首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The feasibility of using a biodegradable surfactant, surfactin from Bacillus subtilis, for the removal of heavy metals from a contaminated soil (890?mg/kg zinc, 420?mg/kg copper, 12.6% oil and grease) and sediments (110?mg/kg copper, 3300?mg/kg zinc) was evaluated. Results showed that after one and five batch washings of the soil, 25 and 70% of the copper, 6 and 25% of the zinc, and 5 and 15% of the cadmium could be removed by 0.1% surfactin with 1% NaOH, respectively. From the sediment, 15% of the copper and 6% of the zinc could be removed after a single washing with 0.25% surfactin/1% NaOH. The geochemical speciation of the heavy metals among the exchangeable, oxide, carbonate, organic, and residual fractions was determined by selective sequential extraction procedure. For both matrices, the exchangeable fractions were minimal, while the carbonate and the oxide fractions accounted for over 90% of the zinc present and the organic fraction constituted over 70% of the copper. Results after washing indicated that surfactin with NaOH could remove copper from the organic fraction, zinc from the oxide, and cadmium from the carbonate fractions. The residual fraction remained untouched. These experiments indicate that the sequential extraction studies could be useful in designing soil-washing procedures.  相似文献   

2.
The aim of this work is to evaluate the applicability of a biofilm to the removal of chromium in solution, at a pilot scale. The effect of the initial concentration of metal on the biosorption behavior of an Arthrobacter viscosus biofilm supported on granular activated carbon, in batch and column essays was also analyzed. Six isotherm equations have been tested in the present study. The best fit was obtained with the Freundlich model. It was observed that as the initial chromium concentration increases, the uptake increases too, but the removal percentage decreases, with values between 95.20% (C(0)=5mg/l) and 38.28% (C(0)=1000 mg/l). The batch adsorption studies were used to develop a pilot bioreactor able to remove chromium from aqueous solutions. Data obtained in a pilot-scale reactor showed an average removal percentage of 99.9%, during the first 30 days, for the initial concentration of 10mg/l and an average removal percentage of 72%, for the same period and for the initial concentration of 100mg/l. Uptake values of 11.35 mg/g and 14.55 mg/g were obtained, respectively, for the initial concentration of 10 and 100mg/l. The results obtained are very promising and encourage the utilization of this biofilm in environmental applications.  相似文献   

3.
An “ex situ” microbial method for the removal of heavy metals from soil is described. Elemental sulfur was added to generate the lixiviant in shaker flask experiments in which soil sampled from a polluted agricultural field was treated. The biotic oxidation of sulfur to sulfuric acid resulted in significant drop in pH of the bioleaching liquor from 6.94 to 1.8 after 50 days. In batches operated at very low (10 g/kg) sulfur concentrations, pH changed from 6.94 to 5.45. The 50 g/kg soil sulfur concentration was found to be most beneficial to the solubilization process because more than 95% of metals such as zinc (Zn), cadmium (Cd), and nickel (Ni) were recovered while approximately 67% of manganese (Mn) got solubilized. The least concentration of dissolved metals was lead (Pb) – (25%) and chromium (Cr) – (10%). Sulfate accumulation rose to 47% in samples spiked with 50 g/kg soil of sulfur. At lower sulfur concentrations, the sulfates generated were higher than the amount of sulfur added. The microbial process compared well to the abiotic process involving extraneous addition of sulfuric acid except that very high concentrations of acid had to be used. The treatment of the bioleaching wastewater promoted precipitation of the dissolved metals into insoluble hydroxides making discharge of the effluent into the environment safe. The leached soil recovered sufficiently for agricultural use after quick lime and animal manure was used to improve, stabilize, and restore its physical, chemical, and biological conditions.  相似文献   

