首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite considerable interest in studying Burkholderia cepacia complex in the environment, we still do not have efficient methods to detect, isolate, and screen large numbers of B. cepacia isolates. To better describe the ecology and diversity of B. cepacia complex, a colony hybridization assay was developed to detect specifically all species of the complex based on polymorphism of the variable V3 region of the 16S rRNA sequence. The sensitivity of the assay was dramatically enhanced by using a probe consisting of three repeats of a B. cepacia complex-specific probe, each separated by a phosphoramidite spacer. In addition, a duplex PCR targeting B. cepacia complex-specific recA and 16S rRNA sequences was developed to enable a fast and reliable diagnostic assay for members of the complex. When applied to maize rhizosphere samples, colony hybridization results were in good agreement with those of most-probable-number duplex PCR, both indicating a >100-fold fluctuation of abundance between individual plants. Using restriction analysis of recA for a total of 285 confirmed isolates of the B. cepacia complex, up to seven B. cepacia complex species were identified; however, their diversity and abundance were not evenly distributed among individual plants, and several allelic variants were commonly found from the same rhizosphere sample. These results indicate that not only complex communities of B. cepacia complex species and closely related strains of the same species may coexist at high population levels but also species composition and abundance may dramatically vary between individual plants.  相似文献   

2.
Burkholderia is an important bacterial genus containing species of ecological, biotechnological, and pathogenic interest. With their taxonomy undergoing constant revision and the phenotypic similarity of several species, correct identification of Burkholderia is difficult. A genetic scheme based on the recA gene has greatly enhanced the identification of Burkholderia cepacia complex species. However, the PCR developed for the latter approach was limited by its specificity for the complex. By alignment of existing and novel Burkholderia recA sequences, we designed new PCR primers and evaluated their specificity by testing a representative panel of Burkholderia strains. PCR followed by restriction fragment length polymorphism analysis of an 869-bp portion of the Burkholderia recA gene was not sufficiently discriminatory. Nucleotide sequencing followed by phylogenetic analysis of this recA fragment differentiated both putative and known Burkholderia species and all members of the B. cepacia complex. In addition, it enabled the design of a Burkholderia genus-specific recA PCR that produced a 385-bp amplicon, the sequence of which was also able to discriminate all species examined. Phylogenetic analysis of 188 novel recA genes enabled clarification of the taxonomic position of several important Burkholderia strains and revealed the presence of four novel B. cepacia complex recA lineages. Although the recA phylogeny could not be used as a means to differentiate B. cepacia complex strains recovered from clinical infection versus the natural environment, it did facilitate the identification of clonal strain types of B. cepacia, B. stabilis, and B. ambifaria capable of residing in both niches.  相似文献   

3.
Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37°C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.  相似文献   

4.
Eleven Burkholderia cepacia-like isolates of human clinical and environmental origin were examined by a polyphasic approach including recA and 16S rRNA sequence analysis, multilocus sequence analysis (MLSA), DNA base content determination, fatty acid methyl ester analysis, and biochemical characterization. The results of this study demonstrate that these isolates represent a novel species within the B. cepacia complex (Bcc) for which we propose the name Burkholderia pseudomultivorans. The type strain is strain LMG 26883T (=CCUG 62895T). B. pseudomultivorans can be differentiated from other Bcc species by recA gene sequence analysis, MLSA, and several biochemical tests including growth at 42 °C, acidification of sucrose and adonitol, lysine decarboxylase and β-galactosidase activity, and esculin hydrolysis.  相似文献   

5.
A survey of Burkholderia cepacia complex (Bcc) species was conducted in sputum from cystic fibrosis (CF) patients in China. One hundred and four bacterial isolates were recovered on B. cepacia selective agar and 42 of them were assigned to Bcc by PCR assays. The species composition of the Bcc isolates from CF sputum was analyzed by a combination of recA-restriction fragment length polymorphism assays, species-specific PCR tests and recA gene sequencing. The results revealed that the 42 Bcc isolates belong to B. cepacia, B. cenocepacia and B. contaminans while predominant Bcc species was B. cenocepacia. This is the first report of B. contaminans from CF sputum in China. In addition, results from this study showed that chitosan solution at 10, 25, 50 and 100 μg/ml markedly inhibited the growth of the 16 representative isolates from the three different Bcc species, which indicated that chitosan was a potential bactericide against Bcc bacteria.  相似文献   

