首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-rot fungi were evaluated for decay capacity and OA production in early stages of exposure to four waterborne copper-based wood preservatives (ammonical copper quat type B and D, ammonical copper citrate, and chromated copper arsenate, type C) and one oilborne copper-based wood preservative (oxine copper) in southern yellow pine blocks. Weight losses were less than 14% during the 4-week incubation. The presence of copper in waterborne preservatives uniformly stimulated OA production by the test fungi within 2 weeks of exposure of the treated blocks to test fungi; 66% to 93% more OA was produced in treated blocks than untreated controls. Oxine copper, a nickel-containing oilborne preservative, prevented both weight loss and OA production in all fungi tested.  相似文献   

2.
Understanding the effect of heavy metals and wood preservatives on the growth of wood-rot fungi native to a certain region may improve reliability in determining the effectiveness of antifungal products, particularly when dealing with new formulations. In this investigation, strains of copper-tolerant wood-rot fungi native to south-central Chile were evaluated against two preservatives: commercial chromated copper arsenate type C (CCA-C) and a new formulation with boron and silicon (BS). Thirteen native strains, mainly white-rot fungi, were selected for their high growth rates in solid medium containing 3 mM of copper. A short-term test was then carried out, consisting of adding cellulose disks impregnated with different concentrations of preservatives to solid culture media inoculated with selected copper tolerant strains. There was a great variability in interspecific and intraspecific responses to the presence of copper and preservatives in culture media. Among the native and commercial strains evaluated, the white-rot fungi Trametes versicolor 38 and mainly Ganoderma australe 100 were notable for their tolerance to all the CCA-C and BS concentrations. The brown-rot fungus Wolfiporia cocos, used as reference strain, showed a high tolerance to CCA-C, but not to BS preservative. T. versicolor 38 and G. australe 100 were selected for subsequent studies on preserved wood degradation.  相似文献   

3.
Bioincising is a biotechnological process that aims at the improvement of wood preservative uptake in wood species with a low permeability, such as Norway spruce (Picea abies (L.) Karst). The process is based on a short-term pre-treatment with white-rot fungus Physisporinus vitreus. During incubation the membranes of bordered and half bordered pits are supposed to be degraded by fungal activity resulting in a better treatability of the wood structure for wood preservatives. In the present study, first of all the resistance of bioincised Norway spruce heartwood and untreated controls against blue-stain and wood-decay fungi (white- and brown-rot) was determined. Then, bioincised and untreated specimens were dipped or vacuum impregnated with six wood preservatives and substance uptake was assessed gravimetrically. Additionally, the penetration of 3-iodo-2-propynyl butylcarbamate (IPBC) into the wood was analyzed by high-pressure liquid chromatography (HPLC). Finally, wood resistance was assessed according to the European standards EN 152 and EN 113. Results showed no difference between bioincised wood without preservatives and the untreated wood against blue-stain discolouration. However, a significant (P < 0.05) increase in susceptibility against wood decay was recorded. In the bioincised wood samples a significantly higher uptake of all the different preservatives was determined and the HPLC-method revealed that IPBC penetrated deeper into bioincised wood than into control samples. The improved uptake of preservatives into bioincised wood resulted in a significantly higher resistance against white- and brown-rot fungi. However, only a slight protection against wood discolouration by blue-stain fungi was recorded. The results of this study show for the first time that the biotechnological process with P. vitreus can be used to improve wood durability by increasing the uptake and penetration of wood preservatives.  相似文献   

4.
Fusarium circinatum, the causal agent of pitch canker disease on pines, can be disseminated by wood produced in infested areas. The purpose of the study was to evaluate the effect of wood preservatives, commonly used against sapstain and wood‐decay fungi, on growth and sporulation of Fusarium circinatum. Seven active ingredients of antisapstain and anti‐wood‐decay preservatives were evaluated by their inhibition of mycelial growth. Propiconazole, tebuconazole, and 3‐iodo‐2‐propinyl butyl carbamate (IPBC) were effective against F. circinatum, whereas hydroxycarbonate of cooper was not. An assay was also conducted to evaluate the efficacy of three commercial antisapstain and two anti‐wood‐decay preservatives on Pinus radiata sapwood blocks that were previously inoculated with Fusarium circinatum. The product with the best efficacy was an antidecay preservative composed of tebuconazole, propiconazole, and dichlofluanid. None of the antisapstain preservatives tested was effective even though they contained fungicidal ingredients. Effects of dosage, product application, and formulation on the efficacy of these preservatives are discussed.  相似文献   