4.
This article describes the removal of heavy metals from contaminated clayey soils by soil washing using various extractants. Two clayey soils, kaolin, a low buffering soil with pH of 5, and glacial till, a high buffering soil with pH of 8, were used to represent various soil conditions. These soils were spiked with chromium (Cr), nickel (Ni), and cadmium (Cd) to simulate improper disposal of typical electroplating waste constituents. The following extracting solutions were investigated for the removal of heavy metals from the soils: deionized water, distilled water, and tap water; acetic acid and phosphoric acid; chelating agents ethylenediaminetetraacetic acid (EDTA) and citric acid; and the oxidizing agents potassium permanganate and hydrogen peroxide. The effect of extractant concentration on removal of heavy metals was also investigated. Complete removal of Cr was achieved using 0.1?M potassium permanganate for kaolin, while a maximum of 54% was removed from glacial till. A maximum Ni removal of 80% was achieved using tapwater for kaolin, while a maximum removal of 48 to 52% was achieved using either 1?M acetic acid or 0.1?M citric acid for glacial till. A maximum Cd removal of 50% was achieved using any of the extractants for kaolin, while a maximum removal of 45 to 48% was obtained using either acids or chelating agents for glacial till. Overall, this study showed that complete removal of Cr, Ni, and Cd from clayey soils is difficult to achieve using the soil-washing process, and also the use of one extractant may not be effective in removing all metals. A sequential extraction using different extractants may be needed for the removal of multiple metal contaminants from clayey soils.  相似文献   

5.
Distribution of extractable heavy metals in different soil fractions   总被引:1,自引:0,他引:1  
Abstract

Due to the difficulties of precisely characterizing environmentally contaminated soil, the effects of heavy metals on plants are studied using uncontaminated soil spiked with known quantities of heavy metals. One problem in using spiked soils is how accurately the distribution of metals mimics stabilized natural soils. We studied the distribution of cadmium, chromium, copper, lead, nickel, and zinc in soil fractions after application in soluble form. The soil samples included a control (an uncontaminated Typic Argiudoll) and two samples spiked with either a moderate or high heavy metal concentration). After application of the salts the soils were subjected to wet/dry cycles over the course of three months. The soils were fractionated using a sequential chemical extraction procedure employing: (1) CaCl2,(2) NaOH, (3) Na2EDTA and (4) HNO3, HCl, and HF. Soil physical separation was carried out by ultrasonic dispersion. The heavy metal levels were determined using ICP-AES. Each heavy metal displayed a unique behavior when added to soil in the form of soluble salts. Cadmium and zinc remained in the soluble fraction, indicating that no equilibrium was attained, while nickel primarily appeared in the insoluble fraction. Chromium, copper and lead were distributed among various soil chemical fractions. The highest levels of all metals appeared in the clay fraction except lead which was mainly present in the silt fraction.  相似文献   

6.
Dead cells of Saccharomyces cerevisiae 54 were immobilized by entrappment in polyacrylonitrile. The beads obtained were used to adsorb copper in an up-flow fixed-bed column. The effect of polymer content and cell loading were studied to optimize the porosity and the efficiency in copper removal of the biosorbent beads in a batch system. The optimal concentration of the polyacrylonitrile was assumed to be 12%(w/v) and a concentration of 0.5 g cell dry weight in 1 g polymer was most effective in adsorption of Cu2+. The adsorption capacity of this biosorbent was 27 mg Cu2+/g dry biomass at 200 mg/l initial concentration of copper ions. Adsorption of Cu2+ in a batch system was studied using different initial concentrations of the solute. The optimal conditions in the up-flow column of the following parameters were determined: flow rate, bed height, and initial concentration of Cu2+ of the solutions. Results of fixed-bed biosorption showed that breakthrough and saturation time appeared to increase with the bed height, but decrease with the flow rate and the initial concentration. The linearized form of the Thomas equation was used to describe dynamic adsorption of metal ions. As a result, the adsorption capacity of the batch system and the column system was compared. Desorption of copper ions was achieved by washing the column biomass with 0.1 M HCl at an eluent flow rate of 1 ml/min. The reusability of the immobilized biomass was tested in five consecutive adsorption-desorption cycles. The regenerated beads retained over 45% of their original adsorption capacity after five A/D cycles. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
This paper presents the results of research on heavy metals removal from water by filtration using low cost coarse media which could be used as an alternative approach to remove heavy metals from water or selected wastewater. A series of batch studies were conducted using different particle media (particle size 2.36-4.75 mm) shaken with different heavy metal solutions at various pH values to see the removal behaviour for each metal. Each solution of cadmium (Cd), lead (Pb), zinc (Zn), nickel (Ni), copper (Cu) and chromium (Cr(III)) with a concentration of 2 mg/L was shaken with the media. At a final pH of 8.5, limestone has significantly removed more than 90% of most metals followed by 80% and 65% removals using crushed bricks and gravel, respectively. The removal by aeration and settlement methods without solid media was less than 30%. Results indicated that the removal of heavy metals was influenced by the media and not directly by the pH. Investigations on the removal behaviour of these metals indicated that rough solid media with the presence of carbonate were beneficial for the removal process. Adsorption and precipitation as metals oxide and probably as metals carbonate were among the two mechanisms that contributed to the removal of metals from solution.  相似文献   

