs in the rabbit oviduct after storage at room temperature and after cooling and storage at 0-7-5 degrees C was examined. In PBS medium at room temperature 88% of Day-5 and 85% of Day-3 eggs showed normal development, but in TCM 199, 71% of Day-5 and only 49% of Day-3 eggs showed normal development. Duration of storage (1 1/2-2 hr or 6 1/2-7 1/2 hr) and cleavage stage before storage had no appreciable effect on development. Some retardation of development occurred in Day-3 eggs after 96 hr in the rabbit oviduct when compared to Day-5 eggs after 48 hr. Cooling of Day-5 and Day-6 eggs to 0-7-5 degrees C resulted in degeneration of a large proportion of eggs. Of the factors examined, storage medium (PBS or PBS+20%FCS), storage time (2 min, 24 hr) and storage temperature (0, 2, 5 or 7-5 degrees C) had little effect, but slower cooling rates tended to improve survival of eggs although the differences were not significant. More morulae (greater than 32 cells) than 8-to 24-celled eggs developed normally.  相似文献   

3.
Katila T 《Theriogenology》1997,48(7):1217-1227
Handling procedures for semen to be used at the stud-farm and for transport are reviewed. Proper handling of semen is required throughout the entire process, from semen collection to the insemination of the mare. Semen shall not be exposed to mechanical damage, light, cold or heat. All equipment that comes in contact with semen must be warm, clean, dry and free from toxic residues. Skim-milk extender appears to be the medium best suited for the preservation of stallion semen during cooling and storage. When used immediately, semen is usually extended 1:1 (v:v), but for transport, concentrations of 25 to 100 x 10(6) spermatozoa/mL are recommended. The proportion of semen plasma should be reduced to < 20%. by centrifuging, by collecting only the first 3 sperm-rich fractions, or by substantially diluting of the ejaculate. The storage temperature can be between 20 to 15 degrees C, if shipment time is no more than 12 h; for longer storage, temperatures < 10 degrees C are recommended. Semen can be cooled rapidly from 35 to 19 degrees C. In the temperature zone between 19 and 8 degrees C, stallion spermatozoa are sensitive to cold shock, and the cooling rate should be slowed to 0.05 degrees C/min. Rapid cooling can be resumed below 8 degrees C. At low temperatures, removal of oxygen-rich air is beneficial for the survival of spermatozoa. The Equitainer transport container keeps a constant temperature of 5 degrees C for 48 h and is therefore recommended for transportation lasting over 24 h.  相似文献   

4.
The objective of this study was to investigate the preservation of spermatozoa in a simple medium without freezing and to examine the effects of the preserved sperm on fertilization and development after injection into mature mouse oocytes. Mouse spermatozoa were collected from two caudae epididymides of mature B6D2F1 males and stored under various conditions: 1) in KSOMaa medium (potassium simplex optimized medium with amino acids) supplemented with 0, 1, or 4 mg/ml BSA and held at room temperature (RT, 27 degrees C); 2) in KSOMaa medium containing 4 mg/ml BSA (KSOM-BSA) and held at 4 degrees C, RT, or 37 degrees C (CO2 incubator); 3) in KSOM-BSA with osmolarity ranging from 271 to 2000 mOsmol, adjusted by addition of NaCl and held at 4 degrees C; and 4) a two-step preservation system consisting of storage in 800 mOsmol KSOM-BSA for 1 wk at RT followed by storage at -20 degrees C. Preservation of mouse spermatozoa at 4 degrees C in a medium with high osmolarity (700-1000 mOsmol) resulted in the highest frequency of live births after intracytoplasmic sperm injection (ICSI) into mature oocytes. The optimal conditions for preservation of mouse spermatozoa were 800 mOsmol KSOM containing 4 mg/ml BSA and a holding temperature of 4 degrees C. More than 40% of oocytes injected with sperm heads stored under these conditions for 2 mo developed to the morula/blastocyst stage in vitro and 39% of the embryos developed to term after transfer to recipient mice. Our results also indicate that mouse spermatozoa can be stored in 800 mOsmol KSOM-BSA medium at RT for 1 wk and then at -20 degrees C for up to 3 mo and retain their competence for ICSI. These new preservation methods permit extended conservation of viable spermatozoa that are capable of supporting normal embryonic development and the live birth of healthy offspring after ICSI.  相似文献   

