首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary

The segregation of proteins to specific cellular membranes is recognized as a common phenomenon. In oligodendrocytes of the central nervous system, localization of certain proteins to select regions of the plasma membrane gives rise to the myelin membrane. Whilst the fundamental structure and composition of myelin is well understood, less is known of the mechanisms by which the constituent proteins are specifically recruited to those regions of plasma membrane that are forming myelin. The two principal proteins of myelin, the myelin basic protein and proteolipid protein, differ greatly in character and sites of synthesis. The message for myelin basic protein is selectively translocated to the ends of the cell processes, where it is translated on free ribosomes and is incorporated directly into the membrane. Proteolipid protein synthesized at the rough endoplasmic reticulum, processed through the Golgi apparatus, and presumably transported via vesicles to the myelin membrane. This review examines the mechanisms by which these two proteins are targeted to the myelin membrane.  相似文献   

2.
The orientation of proteins within a cell membrane can often be difficult to determine. A number of models have been proposed for the orientation of the myelin protein, proteolipid protein (PLP), each of which includes exposed domains on the intracellular and extracellular membrane faces. Immunolabeling experiments have localized the C-terminus and the region spanning amino acids 103–116 to the cytoplasmic face of the membrane, but no well characterized antibodies have been available that label extracellular PLP domains. In this report, we describe the generation and characterization of mouse monoclonal antibodies (mAb) against putative extramembrane domains. Three of the mAb, specific for PLP peptides 40–59, 178–191, or 215–232, immunostain live oligodendrocytes, indicating that these regions of the molecule are exposed on the external surface of the cell. In addition, we have used these mAb to study the time-course of incorporation of PLP into the oligodendrocyte membrane. These studies increase our knowledge of the orientation of PLP in the lipid bilayer and are relevant for understanding myelin function. Special issue dedicated to Dr. Marion E. Smith. Marion has filled many roles in my life (M. Lees): She has been a long time colleague, personal friend, meeting roommate, and traveling companion. Even our husbands have become good friends. Further, Marion’s scientific contributions in multiple aspects of neurochemistry have made her a role model for all scientists, and particularly for young women. It should be noted that all of the authors of this paper just happen to be women.  相似文献   

3.
Song  J.  O'connor  L.T.  Yu  W.  Baas  P.W.  Duncan  I.D. 《Brain Cell Biology》1999,28(8):671-684
The taiep rat is a myelin mutant in which hypomyelination and progressive demyelination of the CNS are accompanied by an accumulation of microtubules within oligodendrocytes. To investigate whether and how the myelin defects were caused by microtubule abnormalities, we have established a taiep oligodendrocyte culture system in which mutant cells produce abnormally high levels of tubulin and microtubule-associated proteins and exhibit myelin defects. The studies show that abnormal microtubule accumulation and tight microtubule bundles developed in the taiep oligodendrocytes, with a higher ratio of minus-end-distal to plus-end-distal microtubules in their processes. Initially, in culture, immature taiep oligodendrocytes which have higher levels of tubulin than controls extend roughly twice as much membrane sheet as controls. The membrane sheets of the mature taiep oligodendrocytes which display the microtubule accumulation, however, grew much less rapidly compared to controls. By the fifth day in culture, a majority of the taiep oligodendrocytes had ceased the expansion of their membrane sheets and in some cases the sheets retracted. The levels of the myelin proteins, proteolipid protein and myelin-associated glycoprotein, were also markedly diminished in the mature taiep oligodendrocytes. Treatment with the microtubule depolymerizing drug nocodazole prevented not only the accumulation of microtubules but also restored the normal distribution of proteolipid proteins within the taiep oligodendrocytes. These data demonstrate that myelin synthesis in the oligodendrocyte cultures relies on the formation of a normal microtubule array, and the microtubule abnormalities are directly responsible for the myelin deficit in the taiep oligodendrocytes.  相似文献   