8.
Washing of Cadmium(II) from a Contaminated Soil Column   总被引:1,自引:0,他引:1  
The washing of cadmium (from CdO(s)) from a soil column employing either an acid solution or EDTA (a strong metal chelator) was examined. For Cd(II) levels of 50 to 1000 mg/kg, the fraction removed was essentially independent of the initial Cd(II) concentration. The most efficient washing of cadmium was achieved using an acid wash solution at pH 2.5. Lower Cd(II) removals were found at lower pH, apparently due to inhibition of CdO(s) dissolution by constituents released from the soil under highly acidic conditions. EDTA wash solutions were employed at EDTA:cadmium molar ratios ranging from 1:1 to 10:1. Up to 90% removal of total Cd(II) was achieved at the 10:1 ratio after the passage of the first 50?PV of wash solution. Although higher chelate levels enhanced Cd(II) removal, the utilization efficiency of EDTA for cadmium decreased.  相似文献   

9.
An unconventional nutrient medium, distillery spent wash (1:3) diluted) was used to produce di-rhamnolipid biosurfactant by Pseudomonas aeruginosa strain BS2. This research further assessed the potential of the biosurfactant as a washing agent for metal removal from multimetal contaminated soil (Cr-940 ppm; Pb-900 ppm; Cd-430 ppm; Ni-880 ppm; Cu-480 ppm). Out of the treatments of contaminated soil with tap water and rhamnolipid biosurfactant, the latter was found to be potent in mobilization of metal and decontamination of contaminated soil. Within 36 hours of leaching study, di-rhamnolipid as compared to tap water facilitated 13 folds higher removal of Cr from the heavy metal spiked soil whereas removal of Pb and Cu was 9–10 and 14 folds higher respectively. Leaching of Cd and Ni was 25 folds higher from the spiked soil. This shows that leaching behavior of biosurfactant was different for different metals. The use of wastewater for production of biosurfactant and its efficient use in metal removal make it a strong applicant for bioremediation.  相似文献   

10.
黏土矿物中重金属离子的吸附规律及竞争吸附   总被引:12,自引:0,他引:12  
采用等温吸附法,研究了重金属铜、铅、镉、镍在膨润土中的吸附特征,发现膨润土对铜、铅的吸附明显强于镉、镍,吸附强度大小顺序为Pb2 >Cu2 >Ni2 >Cd2 。Langmuir和Freundlich方程对这4种金属离子等温吸附的拟合均呈极显著关系。Pb2 、Cd2 、Ni2 分别与Cu2 的双组分竞争吸附表明,黏土矿物对4种离子具有"选择性吸附"。在Pb2 、Ni2 、Cd2 的存在条件下,黏土矿物对Cu2 的吸附产生不同程度的下降;100mg/LCu2 对Pb2 的影响不大,但可完全抑制Ni2 、Cd2 的吸附。建立了IAS和LCA模型来预测Pb2 与Cu2 的双组分竞争吸附,并对LCA模型进行修正,提出了更符合实际情况的竞争吸附模型。文章最后用LCA修正模型对Pb2 与Cu2 的双组分竞争吸附进行了模拟。  相似文献   