5.
This study evaluated the relative ability of various combinations of copper sulfate with either boric acid or calcium-precipitating agent, N′-N-(1, 8-naphthalyl) hydroxylamine (NHA-Na), to inhibit fungal degradation and attack by Formosan subterranean termites (Coptotermes formosanus Shiraki). Wood specimens were treated with either 1%, 0.5%, or 0.1% concentrations of copper sulfate, boric acid, NHA-Na, copper sulfate + boric acid, or copper sulfate + NHA-Na mixtures. Treated specimens were subjected to laboratory decay-resistance tests by using petri dishes inoculated with the Basidiomycetes fungi Tyromyces palustris and Trametes versicolor for 12 weeks. Treated wood specimens were also subjected to termite-resistance tests under laboratory conditions. Increased efficacy of copper sulfate against the brown-rot fungus T. palustris was observed when either boric acid or NHA-Na was added. The most effective treatments against the fungi tested were NHA-Na only treatments at 1% and 0.5% concentration levels. Boric acid treatments were not able to protect wood against decay after leaching because of excessive leaching of boron. Similar results were obtained in termite-resistance tests in comparison with decay-resistance tests. These results indicate that the efficacy of the treatments in preventing fungal and termite attack is a function of the type of preservative.  相似文献   

6.
At one location in central Sweden, agricultural pine (Pinus sylvestris L.) fence poles treated with a commercial copper–chromium–phosphorus preservative (CCP) formulation according to use class 4 at retention of 30 kg m−3 were prematurely degraded by fungi after only two years in-service. Light- and electron microscopy analyses showed decay to result from primarily brown rot attack. Culture studies produced on different agar and copper-containing media using small wood slivers removed from infected poles allowed establishment of a number of pure cultures of Phycomycetes, Ascomycetes, Fungi Imperfecti and Basidiomycete fungi. Using morphological characters, PCR and sequencing of isolated strains, Antrodia vaillantii was determined as the most abundant basidiomycete present and as the major causal agent of decay. Compatibility tests and comparison of the ITS nrDNA sequences of our putative A. vaillantii isolate with other A. vaillantii strains and with Antrodia radiculosa showed differences suggesting a hybrid strain. A combination of site characteristics (e.g. hot spots of A. vaillantii), the use of juvenile poles, copper tolerance and overall ineffectivity of CCP against A. vaillantii is suggested as reasons for premature decay.  相似文献   

7.
Nitrogen fixation rates, as estimated by the acetylene reduction technique, were determined in conifer wood litter being decayed by brown- and white-rot fungi. Average ethylene production rates were significantly higher in white-rotted wood (15.1 nmol g–1 day–1) than in brown-rotted wood (2.3 nmol g–1 day–1). This difference may be related to a higher soluble sugar content in white-versus brown-rotted wood. The nitrogen-fixing bacteriumAzospirillum was not detected in any of the decaying wood samples examined. Greater nitrogen additions from nitrogen-fixing bacteria may be a factor in the more rapid white-rot decay of hardwood litter, as compared to the slower brown-rot decay of conifer wood.  相似文献   

8.
The objective of this study was to use FT-IR analysis to investigate the chemical composition of aged and un-aged bamboo specimens, with and without node sections, decayed by brown-rot fungi. Specimens were exposed to two brown-rot fungi, Coniophora puteana and Poria placenta, for 8 weeks after which decay was assessed by weight loss and FT-IR spectra analysis. Depending on the bamboo section examined, the aging process reduced decay resistance of specimens. Weight loss (measured as a percentage) decreased from the top to the bottom portion of bamboo culms. The presence of nodes in the specimens increased weight loss caused by P. placenta attack, and caused only a slight increase in weight loss from C. puteana attack. Significant chemical changes in bamboo were observed after fungal degradation, as revealed by FT-IR analyses. Consistent with the degradation mechanism of brown-rot fungi, lignin was essentially un-degraded or modified. Both brown-rot fungi caused a sharp decrease in the carbonyl absorption area. Surprisingly, cellulose peaks of degraded specimens were nearly similar to the peaks of control specimens. Aging treatments and biodegradation affected the crystalline structure of bamboo specimens. Poria placenta degraded wood components faster and changed the crystallinity more than C. puteana did, in accordance with the weight losses due to decay.  相似文献   