4.
A synthetic peptide derived from the fibronectin cell-binding domain, GRGDSP, inhibits the adhesion of rat oligodendrocytes to a number of substrates. However, while GRGDSP inhibited the adhesion of cells in a short term adhesion assay, the presence of the peptide did not prevent cells from adhering and thriving in longer term culture. The morphological characteristics of individual cells cultured with 0.1 mg/ml GRGDSP were similar to untreated cultures; small rounded cell bodies radiating numerous fine processes. Peptide-treated cultures were inhibited in their ability to produce myelin specific components. The characteristic developmental peak in sulfolipid synthesis which occurs both in vivo and in vitro was completely inhibited when cells were cultured with GRGDSP. In addition, the synthesis of myelin basic protein was inhibited. Ultrastructurally, cells treated with GRGDSP showed a greatly reduced number of multilamellar myelin-like membrane figures than cells grown without peptide or those grown with GRADSP. Cultured oligodendrocytes did not become sensitive to inhibition of sulfolipid synthesis by GRGDSP until a period immediately preceding the peak in sulfolipid biosynthesis. The effects of pretreatment with peptide for 5 d before this time were completely reversible. Pretreatment which extended into the time of peak myelin synthesis resulted in permanent impairment in the cell's ability to synthesize sulfolipid. The oligodendrocyte's ability to synthesize a myelin-like membrane in culture is, in part, inherent since it occurs in the absence of neurons. The present results indicate that myelin membrane production is also subject to external control since it appears that occupancy of an RGD-dependent cell surface receptor during a critical period of in vitro development is required for the oligodendrocyte to produce myelin-like membrane.  相似文献   

5.
Transgenic mice were generated with a fusion gene carrying a portion of the murine myelin proteolipid protein (PLP) gene, including the first intron, fused to the E. coli LacZ gene. Three transgenic lines were derived and all lines expressed the transgene in central nervous system white matter as measured by a histochemical assay for the detection of beta-galactosidase activity. PLP-LacZ transgene expression was regulated in both a spatial and temporal manner, consistent with endogenous PLP expression. Moreover, the transgene was expressed specifically in oligodendrocytes from primary mixed glial cultures prepared from transgenic mouse brains and appeared to be developmentally regulated in vitro as well. Transgene expression occurred in embryos, presumably in pre- or nonmyelinating cells, rather extensively throughout the peripheral nervous system and within very discrete regions of the central nervous system. Surprisingly, beta- galactosidase activity was localized predominantly in the myelin in these transgenic animals, suggesting that the NH2-terminal 13 amino acids of PLP, which were present in the PLP-LacZ gene product, were sufficient to target the protein to the myelin membrane. Thus, the first half of the PLP gene contains sequences sufficient to direct both spatial and temporal gene regulation and to encode amino acids important in targeting the protein to the myelin membrane.  相似文献   

6.
The authors present a brief historical sketch of the development of our understanding of immune responses to myelin proteolipid protein (PLP) and the acceptance of PLP as a potent antigen in the induction of experimental allergic encephalomyelitis (EAE). The distinct characteristics of the PLP molecule that may contribute to complex immune responses to this protein are reviewed and these responses are compared with those to MBP, both in the pathology of EAE and at the level of the T cell. Recent evidence demonstrating differences between T cell responses to PLP and MBP is reviewed. Finally, the potential contribution of immune responses to PLP in human diseases, particularly mutiple sclerosis (MS), that have been identified to date are then summarized.For the authors to write a review on PLP and its role in EAE without Marjorie is like their sailing a ship without a captain, compass or rudder. This review is largely based on work and ideas generated in Marjorie's laboratory, but it was prepared without her input. Consequently, it lacks her meticulous reflection on the structure of each of its sentences and on the use of each word. Papers written with Marjorie are usually honed to near perfection late into the evening at her kitchen table in Newton, where food, ideas, and warmth abound, and where her very patient and accommodating husband Sidney and a demanding but lovable canine are close at hand. Writing this essay gave the authors a chance to recognize our scientific forebears, to consider where we are at this point and to contemplate our future directions in studying immune responses to PLP. We are, indeed, very grateful and indebted to Marjorie for her generous personal and scientific support, wise guidance, inspiration, strength, energy and, most importantly, friendship. Marjorie, we thank you, you are our role model, and we affectionately anticipate many more years of continued collaboration with you.Abbreviations used in this paper CNS central nervous system - EAE experimental allergic encephalomyelitis - MBP myelin basic protein - MHC major histocompatibility complex - MOG myelin oligodendrocyte cyte glycoprotein - MS multiple sclerosis - PLP myelin proteolipid protein - PNS peripheral nervous system - TcR T cell receptor Special issue dedicated to Dr. Marjorie B. Lees.  相似文献   