5.
Two experiments were conducted to examine the effects of cooling rate and storage temperature on motility parameters of stallion spermatozoa. In Experiment 1, specific cooling rates to be used in Experiment 2 were established. In Experiment 2, three ejaculates from each of two stallions were diluted to 25 x 10(6) sperm/ml with 37 degrees C nonfat dry skim milk-glucose-penicillin-streptomycin seminal extender, then assigned to one of five treatments: 1) storage at 37 degrees C, 2) storage at 25 degrees C, 3) slow cooling rate to and storage at 4 degrees C, 4) moderate cooling rate to and storage at 4 degrees C, and 5) fast cooling rate to and storage at 4 degrees C. Total spermatozoal motility (TSM), progressive spermatozoal motility (PSM), and spermatozoal velocity (SV) were estimated at 6, 12, 24, 48, 72, 96 and 120 h postejaculation. The longevity of spermatozoal motility was greatly reduced when spermatozoa were stored at 37 degrees C as compared to lower spermatozoal storage temperatures. At 6 h postejaculation, TSM values (mean % +/- SEM) of semen stored at 37 degrees C, slowly cooled to and stored at 25 degrees C or slowly cooled to and stored at 4 degrees C were 5.4 +/- 1.1, 79.8 +/- 1.6, and 82.1 +/- 1.6, respectively. Mean TSM for semen that was cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a moderate rate for four of seven time periods (6, 24, 72 and 120 h), and it was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a fast rate for five of seven time periods (6, 12, 24, 72 and 120 h). Mean TSM of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 25 degrees C for five of seven time periods (24 to 120 h). A similar pattern was found for PSM. Mean SV of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean SV of semen cooled to 25 degrees C for all time periods. A slow cooling rate (initial cooling rate of -0.3 degrees /min) and a storage temperature of 4 degrees C appear to optimize liquid preservation of equine spermatozoal motility in vitro.  相似文献   

6.
The aim of this study was to improve the freezing protocol of bull sperm, by investigating the influence on sperm viability after freeze/thawing of different freezing medium components, as well as the effect of cooling rates in the different stages of the cooling protocol, in single factor experiments. The experimental variables were: (1) salt-based versus a sugar-based medium (Tris versus sucrose); (2) glycerol concentration; (3) detergent (Equex) concentration; (4) presence of bicarbonate; (5) rate of cooling from 22 degrees C to holding temperature (CR1); (6) holding temperature (HT); (7) rate of cooling from holding temperature to -6 degrees C (CR2); (8) rate of cooling from -10 to -100 degrees C (CR3). All experiments were performed using five bulls per experiment (three ejaculates per bull). Sperm motility after freezing and thawing was assessed by CASA system, and sperm membrane integrity was assessed by flow cytometry. Sucrose-based medium did not offer a clear significant benefit compared to Tris medium. The concentration of Equex that gave the best results in Tris-based media group and sucrose-based media group was in a range between 2-7 and 4-7 g/l, respectively. In both media groups, a glycerol concentration of 800 mM was the best in any post-thaw viability parameters. In the Tris media group, the presence of bicarbonate had a negative effect on sperm viability. CR1 and CR2 had no significant effect on any of the post-thaw sperm viability parameters, but a CR1=0.2 degrees C/min and CR2=4 degrees C/min appeared to give better results in both media. The holding temperature (HT) that gave the best results was found to be in the range of 5-9 degrees C. There was a significant disadvantage of using a low CR3 of 10 degrees C/min, while 150 degrees C/min appeared to be the best cooling rate for either medium.  相似文献   

7.
Adequate cell dehydration is the precipitating element in the successful cryopreservation of plant cells and organs. This could be achieved by using different cooling rates, transfer temperatures and cryoprotectants. Experiments were performed to determine these critical points in the freeze preservation procedure of Cannabis sativa (L.) suspension cultures. The explants were frozen at a cooling rate of 2 degrees C/min, while the transfer temperatures were -10 degrees C, -20 degrees C, -30 degrees C, -40 degrees C and -50 degrees C. The applied cryoprotectants were the DMSO, glycerol, proline and PEG in different concentration. The highest viability (58%) was obtained by using 10% DMSO and at -10 degrees C transfer temperature. The optimum transfer temperature varied remarkably by different cryoprotectant concentrations indicating the importance of their interactions.  相似文献   