9.
An efficient impedance method was developed for rapid evaluation of cosmetic preservatives. The method used decimal reduction time or D-value to assess preservative efficacies. The D-value, which was calculated from the plot of Log CFU ml–1 versus time by linear regression analysis, could be obtained within 48 h. Thus, the time required for the challenge test was reduced from 4–8 weeks with the standard procedures (eg US Pharmacopeia), to 2 days with the current method. A calibration curve (r=-0.95) was established by plotting the Log CFU ml–1 versus capacitance detection time (DT) of 108 samples. With the calibration, CFU can be estimated directly from the impedance test without plating. Two commercial biocides and several other chemicals were evaluated in a shampoo by the impedance procedure againstPseudomonas aeruginosa. The D-values obtained from the impedance test were not significantly different from those produced by the conventional plate count method. The technique was found to be particularly useful when screening a large number of compounds to find novel preservatives and synergistic preservative combinations.  相似文献   

10.
Particleboard specimens produced by adding waste tire rubber particles were assayed against white- and brown-rot fungi and termites in laboratory conditions. Particleboards were manufactured from a mixture of pine and poplar particles bonded with two different resins (melamine/urea formaldehyde [MUF] and polyisocyanate [PI]) by adding waste tire rubber particles at three different levels (10%/90%, 20%/80%, and 30%/70% by weight of waste tire rubber/wood). The particleboard specimens with waste tire rubber were not generally resistant against four fungi tested. Only MUF-containing specimens showed considerably better performance in decay resistance tests using the brown-rot fungus, Postia placenta; however, addition of waste tire rubber into those specimens did not provide resistance in comparison with control specimens without tire rubber. Formosan termites were also able to degrade particleboard specimens with waste tire rubber.  相似文献   

11.
Decay and termite resistance of wood treated with tar oil obtained from a commercial pyrolysis process of macadamia nut shells was evaluated. Vacuum-treated pinewood specimens were subjected to two brown- and two white-rot fungi based on the soil-block test method specified by the American Wood Protection Association after a 10-day-leaching process. Treated specimens were also subjected to the subterranean termite attack according to Japanese Industrial Standards (JIS) for 3 weeks under laboratory conditions. In the study, growth inhibition of selected fungi with the tar oil was also tested in vitro. Treated wood specimens at a retention level of 460 kg m−3 showed good protection against all the fungi tested. Mass losses in leached specimens were less than those observed in unleached specimens. Similar results were seen when the specimens were subjected to termite attack. Inhibition tests showed that higher concentrations of the tar oil are critical for inhibition of the brown-rot fungi compared to the concentrations required to impede the white-rot and sap-staining fungi tested.  相似文献   

12.
The effect of copper (II) ions on the growth of three brown-rot fungi, six white-rot fungi and one blue-stain fungus in solid medium was evaluated. The fungi were grown in malt extract agar with different concentrations of copper added, and the radial growth rate was determined. At the end of the incubation period, the mycelial biomass and the media pH were determined. The white-rot and blue-stain fungus grew up to 3 mM and 6 mM copper, respectively and the brown-rot fungi were the only ones that grew up to 10 mM, with higher growth rates than those shown by the other fungi. In general, the brown-rot fungi produced greater acidification in the culture media than the white-rot fungi and blue-stain fungus, and the acidification increased when the amount of copper was increased. The biomass production for the different species, in the absence or presence of copper, was not related to the radial growth rate, and the fungal species that produced the greatest biomass amounts did not correspond to those that presented the highest growth rates. The brown-rot fungi Wolfiporia cocos and Laetiporus sulfureus and blue-stain fungus Ophiostoma sp. demonstrated greater tolerance to high copper concentrations in solid medium than the white-rot fungi, determined as radial growth rate. On the other hand, the highest biomass producers in solid medium with copper added were the white-rot fungi Ganoderma australe and Trametes versicolor and the brown-rot fungus Gloeophyllum trabeum.  相似文献   