7.
Myelin basic proteins (MBPs) from 6-day-old, 10-day-old, 20-day-old and adult normal mouse brain were compared with those from 20-day-old jimpy (dysmyelinating mutant) mouse brain to determine the effect of reduced levels of proteolipid protein (PLP) on MBPs. Alkaline-urea-gel electrophoresis showed that 6-day-old and 10-day-old normal and jimpy MBPs lacked charge microheterogeneity, since C8 (the least cationic of the components; not be confused with complement component C8) was the only charge isomer present. In contrast, MBPs from 20-day-old and adult normal mouse brain displayed extensive charge microheterogeneity, having at least eight components. A 32 kDa MBP was the major isoform observed on immunoblots of acid-soluble protein from 6-day-old and 10-day-old normal and 20-day-old jimpy mouse brain. There were eight bands present in 20-day-old and adult normal mouse brain. Purified human MBP charge heteromers C1, C2, C3 and C4 reacted strongly with rat 14 kDa MBP antiserum, whereas the reaction with human C8 was weak. This suggested that MBPs from early-myelinating and jimpy mice did not react to MBP antisera because C8 was the major charge isomer in these animals. Purification of MBPs from normal and jimpy brain by alkaline-gel electrophoresis showed that both normal and jimpy MBPs have size heterogeneity when subjected to SDS/PAGE. However, the size isoforms in normal mouse brain (32, 21, 18.5, 17 and 14 kDa) differed from those in jimpy brain (32, 21, 20, 17, 15 and 14 kDa) in both size and relative amounts. Amino acid analyses of MBPs from jimpy brain showed an increase in glutamic acid, alanine and ornithine, and a decrease in histidine, arginine and proline. The changes in glutamic acid, ornithine and arginine are characteristic of the differences observed in human C8 when compared with C1.  相似文献   

8.
Oligodendrocytes, the myelin-forming cells of the central nervous system, were cultured from newborn rat brain and optic nerve to allow us to analyze whether two transmembranous myelin proteins, myelin-associated glycoprotein (MAG) and proteolipid protein (PLP), were expressed together with myelin basic protein (MBP) in defined medium with low serum and in the absence of neurons. Using double label immunofluorescence, we investigated when and where these three myelin proteins appeared in cells expressing galactocerebroside (GC), a specific marker for the oligodendrocyte membrane. We found that a proportion of oligodendrocytes derived from brain and optic nerve invariably express MBP, MAG, and PLP about a week after the emergence of GC, which occurs around birth. In brain-derived oligodendrocytes, MBP and MAG first emerge between the fifth and the seventh day after birth, followed by PLP 1 to 2 d later. All three proteins were confined to the cell body at that time, although an extensive network of GC positive processes had already developed. Each protein shows a specific cytoplasmic localization: diffuse for MBP, mostly perinuclear for MAG, and particulate for PLP. Interestingly, MAG, which may be involved in glial-axon interactions, is the first myelin protein detected in the processes at approximately 10 d after birth. MBP and PLP are only seen in these locations after 15 d. All GC-positive cells express the three myelin proteins by day 19. Simultaneously, numerous membrane and myelin whorls accumulate along the oligodendrocyte surface. The sequential emergence, cytoplasmic location, and peak of expression of these three myelin proteins in vitro follow a pattern similar to that described in vivo and, therefore, are independent of continuous neuronal influences. Such cultures provide a convenient system to study factors regulating expression of myelin proteins.  相似文献   