11.
Surfactants and inorganic ligands are pointed as efficient to simultaneous removal of heavy metals and hydrophobic organic pollutants from soil. However, the biosurfactants are potentially less toxic to soil organisms than other chemical agents. Thus, in this study the efficiency of combinations of iodide (I) ligand and surfactants produced by different bacterial species in the simultaneous removal of cadmium (Cd2+) and phenanthrene in a Haplustox soil sample was investigated. Four microbial surfactants and the synthetic surfactant Triton X-100 were tested with different concentrations of ligand. Soil samples contaminated with Cd2+ and phenanthrene underwent consecutive washings with a surfactant/ligand solution. The removal of Cd2+ increased with increased ligand concentration, particularly in solutions containing biosurfactants produced by the bacterial strains Bacillus subtilis LBBMA155 (lipopeptide) and Flavobacterium sp. LBBMA168 (mixture of flavolipids) and Triton X-100. Maximum Cd2+ removal efficiency was 99.2% for biosurfactant produced by Arthrobacter oxydans LBBMA 201 (lipopeptide) and 99.2% for biosurfactant produced by Bacillus sp. LBBMA111A (mixed lipopeptide) in the presence of 0.336 mol iodide l−1, while the maximum efficiency of Triton X-100 removal was 65.0%. The biosurfactant solutions removed from 80 to 88.0% of phenanthrene in soil, and the removal was not influenced by the presence of the ligand. Triton X-100 removed from 73 to 88% of the phenanthrene and, differently from the biosurfactants, iodide influenced the removal efficiency. The results indicate that the use of a single washing agent, called surfactant-ligand, affords simultaneous removal of organic contaminants and heavy metals.  相似文献   

12.
Lead and nickel removal using Microspora and Lemna minor   总被引:3,自引:0,他引:3  
Aquatic plants can remove heavy metal contamination from the surrounding water. This study examined the ability of Microspora (a macro-alga) and Lemna minor (an aquatic plant) to remove soluble lead and nickel under various laboratory conditions. Microspora was tested in a batch and semi-batch process for lead removal. L. minor was tested in a batch process with lead and nickel to examine the potential competition between metals for adsorption. The Microspora was exposed to 39.4 mg/l of lead over 10 days. Results show up to 97% of the lead was removed in the batch process and 95% in the semi-batch process. Initial concentrations below 50 mg/l (a dose that kills the algae) had no effect on the final concentration. The L. minor was exposed to lead and nickel using a full 3(2) factorial experimental design (nine experiments, plus replications). Initial lead concentrations were 0.0, 5.0, and 10.0 mg/l, and nickel concentrations were 0.0, 2.5, and 5.0 mg/l in the experiment. Overall, L. minor removed 76% of the lead, and 82% of the nickel. No synergistic/antagonistic effect was noted for the multiple metal experiments, in terms of metal removal.  相似文献   

13.
Response surface methodology (RSM) under Box–Behnken design (BBD) was applied to evaluate the effect of the influencing parameters including surfactant concentration, liquid/soil ratio, Humic Acid concentration, and washing time on phenanthrene removal efficiency in soil washing process by using the nonionic surfactant Tween 80 and find an optimal operational conditions to achieve the highest removal efficiency. A polynomial quadratic model was used to correlate phenanthrene removal efficiency and four independent variables (R2 = 0.9719). Based on the obtained results the most influential parameter on phenanthrene removal efficiency was surfactant concentration with an impact value of 69.519%. Liquid/soil ratio was also another factor that significantly influenced on removal efficiency with an impact value of 25.014%. The interaction between surfactant concentration and liquid/soil ratio was also shown to have a positive significant effect on removal efficiency (pvalue = 0.0027). However, the other independent variables Humic Acid concentration and time were not significant in the ranges selected in this study. Based on the optimization results maximum removal efficiency of 70.692 ± 3.647% was achieved under the conditions of surfactant concentration 5000 mg L?1, liquid/soil ratio 30 v/w, HA concentration 9.88 mg L?1, and washing time 2 h, which was in good agreement with predicted value (66.643%).  相似文献   