13.
Copper is ubiquitous as a biocide component in wood preservatives. Some fungi detoxify copper by immobilizing copper ions with oxalate, decreasing its physiological availability (bioavailability). Decreases in copper bioavailability may also occur during wood treatment. To date, however, copper retention in wood has been measured as overall weight-to-volume concentration without an estimate of its bioavailability and without assessment of its relative contribution to preservative efficacy. Here, we gauge the bioavailability of copper ions in treated wood by using oxalate to pre-treat wood prior to colonization by a moderately copper-tolerant fungus. Copper-treated wood was treated with a gradient of sodium oxalate concentrations, rinsed thoroughly, and exposed in soil-block jars to an isolate of Serpula himantioides. Wood treated with copper ethanolamine was extremely effective in preventing decay by S. himantioides, but toxicity could repeatedly be overcome above a threshold level of oxalate pretreatment. In agar plates, copper-treated wood stimulated oxalate production by S. himantioides, but levels were less than those needed (>10 mM) to overcome copper in soil-block jars. This capacity to overcome copper using an oxalate pretreatment was absent in commercially available samples treated with co-biocide(s). Results demonstrate a useful relative measure of copper bioavailability, with potential to be modified for specific quantification.  相似文献   

14.
Natural decay resistance of teak wood grown in home-garden forestry and the factors influencing decay resistance were determined in comparison with that of a typical forest plantation. Accelerated laboratory tests were conducted on 1800 wood samples drawn from 15 trees of three planted sites. Analysis of variance based on a univariate mixed model showed that planted site, fungal species, and their interaction terms were important sources of variation in decay resistance. With increasing decay resistance from centre to periphery of the heartwood, radial position was a critical factor and the interaction effect of fungal species × radial position was significant in influencing the durability. No significant differences were found in decay resistance either between the opposite radii or due to the various possible interaction terms of radii with the site, fungal species and radial position. There were significant differences in decay resistance against brown-rot fungi between wet and dry sites of home-garden teak although differences against white-rot fungi were non-significant among the three planted sites. Polyporus palustris was the more aggressive brown-rot fungus than Gloeophyllum trabeum. The higher susceptibility of wet site home-garden teak to brown-rot decay was associated with a paler colour of the wood and lower extractive content.  相似文献   

15.
This work deals with lipid formation in ascomycete fungi and the effect of preservatives on them. A new biological function of trehalose was revealed, and of particular interest was the fact that the effect of this disaccharide depended on its concentration in the growth medium. In the presence of a preservative such as potassium sorbate (PS), low trehalose concentrations suppressed the growth of mycelial fungi contaminating hard cheeses and contributed to the prolongation of the preservative’s effect. A tenfold increase in trehalose concentration in the medium, conversely, resulted in a drastic increase in growth activity and removed the PS effect. Therefore, trehalose can function as an inhibitor or a stimulator of growth processes, depending on its concentration. It was established that the secondary growth of Penicillium fungi during their ontogeny is accompanied by consumption of accumulated reserve lipids. In contrast, this phenomenon does not occur in mucorous fungi, and this probably accounts for the fact that Mucorales representatives can accumulate significant triacylglyceride amounts during the idiophase.  相似文献   

16.
Summary The antimicrobial activity of the soluble potassium salts of methyl, ethyl, propyl, and butyl parabens were evaluated to determine whether they would be more effective than their respective parabens (esters ofp-hydroxybenzoic acids). The potassium salts of the methyl and ethyl parabens as well as methyl and ethyl parabens were microbiocidal against the fungusAspergillus niger and five bacteria, whereas the potassium salts of propyl and butyl parabens and their respective parabens were not microbiocidal against all the test organisms. In the presence of several ingredients frequently used in pharmaceutical and cosmetic formulations, ethylenediaminetetraacetate (EDTA) and magnesium hydroxide did not interfere with the antimicrobial activity of the potassium salts of parabens and appeared to be microbiocidal against three of four test organisms. Simethicone and Tween 80 interfered with the antimicrobial activity of the preservatives. At pH 4–6, the potassium salt of butyl paraben, the only preservative tested, was active against more organisms than at pH 7–8. Overall, the highly soluble potassium salts of parabens showed microbiocidal activity against more of the test organisms than the less soluble parabens.  相似文献   

