首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated concentrations of Cu and Zn have been found in the upper part of three sediment cores collected from Llangorse Lake, in south Wales. Palaeomagnetic evidence from one of the cores and 210Pb analysis of another, suggests that the increase in sediment Cu and Zn concentrations began during the eighteenth century. A sharp increase in the concentrations of these metals in the sediment profile appears to have occurred during the latter part of the eighteenth century and these concentrations remained high until the mid to late nineteenth century.The absence of known ore deposits and industry around the lake suggests that the lake and catchment soils were increasingly contaminated by long-range aerial transport of emissions from the expanding activity of Cu and Zn smelters located some 80 km upwind in the Swansea area during the Industrial Revolution. Evidence from agricultural crop returns indicates a significant increase in the amount of land devoted to tillage in the catchment, particularly to cereal production, during the late eighteenth and the first half of the nineteenth century which included the Napoleonic Wars. This agricultural shift appears to coincide with increased concentrations of Cu and Zn in the lake sediments. It is suggested that newly ploughed soils, contaminated with metals for many years by long-range aerial transport from the Swansea area, eroded, and were carried into the lake by catchment run-off and added to the sediment burden of Cu and Zn. A subsequent decline of Cu and Zn emissions due to the collapse of the non-ferrous smelting industry and reduced soil erosion because of a 50% reduction of tillage due to an agricultural depression in the second half of the 19th century may explain the fall in Cu and Zn concentrations in the upper part of the sediment profile. The most recent sediments (20th century) show the increase in heavy metals characteristic of many lakes around the world.  相似文献   

2.
An ecological survey was carried out to determine the levels of nutrients and heavy metals in the sediments and leaf tissues of two dominant mangrove plant species, Kandelia candel and Aegiceras corniculatum, in Futian mangrove forest, Shenzhen, the People's Republic of China. The spatial and seasonal variations of these elements were also investigated. The results show that there was no major difference between two sampling sites 150 m apart. In both sites, the sediment concentrations of total and NH4 +-N, total and extractable P, total and extractable K, total organic carbon were consistently higher in the landward locations and decreased gradually towards the sea. The sediment sample collected at the seaward edge of the mangrove plant community had the lowest levels of nutrient and organic matter. The vertical variations (from the land to the sea) of sediment heavy metals were less obvious and no particular trend could be identified. Extremely high contents of Cu, Cd, Pb, Cr and Zn were found at certain locations, suggesting the occurrence of some local contamination. The mean total metal concentrations in sediments decreased in the order Mn > Zn > Cu > Cr = Pb > Cd for the sample locations. Most of the heavy metals were not in a bioavailable form as the concentrations of extractable metals were relatively low (< 1% of total metals). Pb, Cr and Cd were not detected in leaf samples. Leaf C, N, P and K contents were similar between the two species and no significant difference was found among locations, although A. corniculatum seemed to have lower Mn concentrations than K. candel. With reference to temporal variations, no significant difference in sediment concentrations of some nutrients and metals was found between the spring and autumn seasons.  相似文献   

3.
The concentration and bioavailability of Ni, Cu, Cd, Zn, and Pb in the sediments and leaves of grey mangrove, Avicennia marina, were studied throughout Sirik Azini creek (Iran) with a view to determine heavy metals bioavailability, and two methods were used. Results show that Zn and Ni had the highest concentrations in the sediments, while Cd and Cu were found to have the lowest concentrations in the sediments. Compared to the mean concentrations of heavy metals in sedimentary rock (shales), Zn and Cu showed lower concentration, possibly indicating that the origin of these heavy metals is natural. A geo-accumulation index (I geo) was used to determine the degree of contamination in the sediments. I geo values for Zn, Cu, Pb, and Ni showed that there is no pollution from these metals in the study area. As heavy metal concentrations in leaves were higher than the bioavailable fraction of metals in sediments, it follows that bioconcentration factors (leaf/bioavailable sediment) for some metals were higher than 1.  相似文献   

