首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gerber K  Wimmer E  Paul AV 《Journal of virology》2001,75(22):10969-10978
The replication of human rhinovirus 2 (HRV2), a positive-stranded RNA virus belonging to the Picornaviridae, requires a virus-encoded RNA polymerase. We have expressed in Escherichia coli and purified both a glutathione S-transferase fusion polypeptide and an untagged form of the HRV2 RNA polymerase 3D(pol). Using in vitro assay systems previously described for poliovirus RNA polymerase 3D(pol) (J. B. Flanegan and D. Baltimore, Proc. Natl. Acad. Sci. USA 74:3677-3680, 1977; A. V. Paul, J. H. van Boom, D. Filippov, and E. Wimmer, Nature 393:280-284, 1998), we have analyzed the biochemical properties of the two different enzyme preparations. HRV2 3D(pol) is both template and primer dependent, and it catalyzes two types of synthetic reactions in the presence of UTP, Mn(2+), and a poly(A) template. The first consists of an elongation reaction of an oligo(dT)(15) primer into poly(U). The second is a protein-priming reaction in which the enzyme covalently links UMP to the hydroxyl group of tyrosine in the terminal protein VPg, yielding VPgpU. This precursor is elongated first into VPgpUpU and then into VPg-linked poly(U), which is identical to the 5' end of picornavirus minus strands. The two forms of the enzyme are about equally active both in the oligonucleotide elongation and in the VPg-primed reaction. Various synthetic mutant VPgs were tested as substrates in the VPg uridylylation reaction.  相似文献   

2.
Poliovirus-specific RNA-dependent RNA polymerase (replicase, 3Dpol) was purified from HeLa cells infected with poliovirus. The purified enzyme preparation contained two proteins of apparent molecular weights 63,000 and 35,000. The 63,000-Mr polypeptide was virus-specific RNA-dependent RNA polymerase, and the 35,000-Mr polypeptide was of host origin. Both polypeptides copurified through five column chromatographic steps. The purified enzyme preparation catalyzed synthesis of covalently linked dimeric RNA products from a poliovirion RNA template. This reaction was absolutely dependent on added oligo(U) primer, and the dimeric product appeared to be made of both plus- and minus-strand RNA molecules. Experiments with 5' [32P]oligo(U) primer and all four unlabeled nucleotides suggest that the viral replicase elongates the primer, copying the poliovirion RNA template (plus strand), and the newly synthesized minus strand snaps back on itself to generate a template-primer structure which is elongated by the replicase to form covalently linked dimeric RNA molecules. Kinetic studies showed that a partially purified preparation of poliovirus replicase contains a nuclease which can cleave the covalently linked dimeric RNA molecules, generating template-length RNA products.  相似文献   

3.
The rabbit hemorrhagic disease virus (RHDV) (isolate AST/89) RNA-dependent RNA-polymerase (3Dpol) coding region was expressed in Escherichia coli by using a glutathione S-transferase-based vector, which allowed milligram purification of a homogeneous enzyme with an expected molecular mass of about 58 kDa. The recombinant polypeptide exhibited rifampin- and actinomycin D-resistant, poly(A)-dependent poly(U) polymerase. The enzyme also showed RNA polymerase activity in in vitro reactions with synthetic RHDV subgenomic RNA in the presence or absence of an oligo(U) primer. Template-size products were synthesized in the oligo(U)-primed reactions, whereas in the absence of added primer, RNA products up to twice the length of the template were made. The double-length RNA products were double stranded and hybridized to both positive- and negative-sense probes.  相似文献   

4.
5.
The size of the product RNA synthesized by the poliovirus RNA polymerase and host factor was significantly affected by the type of column chromatography used to purify the polymerase. Dimer length product RNA was synthesized by the polymerase purified by chromatography on hydroxylapatite. This contrasted with the monomer length product RNA synthesized by the polymerase purified by chromatography on poly(U) Sepharose. The poly(U) Sepharose-purified polymerase was shown to contain oligo(U) that functioned as a primer. The addition of host factor to reactions containing the poly(U) Sepharose-purified polymerase significantly increased the synthesis of monomer length product RNA, in agreement with previous studies. This product RNA, however, did not immunoprecipitate with anti-VPg antibody and thus was not linked to VPg or a VPg-related protein. Thus, it was concluded that the synthesis of monomer length product RNA by the poly(U) Sepharose-purified polymerase and host factor was caused by oligo(U) priming rather than VPg priming.  相似文献   