9.
Myelin is a specialized membrane enriched in glycosphingolipids and cholesterol that contains a limited spectrum of proteins. We investigated the assembly of myelin components by oligodendrocytes and analyzed the role of lipid-protein interactions in this process. Proteolipid protein (PLP), the major myelin protein, was recovered from cultured oligodendrocytes from a low-density CHAPS-insoluble membrane fraction (CIMF) enriched in myelin lipids. PLP associated with the CIMF after leaving the endoplasmic reticulum but before exiting the Golgi apparatus, suggesting that myelin lipid and protein components assemble in the Golgi complex. The specific association of PLP with myelin lipids in CIMF was supported by the finding that it was efficiently cross-linked to photoactivable cholesterol, but not to phosphatidylcholine, which is underrepresented in both myelin and CIMF. Furthermore, depletion of cholesterol or inhibition of sphingolipid synthesis in oligodendrocytes abolished the association of PLP with CIMF. Thus, PLP may be recruited to myelin rafts, represented by CIMF, via lipid-protein interactions. In contrast to oligodendrocytes, after transfection in BHK cells, PLP is absent from isolated CIMF, suggesting that PLP requires specific lipids for raft association. In mice deficient in the enzyme ceramide galactosyl transferase, which cannot synthesize the main myelin glycosphingolipids, a large fraction of PLP no longer associates with rafts. Formation of a cholesterol- and galactosylceramide-rich membrane domain (myelin rafts) may be critical for the sorting of PLP and assembly of myelin in oligodendrocytes.  相似文献   

10.
Sedimentation velocity and equilibrium experiments have revealed an extremely pressure-sensitive aggregation of myelin proteolipid protein in the presence of Triton X-100, dissociation of the protein aggregate being observed at pressures that are several orders of magnitude lower than those effecting disaggregation of many other proteins. These results highlight the need to employ a range of angular velocities in sedimentation studies of intrinsic membrane protein.  相似文献   

11.
12.
Mice ranging in age from 16 to 44 days were injected intracerebrally with 3H-leucine, and incorporation into total brain proteolipids and the myelin proteolipid protein was measured. All proteolipids were isolated from whole brain by ether precipitation and separated into their individual components by SDS polyacrylamide gel electrophoresis. Two major proteolipids with apparent molecular weights of 20,700 and 25,400 were observed in these preparations, and their proportion increased over the developmental period examined. A Ferguson plot analysis comparing these proteins with those of isolated myelin showed that the 25,400-dalton proteolipid component from whole brain was the myelin proteolipid protein. Rates of incorporation of 3H-leucine into total brain proteolipids peaked at 22 days of age. Synthesis of the myelin proteolipid protein increased rapidly to a maximum value at 22 days and decreased rather slowly until at 44 days it was about 83% of its maximum rate of synthesis. The data indicate that the developmental pattern of synthesis of the myelin proteolipid protein is unlike that of the myelin basic proteins. Synthesis of the major myelin proteins is developmentally asynchronous in that peak synthesis of the myelin proteolipid appears to occur several days later than the basic proteins. In addition, it maintains its maximum rate of synthesis over a longer period of time than do the basic proteins.  相似文献   

13.
Oligodendrocytes have the highest rate of metabolic activity in the brain and are highly vulnerable to oxidative stress. In this work we determined the protective effect of Trolox, a water-soluble analogue of vitamin E, and insulin, a peptide shown to be neuroprotective, in oligodendrocyte lesion induced by hydrogen peroxide (H2O2). Exposure of primary cultures of rat oligodendrocytes to H2O2 dose-dependently decreased their reducing capacity, as determined by the MTT assay. H2O2 (100 μM) had no effect on Bax levels, active-caspase-3, DNA fragmentation or lactate dehydrogenase (LDH) leakage. Nevertheless, under these conditions, H2O2 decreased the levels of myelin basic protein (MBP), used as a marker for oligodendrocyte myelin membrane. Treatment with insulin alone increased MBP levels, but no changes were observed in the presence of insulin plus H2O2. In contrast, incubation with Trolox completely prevented H2O2-induced decrease in MBP expression, suggesting that vitamin E analogues may prevent against oligodendrocyte oxidative damage.  相似文献   