4.
Abstract

Taihu Lake is one of the most important water sources in the economically developed central-eastern part of China, and metal pollution is a major concern for the lake. The distribution and bioavailability of Cd, Cr, Cu, Pb, Sb and Zn were analysed in undifferentiated bottom sediments and in various particle-size fractions of the sediment from different parts of the lake. The average concentration of total metals in undifferentiated sediments ranged from 0.86 mg kg-1 (Cd) to 95.45 mg kg-1 (Zn) for the entire lake, with the highest concentrations in Zhushan Bay. The concentration of heavy metals was higher in extremely fine sands (0.064–0.125 mm) and fine sands (0.125–0.25 mm) than in other fractions. Sequential extractions showed that Cu, Zn and Cd were the most bioavailable accounting for 55.6%, 38.7% and 30.0% of their total concentration, respectively. However, the bioavailable proportion of many metals was not significantly different between grain grades except for Cu and Zn, which were higher in silts (<0.064 mm) than in other grades. Compared with the background values of local soils, the concentration of Zn, Cd, Cu, Pb and Sb was higher, indicating enrichment in the sediment. From ecological safety concerns, Zn, Cd and Cu should be examined closely because of their higher bioavailabilty in the sediment.  相似文献   

5.
黄河口盐地碱蓬湿地土壤-植物系统重金属污染评价   总被引:6,自引:0,他引:6  
王耀平  白军红  肖蓉  高海峰  黄来斌  黄辰 《生态学报》2013,33(10):3083-3091
以黄河口盐地碱蓬湿地为例,评价了淹水和非淹水区湿地表层土壤As、Cd、Cu、Cr、Pb和Zn 6种重金属的污染程度及其在土壤-植物系统中的迁移、富集特征,分析了不同积水深度和土壤理化性质对研究区土壤重金属含量的影响.研究结果表明,与土壤或沉积物质量标准相比,黄河口盐地碱蓬湿地土壤受As和Cd污染最严重,而其它重金属污染较轻;非淹水土壤Cd、Cr和Zn含量高于淹水湿地,而As、Cu和Pb则较低;而且淹水土壤As含量随积水深度增加而呈下降趋势,但积水深度对其他重金属含量的影响不明显.相关性分析结果表明,按照受土壤关键影响因子的不同重金属(除As外)可以分为两类:第一类为Cd、Cr和Zn,这些重金属含量受土壤pH值和盐分影响较大,且相互间存在显著正相关关系,表明它们可能有相同的来源;第二类为Pb和Cu,它们受土壤pH值、盐分和有机质的影响,且Pb和Cu之间存在显著正相关关系.除Cr、Cu和Zn外,重金属在盐地碱蓬的根系内一般不发生显著富集,但绝大多数重金属都表现出地上部分的含量比根系更高的现象.  相似文献   

6.
Dave  Göran 《Hydrobiologia》1992,235(1):419-433
The River Kolbäcksån system is located in a historical mining and steel works district of central Sweden. Ten years ago, intensive limnological studies indicated that the sediments in many of the lakes of this system were contaminated with metals and oil (grease). More recently a very high toxicity was found in the sediments from some of these lakes in tests with Daphnia magna and Tubifex tubifex. The objective of this study was to determine the toxicity to Daphnia magna of surficial sediments from representative locations (N = 39) within this system of lakes and to look for possible correlations with concentrations of metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) and oil (total) analysed in parallel samples. These results were also compared with spiked sediment toxicity data generated for these metals and with the bottom fauna at 8 of the 39 locations. Among the metals analyzed, only Cd, Pb and Zn were correlated with whole sediment toxicity. Only for Zn and Cr did the maximum concentrations approach those that were toxic in the spiked sediments. Correlations using single and combined metal contamination and toxicity (additive models) explained 16% of the sediment toxicity (r 2 = 0.16; N = 39). Significant correlations with the bottom fauna in situ (gross abundance, biomass and species richness) were found for whole sediment toxicity, but not for metal contamination (N = 8). The use of the sediment quality triad approach for assessment of sediment quality is exemplified with a numerical normalization procedure for the latter 8 sites.  相似文献   