6.
7.
8.
9.
A poliovirus-specific polyuridylic acid [poly(U)] polymerase that copies a polyadenylic acid template complexed to an oligouridylic acid primer was isolated from the membrane fraction of infected HeLa cells and was found to sediment at 4 to 5S on a linear 5 to 20% glycerol gradient. When the poly(U) polymerase was isolated from cells labeled with [(35)S]methionine and was analyzed by glycerol gradient centrifugation and polyacrylamide gel electrophoresis, the position of only one viral protein was found to correlate with the location of enzyme activity. This protein had an apparent molecular weight of 62,500 based on its electrophoretic mobility relative to that of several molecular weight standards and was designated p63. When the poly(U) polymerase was isolated from the soluble fraction of a cytoplasmic extract, the activity was found to sediment at about 7S. In this case, however, both p63 and NCVP2 (77,000-dalton precursor of p63) cosedimented with the 7S activity peak. When the 7S polymerase activity was purified by phosphocellulose chromatography, both p63 and NCVP2 were found to co-chromatograph with poly(U) polymerase activity. The poliovirus replicase complexed with its endogenous RNA template was isolated from infected cells labeled with [(35)S]methionine and was centrifuged through a linear 15 to 30% glycerol gradient. The major viral polypeptide component in a 26S peak of replicase activity was p63, but small amounts of other poliovirus proteins were also present. When the replicase-template complex was treated with RNase T1 before centrifugation, a single peak of activity was found that sedimented at 20S and contained only labeled p63. Thus, p63 was found to be the only viral polypeptide in the replicase bound to its endogenous RNA template, and appears to be active as a poly(U) polymerase either as a monomer protein or as a 7S complex.  相似文献   

10.
11.
DNA polymerase α1, a subspecies of DNA polymerase α of Ehrlich ascites tumor cells, was associated with a novel RNA polymerase activity and utilized poly(dT) and single-stranded circular fd DNA as a template without added primer in the presence of ribonucleoside triphosphates and a specific stimulating factor. DNA synthesis in the above system was inhibited by the ATP analogue, 2′-deoxy-2′-azidoadenosine 5′-triphosphate more than the DNA synthesis with poly(dT)·oligo(rA) by DNA polymerase α1 and RNA synthesis by mouse RNA polymerases I and II. Kinetic analysis showed that the analogue inhibited DNA polymerase α1 activity on poly(dT) competitively with respect to ATP, suggesting that the analogue inhibited RNA synthesis by the associated RNA polymerase activity.  相似文献   

12.
13.
A soluble RNA-dependent RNA polymerase was purified from the cytoplasm of poliovirus-infected HeLa cells. A single virus-specific protein designated as p63 (or NCVP4) copurified with this activity. The purified polymerase was free of ribonuclease activity and was shown to copy poliovirion RNA when oligo(U) was added to the in vitro reaction mixture. Characterization of the product RNA by electrophoresis in methylmercury (II) hydroxide-agarose gels showed that genome-sized copies of poliovirion RNA were synthesized in vitro by the purified polymerase. The product RNA was shown to be heteropolymeric, complementary to virion RNA, and covalently linked to oligo(U). The product RNA contained the expected distribution of UMP and GMP containing dinucleotide pairs which included a very low frequency of CpG pairs. The amount, size distribution, and rate of synthesis of product RNA was very dependent on the in vitro reaction conditions. Full sized product RNA was synthesized in about 6 min when reaction conditions were used that yielded maximum elongation rates (pH 8.0, 7 mM Mg2+, 37 degrees C). Under these conditions, most of the product RNA recovered from a 1-h reaction was full sized. Thus, the polymerase was found to specifically initiate synthesis at the 3'-end of the template using an oligo(U) primer and to carry out an elongation reaction at about 1250 nucleotides/min that resulted in the synthesis of full sized product RNA.  相似文献   