6.
Cystic fibrosis (CF) patients with Burkholderia cepacia complex (Bcc) pulmonary infections have high morbidity and mortality. The aim of this study was to compare different methods for identification of Bcc species isolated from paediatric CF patients. Oropharyngeal swabs from children with CF were used to obtain isolates of Bcc samples to evaluate six different tests for strain identification. Conventional (CPT) and automatised (APT) phenotypic tests, polymerase chain reaction (PCR)-recA, restriction fragment length polymorphism-recA, recAsequencing, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) were applied. Bacterial isolates were also tested for antimicrobial susceptibility. PCR-recA analysis showed that 36 out of the 54 isolates were Bcc. Kappa index data indicated almost perfect agreement between CPT and APT, CPT and PCR-recA, and APT and PCR-recA to identify Bcc, and MALDI-TOF and recAsequencing to identify Bcc species. The recAsequencing data and the MALDI-TOF data agreed in 97.2% of the isolates. Based on recA sequencing, the most common species identified were Burkholderia cenocepacia IIIA (33.4%),Burkholderia vietnamiensis (30.6%), B. cenocepaciaIIIB (27.8%), Burkholderia multivorans (5.5%), and B. cepacia (2.7%). MALDI-TOF proved to be a useful tool for identification of Bcc species obtained from CF patients, although it was not able to identify B. cenocepacia subtypes.  相似文献   

7.
Burkholderia comprises more than 60 species of environmental, clinical, and agro-biotechnological relevance. Previous phylogenetic analyses of 16S rRNA, recA, gyrB, rpoB, and acdS gene sequences as well as genome sequence comparisons of different Burkholderia species have revealed two major species clusters. In this study, we undertook a multilocus sequence analysis of 77 type and reference strains of Burkholderia using atpD, gltB, lepA, and recA genes in combination with the 16S rRNA gene sequence and employed maximum likelihood and neighbor-joining criteria to test this further. The phylogenetic analysis revealed, with high supporting values, distinct lineages within the genus Burkholderia. The two large groups were named A and B, whereas the B. rhizoxinica/B. endofungorum, and B. andropogonis groups consisted of two and one species, respectively. The group A encompasses several plant-associated and saprophytic bacterial species. The group B comprises the B. cepacia complex (opportunistic human pathogens), the B. pseudomallei subgroup, which includes both human and animal pathogens, and an assemblage of plant pathogenic species. The distinct lineages present in Burkholderia suggest that each group might represent a different genus. However, it will be necessary to analyze the full set of Burkholderia species and explore whether enough phenotypic features exist among the different clusters to propose that these groups should be considered separate genera.  相似文献   

8.
A polyphasic taxonomic study involving DNA-DNA hybridization, whole-cell protein electrophoresis, and 16S ribosomal DNA sequence analysis revealed that a group of Burkholderia cepacia-like organisms isolated from the rhizosphere or tissues of maize, wheat, and lupine belong to B. cepacia genomovar III, a genomic species associated with “cepacia syndrome” in cystic fibrosis patients. The present study also revealed considerable protein electrophoretic heterogeneity within this species and demonstrated that the B. cepacia complex consists of two independent phylogenetic lineages.  相似文献   

9.
Sugarcane is an important crop around the world. Burkholderia genus has emerged as an important plant associated bacteria in the last years. In this study, the occurrence of Burkholderia species associated with two sugarcane varieties cultivated in Mexico was assessed. Burkholderia species were isolated with and without diazotrophs enrichment from sugarcane. Burkholderia strains were identified using a semi-selective set of primers and clustered by restriction analysis of 16S rRNA. The isolates were characterized by 16S rRNA, recA and nifH sequence analysis, whole-cell protein patterns, and plant-growth promotion (PGP) characteristics. Diazotrophic B. unamae and B. tropica were predominant using diazotroph enrichment method. Non-diazotrophic B. cepacia complex (Bcc) species were predominant without enrichment. Among non-diazotrophs, B. tropica was identified. The diazotrophic Burkholderia species exhibit in vitro PGP activities: biosynthesis of indolic compounds, phosphate solubilization, siderophores production and acdS gene presence, which encodes the enzyme ACC (1-aminocyclopropane-1-carboxylate) deaminase. The present study confirms the broad environmental and geographic distribution of diazotrophic B. unamae and B. tropica, and reveals the riches of Bcc and other Burkholderia species associated with sugarcane field-grown in Mexico. This work also shows the potential activities in PGP.  相似文献   