14.
Oligodendrocytes have the highest rate of metabolic activity in the brain and are highly vulnerable to oxidative stress. In this work we determined the protective effect of Trolox, a water-soluble analogue of vitamin E, and insulin, a peptide shown to be neuroprotective, in oligodendrocyte lesion induced by hydrogen peroxide (H2O2). Exposure of primary cultures of rat oligodendrocytes to H2O2 dose-dependently decreased their reducing capacity, as determined by the MTT assay. H2O2 (100 μM) had no effect on Bax levels, active-caspase-3, DNA fragmentation or lactate dehydrogenase (LDH) leakage. Nevertheless, under these conditions, H2O2 decreased the levels of myelin basic protein (MBP), used as a marker for oligodendrocyte myelin membrane. Treatment with insulin alone increased MBP levels, but no changes were observed in the presence of insulin plus H2O2. In contrast, incubation with Trolox completely prevented H2O2-induced decrease in MBP expression, suggesting that vitamin E analogues may prevent against oligodendrocyte oxidative damage.  相似文献   

15.
Mutations of the myelin proteolipid protein gene (Plp) are associated with excessive programmed cell death (PCD) of oligodendrocytes. We show for the first time that PLP is a molecule ubiquitously expressed in non-neural tissues during normal development, and that the level of native PLP modulates the level of PCD. We analyze three non-neural tissues, and show that native PLP is expressed in trophoblasts, spermatogonia, and cells of interdigital webbing. The non-neural cells that express high levels of native PLP also undergo PCD. The level of PLP expression modulates the level of PCD because mice that overexpress native PLP have increased PCD and mice deficient in PLP have decreased PCD. We show that overexpression of native PLP causes a dramatic acidification of extracellular fluid that, in turn, causes increased PCD. These studies show that the level of native PLP modulates the amount of PCD during normal development via a pH-dependent mechanism.  相似文献   

16.
Autoacylation of myelin proteolipid protein with acyl coenzyme A   总被引:7,自引:0,他引:7  
Rat brain myelin proteolipid protein (PLP) is known to contain long chain, covalently bound fatty acids. In the course of characterizing the mechanism of acylation, we found that the isolated PLP, in the absence of any membrane fraction, was esterified after incubation with [3H]palmitoyl coenzyme A (CoA). This observation demonstrated that the protein acts as both an acylating enzyme and an acceptor. Thus, acylation occurs by an autocatalytic process. The possibility of a separate acyltransferase that copurifies with PLP was essentially excluded by adding brain subcellular fractions to the reaction mixtures and by changing the isolation procedure. After deacylation, the protein was acylated at a 4-fold greater rate, suggesting that the original sites were reacylated. The palmitoyl-CoA concentration followed Michaelis kinetics, confirming that spontaneous acylation was not occurring. Pulse-chase experiments indicated that the reaction entails net addition of acyl groups. Although fatty acids are bound via an O-ester linkage, free SH groups are required in the reaction. Denaturation of the protein by sodium dodecyl sulfate or heat inhibits the reaction, whereas cerulenin has little or no effect. PO, the major protein in peripheral nerve myelin, is also an acylated protein, but it was not labeled upon incubation of either peripheral myelin or the isolated protein with [3H]palmitoyl-CoA, demonstrating that it is acylated by a different route. Several synthetic peptides derived from PLP sequences with sites known to be acylated in vivo as well as a series of deacylated PLP tryptic peptides were not labeled, indicating that integrity of the protein is required for acylation. Limited proteolysis and peptide mapping showed that the same sites are acylated in vitro or in vivo, suggesting that the autocatalytic acylation reaction is physiological.  相似文献   

17.
Peptides according to amino-acid sequences of the N- and C-terminus of lipophilin (proteolipid protein, PLP) (Gly1-Phe15 = 1; Thr261-Phe276 = 6) and of the other four hydrophilic domains (Glu37-Leu60 = 2; Arg97-Leu112 = 3; Gly119-Gly127 = 3A; Trp144-Tyr156 = 3B; Lys191-Ala203 = 4; Asn222-Phe232 = 5) have been synthesized by the solid-phase Fmoc method, linked covalently to keyhole limpet hemocyanin (KLH) and used as antigens. Monospecific antibodies against these antigens were isolated by affinity chromatography. Each antibody recognized its epitope in isolated partially delipidated PLP with the ELISA technique, western blot, thin sections of paraffin embedded rat brains and in the plasma membrane of appropriately fixed/permeabilized rat oligodendrocytes in culture. After fixation with formaldehyde antipeptide 3A antibody stained intact non-permeabilized cells. Therefore the epitope 3A must be located on the extracellular surface of the membrane. This is in full support of our previous biochemical results on the orientation of lipophilin in the myelin membrane.  相似文献   