14.
A novel factor that stimulates DNA polymerase alpha activity on poly(dA) X oligo(dT) has been identified and partially purified from mouse FM3A cells. The assay system for the factor contained poly(ethylene glycol) 6000. The activities of DNA polymerase alpha on poly(dA) X oligo(dT) in the presence and absence of the stimulating factor were increased greatly by the addition of poly(ethylene glycol). Stimulation by the factor was observed at all the primer to template ratios tested from 0.01 to 0.3. The highest activity was observed at the ratio of 0.05, corresponding to about 3.3 primers on one template in the presence of the factor. The concentration of DNA polymerase alpha used in the assay affected the stimulation by the factor, and the stimulation became more prominent at concentrations of the enzyme lower than 0.04 unit per assay. The stimulating factor lowered the Km value of DNA polymerase alpha for the template-primer, though they had no effect on the Km value for dTTP substrate. The results of product analysis suggested that the stimulation by the factor is mainly due to the increase in the initiation frequency of DNA synthesis from the primers. The stimulating factor specifically stimulated DNA polymerase alpha but not DNA polymerases beta and gamma. Furthermore, the factor formed a complex with DNA polymerase alpha under a certain condition.  相似文献   

15.
The present work indicates that RNA primer requirements for poly(U) polymerase in the free ribosomes of the rat liver depend upon the degree of enzyme purification. The poly(U) polymerase activity obtained from a crude free ribosomal preparation was compared with the enzymic activity of a partially purified enzyme. After preliminary purification, the enzyme was fractionated by chromatography on Sephadex G-150 and CM-cellulose. Our results demonstrate the presence of several forms of poly(U) polymerase activities, some requiring exogenous RNA and others possessing their own endogenous primer RNA.  相似文献   

16.
An auxiliary protein for DNA polymerase-delta from fetal calf thymus   总被引:62,自引:0,他引:62  
An auxiliary protein which affects the ability of calf thymus DNA polymerase-delta to utilize template/primers containing long stretches of single-stranded template has been purified to homogeneity from the same tissue. The auxiliary protein coelutes with DNA polymerase-delta on DEAE-cellulose and phenyl-agarose chromatography but is separated from the polymerase on phosphocellulose chromatography. The physical and functional properties of the auxiliary protein strongly resemble those of the beta subunit of Escherichia coli DNA polymerase III holoenzyme. A molecular weight of 75,000 has been calculated from a sedimentation coefficient of 5.0 s and a Stokes radius of 36.5 A. A single band of 37,000 daltons is seen on sodium dodecyl sulfate gel electrophoresis, suggesting that the protein exists as a dimer of identical subunits. The purified protein has no detectable DNA polymerase, primase, ATPase, or nuclease activity. The ability of DNA polymerase-delta to replicate gapped duplex DNA is relatively unaffected by the presence of the auxiliary protein, however, it is required to replicate templates with low primer/template ratios, e.g. poly(dA)/oligo(dT) (20:1), primed M13 DNA, and denatured calf thymus DNA. The auxiliary protein is specific for DNA polymerase-delta; it has no effect on the activity of calf thymus DNA polymerase-alpha or the Klenow fragment of E. coli DNA polymerase I with primed homopolymer templates. Although the auxiliary protein does not bind to either single-stranded or double-stranded DNA, it does increase the binding of DNA polymerase-delta to poly(dA)/oligo(dT), suggesting that the auxiliary protein interacts with the polymerase in the presence of template/primer, stabilizing the polymerase-template/primer complex.  相似文献   

17.
A template-dependent polyuridylic acid [poly(U)] polymerase has been isolated from BHK cells infected with foot-and-mouth disease virus (FMDV). Enzyme activity in a 20,000 x g supernatant of a cytoplasmic extract was concentrated by precipitation with 30 to 50% saturated ammonium sulfate. The poly(U) polymerase was freed of membranes by sodium dodecyl sulfate and 1,1,2-trichlorotrifluoroethane extraction, and RNA was removed by precipitation with 2 M LiCl. The solubilized poly(U) polymerase required polyadenylic acid as template complexed to an oligouridylic acid primer and Mg2+ for activity, but was inhibited by Mn2+. Antisera from animals infected with FMDV had previously been shown to inhibit the activity of FMDV RNA replicase complexed to the endogenous RNA template. The same antisera also inhibited the activity of poly(U) polymerase. Antisera depleted of antibody by absorption with the virus infection-associated antigen of FMDV no longer inhibited replicase and polymerase activities. The evidence suggests that FMDV RNA replicase, poly(U) polymerase, and the virus infection-associated antigen share a common protein.  相似文献   