7.
Kattedan is an industrial area near Hyderabad, Andhra Pradesh, India, contaminated with high concentrations of metals attributed to industrial sources (battery manufacturing, metal plating, textile and pharmaceuticals production and others). Twelve different locations in the Kattedan industrial area were assessed for concentrations of metals (Zn, Cr, Cu, Ni, Co, Pb, Hg, Cd, and As) in soils, waters, and vegetation. Application of sequential extraction technique for the soils revealed relatively high percentages of Zn, Cu, and Cr associated with mobile fractions, and correspondingly high concentrations of Zn, Cr, Cu, and Pb in forage grass samples and a high degree of bioavailability to humans. Human exposure assessment revealed high concentrations of Pb, Zn, and Cr in blood and urine samples from the residents of the study area showing a direct pathway and a potential for toxicological hazard due to heavy metal pollution.  相似文献   

8.
以铜锈环棱螺(Bellamya aeruginosa)为测试生物,采用28 d沉积物生物积累试验研究铜锈环棱螺对污染河流沉积物中重金属的生物积累,并探讨其与重金属赋存形态的关系.结果表明:铜锈环棱螺肝胰脏对Cd、Pb、Cu、Cr、Zn和Mn均具有较强的积累作用.不同重金属的积累量存在较大差别,Zn的积累量最多,占重金属总积累量的84.32%±4.36%,其次为Cu,占7.67%±2.84%;Pb、Cr和Mn的比例相对较少,分别为3.62%±1.84%、2.22%±1.03%和1.33%±0.15%;Cd所占比例最少,为0.83%±0.53%.肝胰脏中重金属元素之间的相关性均不显著.肝胰脏金属污染指数与沉积物污染综合指数具有显著的正相关关系,铜锈环棱螺可以作为沉积物重金属污染的监测生物.不同沉积物Cd、Cr、Zn和Mn的生物-沉积物积累因子(BSAF)具有较大的差异,Cu和Pb的BSAF比较稳定.Cd的生物积累与沉积物中Cd的可交换的与酸可溶态及可氧化态显著相关;Pb的生物积累与Pb的可还原态显著相关;Cu的生物积累与Cu的可氧化态显著相关;Mn的生物积累与Mn的可交换的与酸可溶态和可还原态显著相关;Cr和Mn的生物积累与其不同形态和总量均不相关.BSAF不宜作为衡量铜锈环棱螺对沉积物中重金属生物积累能力的指标.  相似文献   

9.
M. Sager  R. Pucsko 《Hydrobiologia》1991,226(1):39-49
Summary The sediments of the River Danube in the Reservoir at Altenwörth/Lower Austria, are moderately polluted with Zn, Pb, and Cd, whereas concentrations of As, Co, Cr, Cu and Ni are typical of background values. Deposit-feeding oligochaetes living in these sediments were analyzed for their trace element concentrations (As, Cd, Cu, Pb, Zn) to study pathways of recycling of sediment bound amounts to the food web. Compared with background values of benthic deposit feeders from the literature, Cu and As are low, whereas some samples were enhanced in Pb, Cd and Zn. Within the rather narrow concentration ranges, relations of tissue concentrations with chemical and mineralogical compositions of the sediment were hardly found. Increase of clay mineral contents went in parallel with increasing Cd, Zn, and Cu in the tissues, and As in the tissues with total As content. Pb in the tissues was closely related to Pb-concentrations in the pore water. By means of sequential leaching, some further relations between trace element contents in the tissues and solid phases were found. The organic detrital phase positively correlates with As-uptake, whereas hydroxylamine-reducible Mn/Fe-oxyhydroxides influence the Pb-level, and dithionite-reducible Fe/Mn influence the Cu-level. Exchangeable and weak-acid-mobile fractions of the respective metals, however, did not correlate with tissue-levels, nor did the oxalate-extractable Fe-hydroxide coatings, which carry a major part of the heavy metals at fine grain sizes in the Danube sediments investigated. Zn in the tissues was largely independent from all investigated parameters.  相似文献   