8.
Several in vitro studies have demonstrated diminished post-thaw functional activity. Therefore, the aim of this study was to investigate the consequences of thawing and storage method used on the post-thaw functional activity of cryopreserved pig aortas with the aim of adjusting the freezing and thawing protocol so that the vascular segments are preserved in the best possible state, maintaining structure and functionality so that they can later be transplanted with success. In vitro responses of frozen, thawed pig aortas were used to investigate the functional activity after thawing at 15 degrees C and 100 degrees C/min and after storage in gas or liquid phase of liquid nitrogen. Cryopreservation was performed in RPMI 1640 medium + 10% dimethylsulfoxide and the rate of cooling was -1 degrees C/min, until -150 degrees C was reached.After thawing the maximal contractile responses to all the contracting agonists tested (KCl, noradrenaline) were in the ranges of 13-27% compared with the responses in unfrozen pig aortas. Contractile responses were slightly better when thawing was performed at 15 degrees C/min compared with 100 degrees C/min. The endothelium independent relaxant responses to sodium nitroprusside were reduced ( P < 0.05). Cryostorage of pig arteries also resulted in a loss of the endothelium-dependent relaxant response to acetylcholine. The cryopreservation method used provided a limited preservation of pig aorta contractibility, a reduction of the endothelium independent relaxant responses, and no apparent preservation of the endothelium-dependent relaxation. It is possible that further refinements of the cryopreservation protocol might allow better post-thaw functional recovery of pig aortas.  相似文献   

9.
Mechanisms of cryoinjury in living cells   总被引:1,自引:0,他引:1  
Biological metabolism in living cells dramatically diminishes at low temperatures, a fact that permits the long-term preservation of living cells and tissues for either scientific research or many medical and industrial applications (e.g., blood transfusion, bone marrow transplantation, artificial insemination, in vitro fertilization, food storage). However, there is an apparent contradiction between the concept of preservation and experimental findings that living cells can be damaged by the cryopreservation process itself. The challenge to cells during freezing is not their ability to endure storage at very low temperatures (less than -180 degrees C); rather, it is the lethality of an intermediate zone of temperature (-15 to -60 degrees C) that a cell must traverse twice--once during cooling and once during warming. Cryobiological research studies the underlying physical and biological factors affecting survival of cells at low temperatures (during the cooling and warming processes). These factors and mechanisms (or hypotheses) of cryoinjury and its prevention are reviewed and discussed, including the most famous two-factor hypothesis theory of Peter Mazur, concepts of cold shock, vitrification, cryoprotective agens (CPAs), lethal intracellular ice formation, osmotic injury during the addition/removal of CPAs and during the cooling/warming process, as well as modeling/methods in the cryobiological research.  相似文献   

10.
A three-part, coupled model of cell dehydration, nucleation, and crystal growth was used to study intracellular ice formation (IIF) in cultured hepatocytes frozen in the presence of dimethyl sulfoxide (DMSO). Heterogeneous nucleation temperatures were predicted as a function of DMSO concentration and were in good agreement with experimental data. Simulated freezing protocols correctly predicted and explained experimentally observed effects of cooling rate, warming rate, and storage temperature on hepatocyte function. For cells cooled to -40 degrees C, no IIF occurred for cooling rates less than 10 degrees C/min. IIF did occur at faster cooling rates, and the predicted volume of intracellular ice increased with increasing cooling rate. Cells cooled at 5 degrees C/min to -80 degrees C were shown to undergo nucleation at -46.8 degrees C, with the consequence that storage temperatures above this value resulted in high viability independent of warming rate, whereas colder storage temperatures resulted in cell injury for slow warming rates. Cell damage correlated positively with predicted intracellular ice volume, and an upper limit for the critical ice content was estimated to be 3.7% of the isotonic water content. The power of the model was limited by difficulties in estimating the cytosol viscosity and membrane permeability as functions of DMSO concentration at low temperatures.  相似文献   