18.
Acylation of endogenous myelin proteolipid protein with different acyl-CoAs   总被引:8,自引:0,他引:8  
Fatty acyltransferase activity that catalyzes the transfer of palmitic acid from palmitoyl-CoA to the endogenous myelin proteolipid protein has been demonstrated in isolated rat brain myelin. Optimum enzyme activity for the acylation of proteolipid protein was obtained in 0.1% Triton X-100, 2 mM MgCl2, and 1 mM dithiothreitol at a pH of 7.5 and at 37 degrees C. Other detergents had little or no effect on the reaction whereas acylation was completely abolished by sodium dodecyl sulphate (0.1%). Pulse-chase experiments indicated that the reaction involves the net addition of fatty acid to the protein and not a rapid fatty acid exchange. The rate of acylation was linear up to 30 min, indicating that the concentration of endogenous protein acceptor was constant. Under these conditions and at short time periods, the enzyme activity versus acyl-CoA concentration showed a hyperbolic curve. The apparent Km and Vmax for palmitoyl-CoA was 41 microM and 115 pmol/mg protein/min. Similar values were obtained for stearoyl and oleoyl-CoA, whereas myristoyl-CoA showed a lower specificity for the enzyme. The acyl-CoA specificity was also studied in competition experiments using several saturated and unsaturated fatty acid-CoAs. The product of the reaction was identified as myelin proteolipid protein and the fatty acid was shown to be attached to the protein via an ester linkage. Limited proteolysis and peptide mapping showed that the same sites on the proteolipid protein were acylated when the reaction was carried out in isolated myelin preparations or in brain tissue slices, suggesting physiological importance for the in vitro acylation of endogenous myelin proteolipid protein.  相似文献   

19.
O A Bizzozero  M B Lees 《Biochemistry》1986,25(22):6762-6768
The effect of covalently bound fatty acid on the conformation of the myelin proteolipid protein has been studied by ultraviolet and intrinsic fluorescence spectroscopy. With dimethyl sulfoxide used as a perturbant, the exposure of Trp and Tyr residues in various mixtures of chloroform-methanol was evaluated by difference spectroscopy of the proteolipid protein (APL) and its chemically deacylated form (d-APL). The fraction of chromophoric groups exposed increased with the proportion of chloroform with 25% of the groups exposed in 1:2 chloroform-methanol and 98% in 3:1 chloroform-methanol. These conformational changes correlate well with changes in intrinsic viscosity. Values for the deacylated form were indistinguishable from those of the acylated protein, suggesting that fatty acids do not affect protein conformation in organic solvents. In water, UV difference spectroscopy indicated that the number of Tyr and Trp groups exposed in both APL and d-APL was relatively small and was independent of the molecular size of the perturbant. However, differences in the environment of the Trp groups in the two forms of the protein could be demonstrated by intrinsic fluorescence. When the protein was excited at 295 nm, the maximum emission wavelength for the acylated protein was 330 nm, whereas it was 335 nm for the deacylated form. Furthermore, the Trp groups in d-APL were more easily quenched by acrylamide than in APL, indicating that they were more exposed, or in a more hydrophilic environment, following deacylation. Protein aggregation appears to be independent of the presence of fatty acids, suggesting that the fluorescence differences between APL and d-APL are related to factors other than aggregation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Dicyclohexylcarbodiimide (DCCD), an inhibitor of proton translocation, has been shown to bind preferentially to the myelin proteolipid and to inhibit proton movement in liposomes containing the proteolipid (Lin, L. and Lees, M. 1982. Proc. Natl. Acad. Sci. USA 79:941–945). In the present study the location of the DCCD-binding site(s) in the sequence of the myelin proteolipid has been investigated. Of the 11 dicarboxylic acid residues theoretically available for binding, Asp 149 has been positively identified as a binding site. Seven dicarboxylic acid residues have essentially been ruled out as binding sites and one site has been tentatively ruled out. The status of the two remaining sites has not been determined.Special Issue dedicated to Dr. Elizabeth Roboz-Einstein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号