10.
The geochemical partitioning of trace metals in sediments is of great importance in risk assessment and remedial investigation. Selected factors that may control the partitioning behavior of Cu, Pb and Zn in non-sulfidic, estuarine sediments were examined with the use of combined sorption curve—sequential extraction analysis. This approach, which has not been previously used to examine estuarine sediments, allowed determination of sorption parameters for Cu, Pb and Zn partitioning to individual geochemical fractions. Partitioning behavior in sulfidic sediments was also determined by sequentially extracting Cu, Pb, and Zn from synthetic sulfide minerals and from natural sediment and pure quartz sand after spiking with acid-volatile sulfide (AVS). Trace metal sorption to the “carbonate” fraction (pH 5, NaOAc extraction) increased with metal loading due to saturation of sorption sites associated with the “Fe-oxide” (NH2OH·HCl extraction) and “organic” (H2O2 extraction) fractions in non-sulfidic sediments. Freundlich parameters describing sorption to the “Fe-oxide” and “organic” fractions were controlled by the sediment Fe-oxide and organic carbon content, respectively. Sequential extraction of Cu from pure CuS, AVS-spiked sediment and AVS-spiked quartz sand showed that AVS-bound Cu was quantitatively recovered in association with the “organic” fraction. However, some AVS-bound Pb and Zn were recovered by the NH2OH·HCl step (which has been previously interpreted as “Fe-oxide” bound metals) in the sequential extraction procedure used in this study. This indicates that the sequential extraction of Pb and Zn in sulfidic sediments may lead to AVS-bound metals being mistaken as Fe-oxide bound species. Caution should therefore be exercised when interpreting sequential extraction results for Pb and Zn in anoxic sediments.  相似文献   

11.
The heavy metal pollution of sediment in the Nhue River, which receives wastewater from the To Lich and Kim Nguu River system, was investigated together with the effects of use of this water for irrigation of the surrounding farmland. Eighty soil samples and 40 sediment samples were collected from six locations in the Nhue River and two locations in the To Lich River for chemical and physical analyses. The results showed that the sediments in the Nhue River are heavily polluted by metals (71–420 mg/kg for Cu, 77–433 mg/kg for Pb, 150–350 mg/kg for Zn, 0.7–8.7 mg/kg for Cd, 80– 583 mg/kg for Cr, and 32–70 mg/kg for Ni). There were positive correlations between heavy metal concentration and both clay and organic matter contents in the sediment samples. The concentrations of all metals in soil samples were much higher than the background levels in the farmland, Cd, Cu, and Pb, exceeding Vietnamese standards for agricultural grounds.  相似文献   

12.
Superficial (0 to 2 cm) sediments were sampled from 62 sites in Kattegat and Skagerrak during autumn 1989 and spring 1990, tested for toxicity to Daphnia magna and Nitocra spinipes (Crustacea) and analyzed for heavy metals (Cd, Cr, Cu, Hg, N, Pb, Zn), nutrients (N and P) and organic carbon. Whole sediment toxicity to Nitocra spinipes, expressed as 96-h LC50, ranged from 1.8 to > > 32 percent sediment (wet wt), which is equivalent to 0.63 to 53 percent dry wt. Sediment total metal concentrations (mg kg-1 dry wt) ranged from 0.01 to 0.32 for Cd, 8 to 57 for Cr, 3 to 40 for Cu, 0.03 to 0.86 for Hg, 3 to 43 for Ni, 6 to 37 for Pb and 21 to 156 for Zn. Analyzed concentrations of heavy metals were tested for correlation with whole sediment toxicity normalized to dry wt, and significant correlations (Spearman p<0.05) were found for Cd, Cr, Cu, Hg, and Ni. However, the analyzed concentrations of these metals were below the spiked sediment toxicity of these heavy metals to N. spinipes, except for Cr and Zn for which analyzed maximum concentrations approached the 96-h spiked sediment LC50s. There was no improvement in correlation between the sum of heavy metal concentrations normalized to their spiked toxic concentrations (Toxic Unit approach) and the whole sediment toxicity. Calculated heavy-metal-derived toxicity based on toxic units and whole sediment toxicity ranged from 0.1 to 24 (mean value 2.3 and SD 4.2). Theoretically, a value of 1.0 would explain whole sediment toxicity from measured metal concentrations using this approach. Thus, in spite of the fact that the total concentrations of the heavy metals were sufficient to cause toxicity based on an additive model for most of these sediments, the observed toxicity of the sediments from Kattegat and Skagerrak could not exclusively be explained by the concentrations of heavy metals, except for Cr and Zn at their maximum concentrations. Therefore, other pollutants than these heavy metals must also be considered as possible sediment toxicants.  相似文献   