11.
PURPOSE: Cryopreserved human blood vessels may become important tools in bypass surgery. Optimal cryopreservation of an arterial graft should, therefore, preserve both histological and physiological characteristics of smooth muscle and endothelium comparable to the unfrozen artery. METHODS: Rings from human internal mammary arteries (IMA) were investigated in vitro either unfrozen or after immersion into a cryomedium (RPMI 1640 containing 1.8M Me2SO and 0.1M sucrose) and cryostorage with and without surrounding medium. RESULTS: In unfrozen IMA, neither contractile responses to noradrenaline (NA) nor endothelium-dependent relaxant responses to acetylcholine (ACH) was modified after exposure of the IMA to cryomedium or during activation of protein kinase C by phorbol-12,13-dibutyrate (PDBu). Exposure to cryomedium with gradually increasing Me2SO content before starting the cooling process did not improve the post-thaw functional activity of the artery. Optimal post-thaw recovery of contractile responses to NA and PGF(2alpha) was observed after freezing at a speed of -1.2 and -3 degrees C/min in arteries stored with and without surrounding cryomedium. Compared to unfrozen controls, the ACH-induced endothelium-dependent relaxation during active tone induced by 3 microM PGF(2alpha) reached 16 and 56% after freezing with and without surrounding medium. All functional data were reflected by electron microscopy images showing considerably better preservation of the endothelial layer after freezing without medium. CONCLUSION: Freezing of human arteries at a mean cooling rate of -3 degrees C/min and storage without surrounding medium offers the prospect of optimal preservation of both smooth muscle and endothelial function in cryopreserved human IMA.  相似文献   

12.
Protocols for the successful manipulation and preservation of semen in a given species depend upon a fundamental knowledge of how spermatozoa respond to the physicochemical conditions of the extension media; methods developed for the preservation of eutherian spermatozoa may not necessarily be suitable for marsupial semen. The aim of this study was to investigate the effects on koala sperm motility of serial dilution, changes in temperature, diluent pH and osmolality to establish the optimal physicochemical conditions for short-term semen storage. This study showed that electroejaculated koala semen diluted 1∶1 (v/v) with PBS frequently coagulated after incubation at 35 degrees C, but that further dilution and incubation resulted in a corresponding increase in the percentage of spermatozoa swimming in a non-linear trajectory. The effect of rapid temperature change on the motility of koala spermatozoa was investigated by exposing semen, initially diluted at 35 degrees C, to temperatures of 45, 25, 15 and 5 degrees C. Although sperm motility was reduced after incubation at 45 degrees C, a rapid decrease in temperature of up to 20 degrees C did not result in a significant reduction in sperm motility. However, contrary to evidence in other marsupials, there was a small but significant decrease in sperm motility after rapid cooling of diluted semen from 35 to 5 degrees C. The effects of diluent pH and osmolality on the motility of koala spermatozoa were investigated. These experiments indicated that diluents for koala sperm manipulation should buffer in a pH range of 7-8 and have an osmolality of approximately 300 mmol kg(-1). The final experiment compared the relative effectiveness of Tris-citrate buffer (1% glucose) and PBS to maintain koala sperm motility over a range of incubation temperatures (5-35 degrees C) for up to 8 days. Reduction in sperm motility was directly related to temperature, and motility was sustained for the longest duration when stored at 5 degrees C. The Tris-citrate buffer solution was superior to PBS as a preservation diluent at all temperatures, and koala spermatozoa remained motile even after 42 days storage at 5 degrees C. Spermatozoa diluted in PBS (with Ca(2+) or Mg(2+)) and cooled to 5 degrees C showed evidence of an unusual motility pattern, similar to that of hyperactivated eutherian spermatozoa. This study showed that koala spermatozoa respond to different physicochemical conditions associated with short-term liquid storage in essentially the same way as the spermatozoa of eutherian mammals, although koala spermatozoa appear to be more tolerant of rapid temperature shock. The results of this study can be used to make informed selections with regard to appropriate diluent composition and improved short-term sperm preservation protocols and represent the first such database for any species of marsupial.  相似文献   