17.
The aim of this study is to evaluate possible synergistic antimicrobial interactions between common cosmetic preservatives and selected essential oils or surfactants. The antimicrobial efficacy of six essential oils, three surfactants and five preservatives against Pseudomonas aeruginosa ATCC 9027 and Staphylococcus aureus ATCC 43387 was assessed by a broth micro-dilution assay. MICs for individual and combined antimicrobials were determined and then transformed to fractional inhibitory concentration (FIC) indexes. All essential oils exhibited antibacterial activity; among surfactants, bacteria resulted most susceptible to the cationic agent. Synergy was observed when essential oils of eucalyptus and mint were combined with methylparaben against P. aeruginosa, while essential oils of mint, oregano and sage combined with propylparaben and imidazolidinyl urea acted against S. aureus. Many binary mixtures of preservatives and surfactants produced synergistic activity with the most effective interactions involving the cationic and amphoteric compounds under study. FIC indexes demonstrated synergistic effects when preservatives were combined with either essential oils or surfactants against both bacterial strains. These results highlight the potential usefulness of essential oils and surfactants to enhance the activities of conventional biocides. This kind of study should contribute to the selection and optimization of preservative systems for cosmetic preparations.  相似文献   

18.
Abstract Interspecific mycelial interactions among brown-rot fungi resulted in either deadlock or replacement of one fungus by the other. Similarly, most of the brown-rot fungi deadlocked with some or all of the whitre-rot fungi tested, while a few were able to replace some of the white-rot fungi. The results indicate similarities in interspecific mycelial interactions among brown-rot fungi and between brown-rot and white-rot fungi. The results further suggest that some brown-rot fungi are capable of invading and occupying domains within white-rot fungal communities in decaying wood.  相似文献   

19.
《Process Biochemistry》2007,42(5):798-804
Twenty-four brown-rot and 10 white-rot fungi were screened to evaluate their applicability for detoxification of preservative-treated wood impregnated with copper and chromium (CC) salts. Brown-rot fungi generally showed higher tolerance towards copper inhibition than white-rot fungi. Additionally, brown-rot fungi were found to accumulate considerable quantities of oxalic acid (up to 44.3 mM) in liquid medium, while white-rot fungi generally accumulated only traces of this organic acid. Oxalic acid is a strong organic acid capable of complexing a variety of heavy metals. Four Antrodia vaillantii and two Poria placenta brown-rot strains that displayed both a high copper tolerance and a high oxalic acid production were selected for further study. The brown-rot fungi effectively decayed wood containing up to 4.4% CC causing corrected mass losses of up to 24.3% in 4 weeks. Fungal treatment was also found to promote extensive leaching of chromium (up to 52.4%), but only moderate leaching of copper (15.6% or less). These results indicate the potential of solid-state fermentation with copper-tolerant fungi for the remediation of preservative-treated wood. Improving the solubility of copper will be an important challenge for future research.  相似文献   

20.
Indoor wood-decay fungi cause considerable economical damage. Most of the structural damage to the indoors of buildings in Europe and North America is caused by brown-rot fungi that degrade conifer wood; white-rot fungi, which preferentially attack hardwoods, are less common. This review covers the approximately 80 basidiomycetes that commonly occur in buildings. Emphasis was placed on Serpula lacrymans, which is the most common indoor basidiomycete in central Europe. Meruliporia incrassata, the North American pendant to S. lacrymans, has also received considerable attention. In terms of indoor wood decay, moisture and temperature are the most important influences. Wood samples with a low moisture content can be degraded. High temperatures as an alternative control measure do not kill mycelia, with some species surviving in wood samples in the form of heat-resistant arthrospores at temperatures as high 95°C. For refurbishment and scientific purposes, the identity of the causal species should be known. More recently, several molecular techniques have been used to identify fungi; these results are often conflicting with those obtained by other, earlier applied methods. Sequencing of the internal transcribed spacers (ITS) of the rDNA is currently the best molecular tool. Among the other methods available, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) has also been shown to be able to distinguish closely related sister taxa. For further characterization of indoor basidiomycetes, the complete sequences of the 18S, 28S rDNA and the intergenic spacers with the included 5S rDNA have been acquired for some species. If current projects involving whole funal genome sequencing are not taken into account, Antrodia vaillantii is the first basidiomycete for which the complete rDNA sequence has been deposited. The review closes with fundamentals on the prevention and control of indoor wood decay. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号