13.
Water and intertidal sediment samples were collected from 28 stations along the Thames Estuary, from the tidal limit to the outer estuary. Surveys were conducted in 1997, 1999 and 2001 to assess spatial distributions and short-term variability. Highest concentrations of trace metals in water coincided with high turbidity in the mid-estuarine region, although the particle-associated fraction varied from 22% (As) to 95% (Pb). Theoretical dilution line (TDL) plots showed that dissolved metals were largely derived from a combination of diffuse (sediment desorption) and localised point sources (outfalls, industry). Dissolved Cu and Zn both exceeded environmental quality standard (EQS) levels during the survey period. The majority of sediment metals showed common distributional patterns, with increasing concentrations upstream. This increase was greatest for pollutant metals: Ag, Cd, Cu, Hg, Pb and Zn. Partial extraction of sediment metals with 1 M HCl showed that >50% of Ag, Cd, Cu, Mn, Pb and Zn were potentially bioavailable and that the proportion of bioavailable sediment metals also increased upstream. The majority of sediment metal concentrations exceeded Interim Sediment Quality Guideline threshold effects levels (TELs) over much of the estuary. Sediment concentrations of Cu, Hg, Pb and Zn also exceeded probable effects levels (PELs) at many estuarine sites. Despite improvements in recent years, the Thames Estuary remains chronically contaminated with a range of metals.  相似文献   

14.
Lake Taihu is one of the most contaminated lakes in China. Surface sediment data show that the northern area of the Lake has the worst heavy metals pollution, and high heavy metal concentrations were attributed to discharge of untreated and partially treated industrial waste water from cities to the north of the lake. To study geochemical features and pollution history of heavy metals, total content and chemical fractionations of Cu, Fe, Mn, Ni, Pb, and Zn were analyzed for core sediments from western Lake Taihu using the speciation extraction procedure, proposed by the Commission of the European Communities Bureau of Reference (BCR), together with grain size and organic carbon measurements. Results show that sediments are composed of organic-poor clayey-fine silts for Cores MS and DLS, and have similar geochemical features shown by heavy metals. Cu, Fe, Ni, and Zn mainly are associated with the residue fraction, Mn is concentrated in the exchangeable-carbonate and residue fractions, and Pb is concentrated in the Fe–Mn oxide fraction and organic-sulfide fraction. The fractions of Ni, Pb, and Zn bound to Fe–Mn oxide show significant correlations with Mn from the Fe–Mn oxide fraction, and the organic-sulfide fractions of Cu, Mn, Ni, Pb, and Zn are correlated with TOC. The increase of Cu, Mn, Ni, Pb and Zn content and percentage of extractable fractions in the upper layers of the sediments are correlated with anthropogenic input of heavy metals due to rapid industrial development. This coincides with rapid economic development in the Taihu basin since late 1970s. Heavy metals in the surface sediments have certain potential biological toxicity as shown by the higher SEM/AVS ratio.  相似文献   