13.
Experiments were conducted to determine temperatures between 24 and 4 degrees C at which stallion spermatozoa are most susceptible to cold shock damage. Semen was diluted to 25 x 10(6) spermatozoa/ml in a milk-based extender. Aliquots of extended semen were then cooled in programmable semen coolers. Semen was evaluated by computerized semen analysis initially and after 6, 12, 24, 36 and 48 hours of cooling. In Experiment 1A, semen was cooled rapidly (-0.7 degrees C/minute) from 24 degrees C to either 22, 20, 18 or 16 degrees C; then it was cooled slowly (-0.05 degrees C/minute) to a storage temperature of 4 degrees C. In Experiment 1B, rapid cooling proceeded from 24 degrees C to either 22, 19, 16, or 13 degrees C, and then slow cooling occurred to 4 degrees C. Initiating slow cooling at 22 or 20 degrees C resulted in higher (P<0.05) total and progressive motility over the first 24 hours of cooling than initiating slow cooling at 16 degrees C. Initiation of slow cooling at 22 or 19 degrees C resulted in higher (P<0.05) total and progressive motility over 48 hours of cooled storage than initiation of slow cooling at 16 or 13 degrees C. In Experiment 2A, semen was cooled rapidly from 24 to 19 degrees C, and then cooled slowly to either 13, 10, 7 or 4 degrees C, at which point rapid cooling was resumed to 4 degrees C. Resuming the fast rate of cooling at 7 degrees C resulted in higher (P<0.05) total and progressive motility at 36 and 48 hours of cooled storage than resuming fast cooling at 10 or 13 degrees C. In Experiment 2B, slow cooling proceeded to either 10, 8, 6 or 4 degrees C before fast cooling resumed to 4 degrees C. There was no significant difference (P>0.05) at most storage times in total or progressive motility for spermatozoa when fast cooling was resumed at 8, 6 or 4 degrees C. In Experiment 3, cooling units were programmed to cool rapidly from 24 to 19 degrees C, then cool slowly from 19 to 8 degrees C, and then resume rapid cooling to storage temperatures of either 6, 4, 2 or 0 degrees C. Storage at 6 or 4 degrees C resulted in higher (P<0.05) total and progressive motility over 48 hours of storage than 0 or 2 degrees C.  相似文献   

14.
Three experiments were designed to analyze the effects of cooling rate on survival of stallion spermatozoa in a milk-based extender, at 0 to 96 hours after reaching the desired temperature. The samples were warmed to 37 degrees C and were evaluated by computer-assisted analysis of sperm motility. In Experiment 1, rate of cooling between 37 and 20 degrees C was evaluated. Sperm motion was not affected by cooling at plunge, -0.42 or -0.28 degrees C/minute. However, storage of spermatozoa at 5 degrees C after slow cooling below 20 degrees C was superior to storage at 20 degrees C. In Experiment 2, 3 cooling rates from 37 degrees to 5 degrees C were evaluated. Cooling at either -0.05 or -0.7 degrees C/minute was superior (P<0.05) to plunging spermatozoa to 5 degrees C. Cooling at -0.05 degrees C/minute rather than -0.7 degrees C/minute maximized the percentage of motile spermatozoa and their curvilinear velocity. In Experiment 3, cooling rates from 20 to 5 degrees C were evaluated, with all samples cooled at -0.7 degrees C/minute from 37 to 20 degrees C. Sperm motion was similar (P>0.05) after cooling below 20 degrees C at -0.012, -0.05 or -0.10 degrees C/minute, and the 2 slower rates were superior (P<0.05) to cooling at -0.3 degrees C/minute. It was concluded that stallion spermatozoa can be cooled rapidly from 37 to 20 degrees C, but should be cooled at 相似文献   