18.
The 22-amino-acid protein VPg can be uridylylated in solution by purified poliovirus 3D polymerase in a template-dependent reaction thought to mimic primer formation during RNA amplification in infected cells. In the cell, the template used for the reaction is a hairpin RNA termed 2C-cre and, possibly, the poly(A) at the 3' end of the viral genome. Here, we identify several additional substrates for uridylylation by poliovirus 3D polymerase. In the presence of a 15-nucleotide (nt) RNA template, the poliovirus polymerase uridylylates other polymerase molecules in an intermolecular reaction that occurs in a single step, as judged by the chirality of the resulting phosphodiester linkage. Phosphate chirality experiments also showed that VPg uridylylation can occur by a single step; therefore, there is no obligatory uridylylated intermediate in the formation of uridylylated VPg. Other poliovirus proteins that could be uridylylated by 3D polymerase in solution were viral 3CD and 3AB proteins. Strong effects of both RNA and protein ligands on the efficiency and the specificity of the uridylylation reaction were observed: uridylylation of 3D polymerase and 3CD protein was stimulated by the addition of viral protein 3AB, and, when the template was poly(A) instead of the 15-nt RNA, the uridylylation of 3D polymerase itself became intramolecular instead of intermolecular. Finally, an antiuridine antibody identified uridylylated viral 3D polymerase and 3CD protein, as well as a 65- to 70-kDa host protein, in lysates of virus-infected human cells.  相似文献   

19.
The poliovirus RNA-dependent RNA polymerase was active on synthetic homopolymeric RNA templates as well as on every natural RNA tested. The polymerase copied polyadenylate. oligouridylate [oligo(U)], polycytidylate . oligoinosinate, and polyinosinate. oligocytidylate templates to about the same extent. The observed activity on polyuridylate. oligoadenylate was about fourfold less. Full-length copies of both poliovirion RNA and a wide variety of other polyadenylated RNAs were synthesized by the polymerase in the presence of oligo(U). Polymerase elongation rates on poliovirion RNA and a heterologous RNA (squash mosaic virus RNA) were about the same. Changes in the Mg(2+) concentration affected the elongation rates on both RNAs to the same extent. With two non-polyadenylated RNAs (tobacco mosaic virus RNA and brome mosaic virus RNA3), the results were different. The purified polymerase synthesized a subgenomic-sized product RNA on brome mosaic virus RNA3 in the presence of oligo(U). This product RNA appeared to initiate on oligo(U) hybridized to an internal oligoadenylate sequence in brome mosaic virus RNA3. No oligo(U)-primed product was synthesized on tobacco mosaic virus RNA. When partially purified polymerase was used in place of the completely purified enzyme, some oligo(U)-independent activity was observed on the brome mosaic virus and tobacco mosaic virus RNAs. The size of the product RNA from these reactions suggested that at least some of the product RNA was full-sized and covalently linked to the template RNA. Thus, the polymerase was found to copy many different types of RNA and to make full-length copies of the RNAs tested.  相似文献   

20.
The reaction product of the ribosomal poly(A) polymerase [ATP(UTP):RNA nucleotidyltransferase] is analyzed. Two systems are used in vitro: (a) isolated polyribosomes with endogenous enzyme and RNA primer and (b) purified enzyme with total polyribosomal RNA as primer. In the polyribosome system about 50% of the [3H]AMP label is in poly(A)-containing mRNA. This RNA displays a heterogeneous size ditribution in the range of 8--30 S with a maximum at about 14 S. Upon denaturation the maximum is shifted towards the 10-S zone. The poly(A) polymerase catalyzes the addition of 12--18 adenylate residues to pre-existing mRNA poly(A) sequences of 40--160 residues. The [3H]AMP incorporated into poly(A)-lacking RNA is mainly in a fraction with an electrophoretic mobility corresponding to 4-S RNA. In the purified enzyme system, specificity towards poly(A)-containing mRNA is lost to a considerable extent. Only 10% of the [3H]AMP label is retained by oligo(dT)-cellulose. The bulk of the product is in 18-S rRNA and heterogeneous small molecular weight RNA. We conclude that the ribosome-associated poly(A) polymerase is most likely the enzyme responsible for the cytoplasmic polyadenylation of poly(A)-containing mRNA in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号