15.
To evaluate the contribution of the long-range transport of heavy metals from the Asian continent to the enrichment of surface sediments in western Japan, heavy-metal (Cd, Cu, Pb, Sb, and Zn) concentrations were measured in sediment cores collected at three sites each in Lakes Shinji and Nakaumi. Sedimentation fluxes of these metals were calculated on the basis of their concentrations in excess of their background concentrations. Pb showed similar sedimentation fluxes in the sites, suggesting a predominant contribution of atmospheric deposition of Pb transported from the Asian continent to the input to the lakes. In contrast, the sedimentation fluxes of heavy metals other than Pb in the surface sediments were markedly high near the estuary of a principal river flowing into Lake Nakaumi. A highly positive correlation was observed between the Cd and Zn concentrations in the cores at each site (r 2 = 0.84–0.97). The Cd/Zn ratios in the surface sediments (1990–2007) indicated that Lake Shinji sediments have ratios of 0.0067–0.0074, higher than those of Tokyo Bay sediments (0.0054 on average in 1990–2003), which have been polluted primarily by effluent discharges. In contrast, the ratios in Lake Nakaumi sediments (0.0053–0.0060) were close to those in Tokyo Bay sediments. Rainwater and aerosols, which were strongly affected by air pollutants from the Asian continent, have much higher Cd/Zn ratios of 0.014–0.016. This suggests that the Lake Shinji sediments with higher Cd/Zn ratios are less affected by effluent discharges. Hence, Lake Shinji sediments may be suitable for assessing the environmental impact of the long-range transport of heavy metals from the Asian continent.  相似文献   

16.
Concentrations of major nutrients (C, N, P) and acid soluble metals (Ca, Mg, K, Al, Fe, Mn, Pb, and Zn) were determined in modern (0–1 cm) and pre-acidification (5–10 cm) sediment layers collected from 37 alpine and 3 forest lakes in the Tatra Mountains (Slovakia, Poland) in 1996–1998. Sediment composition reflected catchment characteristics and productivity of lakes. In the sediments of alpine lakes, C and N concentrations decreased and Mg increased with a decreasing proportion of vegetation and soil in the catchment. Decreasing Ca:Mg ratios in sediments along the vegetation gradient was inverse to that in water, and could be associated with different ratios of cations in water leachate from catchments and in solids which enter the lake due to soil erosion. Phosphorus concentrations increased with the proportion of moraine areas, with till soils rich in P. Concentrations of C, N, P, and Ca in sediments positively correlated to their concentrations in water. Sediment concentrations of Al and Al:Ca ratios increased with decreasing sediment and water pH. A negative correlation between water pH and concentrations of organic C in water and sediments indicated the important impact of organic acids on the acid status of the lakes exposed to higher terrestrial export of organic matter. Compared to the pre-acidification period, the modern sediments had significantly higher Fe, Mn, Zn, Pb, and K, but lower Mg concentrations. The Zn and Pb enrichment was more evident in oligotrophic alpine lakes than in more productive forest lakes and was independent of lake water or sediment pH. Fe and Mn concentrations in the modern sediments were higher than in ambient soils and bedrock, while those in pre-acidification sediments were similar to contemporary soils and to the rock layer. The enrichment of the modern sediments with Fe and Mn thus probably resulted from both their redox recycling and ecosystem acidification.  相似文献   

17.
重金属是水体沉积物中的重要污染物,可能对底栖生物和水生态环境产生严重的危害.生物效应数据库法是国际上广泛接受的沉积物质量基准计算方法.本文介绍了利用该方法计算沉积物质量基准的详细过程,并应用该方法初步建立了Cu、Zn、Cd、Pb、Ni 5种重金属的淡水沉积物质量基准,对建立基准值进行了可比性、可靠性和可预测性分析.结果表明: Cd、Ni、Pb、Zn、Cu的临界效应浓度(TEL)分别为3.0、31.4、47.3、74.9和45.5 mg·kg-1(以干质量计),可能效应浓度值(PEL)为19、76.9、204.1、403.6和181.1 mg·kg-1(以干质量计).除Zn外,其他4种重金属的TEL、PEL值与其定义的生物效应基本一致,符合针对保护底栖生物制定的沉积物质量基准的要求,具有较高的可靠性,可以作为淡水水体沉积物重金属质量基准建议值.  相似文献   