15.
We have studied the viability of Haemophilus spp. preserved for 5 to 12 months at -70 degrees C. The following media were used: Laboratoire de Santé Publique du Québec (LSPQ) preservation medium, trypticase soy broth with 10 degrees C (vol/vol) glycerol and 40 degrees C (vol/vol) horse serum (TSBG), and Levinthal's broth (LB) medium. Three clinical isolates of both H. influenzae and H. parainfluenzae were used. After 5 months no differences in viability were observed between strains preserved in TSBG and strains preserved in LB, but a significant loss of viability was observed in strains preserved in LSPQ medium. No significant changes in antimicrobial susceptibility were observed after 5-month storage in any medium. After 12 months, TSBG appeared to be the most suitable cryopreservation medium for the six strains tested. We conclude that TSBG represents a good medium for the maintenance of Haemophilus spp. at -70 degrees C for up to 1 year.  相似文献   

16.
Cryoinjury in endothelial cell monolayers   总被引:1,自引:0,他引:1  
Developing successful cryopreservation strategies for corneas have proven to be more difficult than anticipated, because of the resulting loss of viability and detachment of endothelial cells from Descemet's membrane following cryopreservation of corneas. The objectives of this study are to develop a more detailed understanding of cryoinjury in human corneal endothelial cell (HCEC) monolayers and to examine the effects of storage temperature, cryoprotectant type and concentration, and cooling/warming rates on HCEC monolayers. Monolayers of endothelial cells attached to collagen-coated glass, immersed in an experimental solution (with and without cryoprotectant) were cooled at 1 degrees C/min to various temperatures (-5 to -40 degrees C), then thawed directly or cooled rapidly to -196 or to -80 degrees C before thawing. Cryoprotectants used were dimethyl sulfoxide and propylene glycol in concentrations of 1 and 2M. Monolayers were assessed for membrane integrity and detachment using SYTO/ethidium bromide fluorescent stain. The presence of cryoprotectants resulted in high recovery of membrane integrity and low monolayer detachment in monolayers thawed directly from temperatures down to -40 degrees C. In contrast, there was excessive detachment and loss of membrane integrity in monolayers cooled to -196 degrees C compared to monolayers cooled to -80 degrees C. Also, increasing cryoprotectant concentrations did not improve recovery of the monolayers. The higher recovery and lower detachment after storage at -80 degrees C compared to storage at -196 degrees C suggest that storage temperatures for corneas should be re-evaluated.  相似文献   

17.
We have previously reported high survival in mouse sperm frozen at 21 degrees C/min to -70 degrees C in a solution containing 18% raffinose in 0.25 x PBS (400 mOsm) and then warmed rapidly at approximately 2000 degrees C/min, especially under lowered oxygen tensions induced by Oxyrase, a bacterial membrane preparation. The best survival rates were obtained in the absence of glycerol. The first concern of the present study was to determine the effects of the cooling rate on the survival of sperm suspended in this medium. The sperm were cooled to -70 degrees C at rates ranging from 0.3 to 530 degrees C/min. The survival curve was an inverted "U" shape, with the highest motility occurring between 27 and 130 degrees C/min. Survival decreased precipitously at higher cooling rates. Decreasing the warming rate, however, decreased survivals at all cooling rates. The motility depression with slow warming was especially evident in sperm cooled at the optimal rates. This fact is consistent with our current view that the frozen medium surrounding sperm cells is in a metastable state, perhaps partly vitrified as a result of the high concentrations of sugar. The decimation of sperm cooled more rapidly than optimum (>130 degrees C/min), even with rapid warming, is consistent with the induction of considerable quantities of intracellular ice at these rates. When glycerol was added to the above medium, motilities were also dependent on the cooling rate, but they tended to be substantially lower than those obtained in the absence of glycerol. The minimum temperature in the above experiments was -70 degrees C. When sperm were frozen to -70 degrees C at optimum rates, lowering the temperature to -196 degrees C had no adverse effect.  相似文献   

18.
The effect of different cooling temperatures and durations on resistance to freezing and to frozen storage at -20 degrees C in Lactobacillus acidophilus RD758 was studied, by using a central composite rotatable design. A cold adaptation was observed when the cells were maintained at moderate temperature (26 degrees C) for a long time (8h) before being cooled to the final temperature of 15 degrees C. These conditions led to a low rate of loss in acidification activity during frozen storage (0.64 minday(-1)) and a high residual acidification activity after 180 days of frozen storage (1011 min). The experimental design allowed us to determine optimal cooling conditions, which were established at 28 degrees C during 8h. Adaptation to cold temperatures was related to an increase in the unsaturated to saturated fatty acid ratio and in the relative cycC19:0 fatty acid concentration. Moreover, an increased synthesis of four specific proteins was observed as an adaptive response to the optimal cooling conditions. They included the stress protein ATP-dependent ClpP and two cold induced proteins: pyruvate kinase and a putative glycoprotein endopeptidase.  相似文献   