14.
Introduction – Plants can be used as bioindicators in the study of contamination processes by heavy metals. Most of the analytical methodologies used for determination of metals in plants are based on atomic techniques with previous wet digestion of the solid samples. Methodologies that allow direct metal measurements in solid samples are very attractive alternatives. Objective – To develop a new procedure for direct analysis of copper, nickel, cadmium and lead at very low concentration levels in leaves based on electrothermal atomic absorption spectroscopy (ET‐AAS) with introduction of samples as a slurry. Methodology – In order to obtain accurate and precise results even at very low concentrations, the different parameters that influence the sample slurry preparation such as acid percentage, presence of stabilising agents and ultrasonic probe operation were studied. Instrumental parameters such as chemical modifier and temperature and times for drying, pyrolysis and atomisation steps that influence ET‐AAS measurement were optimised. Results – Optimal slurry conditions for copper and nickel determination were 0.5% Tween 85 with 5% nitric acid. For lead and cadmium analysis the best results were obtained in 5% nitric acid without stabilising agents. The achieved detection limits were 0.023 mg/kg for copper, 0.018 mg/kg for nickel, 0.0002 mg/kg for cadmium and 0.009 mg/kg for lead. For validation purposes, the method was applied to metal analysis in a pine needles reference material. Conclusion – According to our knowledge, the detection limits obtained are the best reported in the literature. The methodology was successfully used in metal determinations in actual leaf samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Cadmium contamination of soil is a major concern in the biosphere. Beyond the suite of available physico-chemical treatment methods, green and more efficient technologies are desired to reduce cadmium and other heavy metal contaminants to acceptable levels. Elastin-like polypeptides (ELP) composed of a polyhistidine domain (ELPH12) can be used as an environmentally benign chelating agent for ex situ soil washing. However, ELPH12 is relatively non-selective. A biopolymer with metal-binding domains that have stronger affinity, capacity, and selectivity would have distinct advantages. The aim of this work is to investigate the use of a new generation of ELP biopolymer, ELPEC20, containing synthetic phytochelatin (EC) as the metal-binding domain for ex situ soil washing. ELPEC20 was shown to bind cadmium more effectively and selectively than ELPH12. The binding constant of ELPEC20 is an order of magnitude higher and the binding capacity is fivefold higher than ELPH12. In contrast to ELPH12, no decrease in cadmium binding was observed in the presence of other competing metal ions. The improved selectivity and binding capacity provided by ELPEC20 were directly reflected in the enhanced cadmium extraction efficiency from contaminated soil. In batch washing studies up to 62% of the bound cadmium was removed by ELPEC20 while less than 12% was removed by ELPH12. Cadmium was removed not only from the exchangeable fraction but also the oxidizable fraction. The high-affinity binding sites of ELPEC20 also results in very rapid extraction with complete removal achieved within 1 h, suggesting that ELPEC20 could be used as part of a rapid (short retention time) technology with minimum possibility for the biodegradation of biopolymers.  相似文献   

16.
Chelating agents such as EDTA and DTPA are often used to remove metals from soil. However, their toxicity, bio-recalcitrance, and problems with recovery of heavy metal and chelating agents severely limit their applications. A biodegradable chelating agent, LED3A, and two surfactants, SDS and Triton X 100, were evaluated as potential alternatives for remediation of metal-contaminated soil.

LED3A alone only removed 40% of cadmium the addition of surfactant significantly enhanced its cadmium removal capacity up to 80% for a wide range of pH (5 to 11). The enhancement increased with both surfactant concentrations and LED3A concentrations. Because LED3A had a much higher removal capacity for copper, the synergistic effect of surfactant-LED3A mixture was less obvious. Sequential extraction analysis indicated that the LED3A not only removed copper from carbonate and Fe-Mn oxide fraction, but also from organic fractions. A three-dimension electrolysis reactor could effectively recover both metals and LED3A-SDS within thirty minutes. The combined soil washing by LED3A-surfactants and electrolysis provides a potential approach for remediation of copper- and cadmium-contaminated soils.  相似文献   


17.
In this study, a combined system of soil washing and electrodeposition was designed to remove Pb (16381±643 mg/kg) and Cd (34347±1310 mg/kg) from contaminated soil. 0.05 M Na2EDTA was used as a chelating agent for the remediation of soil, taken from the nearby city Kayseri, Turkey. As a result of the batch extraction tests, maximum removals were determined as; at the 20:1 liquid: soil ratio for Pb is 60.7%, for Cd at the 30:1 liquid: soil ratio is 67.4%. An electrochemical treatment was applied to the waste washing solution which appeared to be the second pollutant after the Na2EDTA extraction from the soil. With extraction tests of Pb and Cd, being transformed from the solid phase to the liquid phase. The electrochemical treatment (electrodeposition), performed in three different potential (6 V, 8 V and 10 V) and maximum removal efficiencies, were found 99.7% and 80.3% at 10 V for Pb and Cd, respectively.