18.
Geochemical characteristics of heavy metals in the Xiangjiang River,China   总被引:3,自引:1,他引:2  
Shen  Zhang  Wenjiang  Dong  Licheng  Zhang  Xibao  Chen 《Hydrobiologia》1989,176(1):253-262
The concentration of the heavy metals Cu, Cd, Pb and Zn in surface water and sediment samples taken from the length of the Xiangjiang River in China, revealed significant pollution in the vicinity of two industrial centres (Shuikoushan & Zhuzhou). Additional insight into the potential adverse effects of these elevated concentrations was obtained from studies of the physiochemical forms (speciation) of these metals in the water column and in sediments.  相似文献   

19.
The purpose of this study was to investigate the total and available concentrations of Pb, Cr, Cu, Ni, and Zn in the vegetable soils from the outskirts of a heavy industry city, Northeast China, and to assess the sources of heavy metals and their availability. The average concentrations of Pb, Cu, and Zn were significantly higher than their background values of Changchun topsoil. Principal component analysis, cluster analysis, and geostatistical analysis results suggested that Pb, Cu, and Zn were consistently from anthropogenic sources, while Cr and Ni were from natural sources with low concentrations. Kriging results showed that several hotspots of high metal concentration were identified by the geochemical maps and caused by different environmental factors. Although the available (ethylene-diamine-tetraacetic acid-extractable) fractions showed much lower values than total concentrations of metals, Pb and Cu had relatively high ARa (average availability ratio of metals) values. Our findings show that most of the studied metals had accumulated to some extent in vegetable soils and several hotspots of high metal concentration appeared at the peri-urban of Changchun. The concentrations of some metals in peri-urban vegetable soils have been largely affected by anthropogenic activities. Appropriate measures should be taken to effectively control heavy metal levels in vegetable soils and thus protect human health.  相似文献   

20.
Concentrations of trace metals (Cu, Pb, Zn, Cd, Cr, Hg, and As) were determined for the first time in seawater, sediment, and Manila clam from Deer Island, Liaoning Province, China. The seawater, sediment, and clam samples were collected seasonally at three clam farming sites around Deer Island during 2010–2011. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the seawater samples were 4.16, 0.72, 5.88, 0.45, 2.51, 0.03, and 1.02 μg/l, respectively. The seasonal variations of trace metals in seawater showed a significant difference in the concentrations of Cu, Pb, Zn, Hg, and As among seasons. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the sediment samples were 6.43, 13.80, 53.08, 1.10, 36.40, 0.05, and 4.78 mg/kg dry weight, respectively. Trace metal concentrations in sediment seasonally varied significantly except for Cd and Hg. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the clam samples were 11.28, 0.61, 92.50, 0.58, 3.98, 0.03, and 1.98 mg/kg dry weight, respectively. Concentrations of Cu, Zn, Cd, Cr, and As in Manila clam showed marked seasonal fluctuations with significant difference. Cu and Zn were the metals with the highest mean biosediment accumulation factor values in Manila clam. Besides, significant correlations for the concentrations of Cu and Zn relative to their concentrations in sediment were also found. Such differences in regression analyzes may be explained by differential bioaccumulation of essential and xenobiotic metals. Concentrations of trace metals in Manila clam did not exceed the maximum established regulatory concentrations for human consumption. Moreover, the calculations revealed that the estimated daily intake values for the examined clam samples were below the internationally accepted dietary guidelines and the calculated hazard quotient values were well less than 1, thus strongly indicating that health risk associated with the intake studied metals through the consumption of Manila clam from Deer Island was absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号