19.
Differential scanning calorimetry (DSC) was used to determine the amount of water that freezes in an aqueous suspension of multilamellar dipalmitoylphosphatidylcholine (DPPC) liposomes. The studies were performed with dehydrated suspensions (12-20 wt% water) and suspensions containing an excess of water (30-70 wt% water). For suspensions that contained > or = 18 wt% water, two ice-formation events were observed during cooling. The first was attributed to heterogeneous nucleation of extraliposomal ice; the second was attributed to homogeneous nucleation of ice within the liposomes. In suspensions with an initial water concentration between 13 and 16 wt%, ice formation occurred only after homogeneous nucleation at temperatures below -40 degrees C. In suspensions containing < 13 wt% water, ice formation during cooling was undetectable by DSC, however, an endotherm resulting from ice melting during warming was observed in suspensions containing > or = 12 wt% water. In suspensions containing < 12 wt% water, an endotherm corresponding to the melting of ice was not observed during warming. The amount of ice that formed in the suspensions was determined by using an improved procedure to calculate the partial area of the endotherm resulting from the melting of ice during warming. The results show that a substantial proportion of water associated with the polar headgroup of phosphatidylcholine can be removed by freeze-induced dehydration, but the amount of ice depends on the thermal history of the samples. For example, after cooling to -100 degrees C at rates > or = 10 degrees C/min, a portion of water in the suspension remains supercooled because of a decrease in the diffusion rate of water with decreasing temperature. A portion of this supercooled water can be frozen during subsequent freeze-induced dehydration of the liposomes under isothermal conditions at subfreezing storage temperature Ts. During isothermal storage at Ts > or = -40 degrees C, the amount of unfrozen water decreased with decreasing Ts and increasing time of storage. After 30 min of storage at Ts = -40 degrees C and subsequent cooling to -100 degrees C, the amount of water associated with the polar headgroups was < 0.1 g/g of DPPC. At temperatures > -50 degrees C, the amount of unfrozen water associated with the polar headgroups of DPPC decreased with decreasing temperature in a manner predicted from the desorption isotherm of DPPC. However, at lower temperatures, the amount of unfrozen water remained constant, in large part, because the unfrozen water underwent a liquid-to-glass transformation at a temperature between -50 degrees and -140 degrees C.  相似文献   

20.
Corneal cryopreservation with dextran.   总被引:3,自引:0,他引:3  
Different methods of corneal cryopreservation have been introduced, those employing intracellular cryoprotectants such as Me2SO or glycerol being the most widely favored. We investigated the influence of several freeze-thaw trauma variables on the survival of porcine endothelial monolayers when employing the extracellular cryoprotective agent dextran. We first examined the effects of various dextran concentrations and then, having ascertained the optimal concentration, further investigated the influence of fetal calf serum (FCS) concentration in the cryopreservation medium, the cooling rate, the thawing temperature, and the length of the preincubation in the freezing medium prior to cryopreservation. The numerical densities of endothelial cells were determined at dissection in hypoosmotic balanced salt solution and after organ culture by staining with alizarin red S and trypan blue. Morphological evaluation was not performed directly after thawing but after a subsequent organ culture at 37 degrees C to detect latent cell damage after freeze-thaw trauma. Our data revealed that corneas cryopreserved in minimal essential medium containing 10% dextran but lacking FCS, preincubated for 3 h, frozen at a cooling rate of 1 degrees C/min, and thawed at 37 degrees C incurred the lowest cell losses (22.4%, SD +/- 3.8). We conclude that dextran is an effective cryoprotectant for freezing of porcine corneas. However, variations between species in the results of cryopreservation require further investigation of an in vivo animal model and studies with human corneas before its clinical use can be recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号