Speciation tests (BCR) were carried out, both before and after the soil washing process, to evaluate the redistribution of metal fraction in the soil. The fraction, associated with the organic substance, was found as 10.67% for Pb and 1.81% for Cd. The metal bioavailability factor increased after soil washing, which indicates that EDTA could enhance the mobility of Pb and Cd.  相似文献   


18.
The biosorption of cadmium (Cd) and chromium (Cr) by using dried Wolffia globosa biomass were investigated using batch technique. The effects of concentration and pH solution on the adsorption isotherm were measured by determining the adsorption isotherm at initial metal concentrations from 10 to 400 mg/L and pH 4 to 7 for Cd, and pH 1.5 to 6 for Cr. The adsorption equilibria were found to follow Langmuir models. The maximum adsorption capacity (Xm) at pH 7 in W. globosa-Cd system was estimated to be 80.7 mg/g, while the maximum removal achieved at pH 4, pH 5, and pH 6 were 35.1, 48.8, and 65.4 mg/g, respectively. The Xm at pH 1.5 in W. globosa--Cr system was estimated to be 73.5 mg/g, while the maximum removal achieved at pH 3, pH 5, and pH 6 were 47.4, 33.1, and 12.9 mg/g, respectively. The effects of contact times on Cd and Cr sorption indicated that they were absorbed rapidly and more efficiently at lower concentrations.  相似文献   

19.
A soil with aged contamination from lubricating oil (LO) and polychlorinated biphenyls (PCBs) was treated in a bioslurry reactor to investigate in-soil biosurfactant production by Pseudomonas aeruginosa, the most abundant indigenous, culturable, hydrocarbon-degrading microorganism. After 2 days of growth on LO, a depletion of nitrogen stimulated the production and accumulation of rhamnolipids to levels roughly 20 times the critical micelle concentration. Surface tensions and concentrations of monorhamnolipid and dirhamnolipid, PCBs, and total petroleum hydrocarbons (TPH) were measured in a slurry filtrate. Soil-bound PCBs and TPH were also quantified. Rhamnolipid production was observed within 1 to 2 days after nitrogen depletion in each of the 10 batches tested. By day 6, total rhamnolipid concentrations increased from below detection to average values over 1,000 mg/L, which caused over 98% of soil-bound PCBs and over 99% of TPH to be emulsified and recovered in the filtrate. After 70 days, rhamnolipid concentrations were only reduced by 15%, because of nitrogen-limited rates of rhamnolipid biodegradation. The results show that in-soil biosurfactant production can be stimulated in a controlled way with nutrient limitation and can be used to achieve soil washing.  相似文献   

20.
The study was navigated to examine the metal biosorbing ability of bacterial strain OSM29 recovered from rhizosphere of cauliflower grown in soil irrigated consistently with industrial effluents. The metal tolerant bacterial strain OSM29 was identified as Bacillus thuringiensis following 16S rRNA gene sequence analysis. In the presence of the varying concentrations (25–150 mgl−1) of heavy metals, such as cadmium, chromium, copper, lead and nickel, the B. thuringiensis strain OSM29 showed an obvious metal removing potential. The effect of certain physico-chemical factors such as pH, initial metal concentration, and contact time on biosorption was also assessed. The optimum pH for nickel and chromium removal was 7, while for cadmium, copper and lead, it was 6. The optimal contact time was 30 min. for each metal at 32 ± 2 °C by strain OSM29. The biosorption capacity of the strain OSM29 for the metallic ions was highest for Ni (94%) which was followed by Cu (91.8%), while the lowest sorption by bacterial biomass was recorded for Cd (87%) at 25 mgl−1 initial metal ion concentration. The regression coefficients obtained for heavy metals from the Freundlich and Langmuir models were significant. The surface chemical functional groups of B. thuringiensis biomass identified by Fourier transform infrared (FTIR) were amino, carboxyl, hydroxyl, and carbonyl groups, which may be involved in the biosorption of heavy metals. The biosorption ability of B. thuringiensis OSM29 varied with metals and was pH and metal concentration dependent. The biosorption of each metal was fairly rapid which could be an advantage for large scale treatment of contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号