10.
Introduction of a large quantity of exogenous microorganisms may disrupt a local ecosystem and affect the natural microflora. In this work we investigated the effects of the introduction of a plant growth promoting strain of Burkholderia cepacia into the rhizosphere of maize on both indigenous B. cepacia populations and microbial community structure of total culturable bacteria using the concept of r/K strategy. Moreover we studied the distribution of bacterial populations in the root system at various soil depths. Seed bacterization was used as application method. Root colonization of the introduced strain occurred mainly on roots close to the plant stem, whereas indigenous B. cepacia was recovered at higher amounts from the lower parts of root systems of mature plants. As far as total culturable bacteria are concerned, an almost uniform distribution in the root system of mature plants was observed. The release of the exogenous bacterial strain affected mainly the microbial populations of young growing plants rather than mature plants. Indeed it caused only short-term perturbations in the microbial community of maize rhizosphere. Colonization of maize roots by indigenous B. cepacia was not significantly affected by the presence of the exogenous strain.  相似文献   

11.
Burkholderia cepacia complex (Bcc) bacteria reside in soil, plant rhizospheres, and water, but their prevalence and distribution in outdoor environments is not clear. We sampled a variety of soil and rhizosphere environments with which people may have contact: playgrounds, athletic fields, parks, hiking trails, residential yards, and gardens. A total of 91 sites was sampled in three large U.S. cities. In the first phase of the study, putative Bcc isolates were recovered on Burkholderia cepacia selective agar and trypan blue tetracycline medium and subsequently examined for biochemical reactivity and growth at 32 and 22°C. Isolates were further examined by PCR assays targeting Bcc-specific ribosomal DNA and recA gene sequences. Among the 1,013 bacterial isolates examined, 68 were identified as Bcc; 14 (15%) of 91 sampled sites yielded Bcc isolates. In the second phase, DNA was extracted directly from soil samples and examined with PCR assays targeting Bcc 16S rRNA gene sequences. Either 82 or 93% of the soil samples were positive for at least one Bcc genomovar, depending on the PCR assay system used. Cloning and sequencing were performed to check the specificity of the PCR assays. Sequence analysis of the 463-bp 16S rRNA inserts from eight clones indicated that all were from members of the Bcc. The four soil samples from which these clones were generated did not yield isolates identified as Bcc. Based on PCR detection, Bcc appears to be prevalent in soil from urban and suburban environments. Culture-based recovery of Bcc may underestimate environmental populations.  相似文献   

12.
Due to the limited information of the contribution of various antibiotic resistance mechanisms in clinical Burkholderia cepacia complex isolates, Antibiotic resistance mechanisms, including integron analysis, identification of quinolone resistance-determining region mutations, measurement of efflux pump activity, and sequence analysis of efflux pump regulators, were investigated in 66 clinical B. cepacia complex isolates. Species were identified via recA-RFLP and MALDI-TOF. Four genomovars were identified by recA-RFLP. B. cenocepacia (genomovar III) was the most prevalent genomovar (90.1%). Most isolates (60/66, 90.9%) were correctly identified by MALDI-TOF analysis. Clonal relatedness determined by PFGE analysis revealed 30 pulsotypes, including two major pulsotypes that comprised 22.7% and 18.2% of the isolates, respectively. Seventeen (25.8%) isolates harboured class 1 integron with various combinations of resistance genes. Among six levofloxacin-resistant isolates, five had single-base substitutions in the gyrA gene and three demonstrated efflux pump activities. Among the 42 isolates exhibiting resistance to at least one antimicrobial agent, 94.4% ceftazidime-resistant isolates (17/18) and 72.7% chloramphenicol-resistant isolates (16/22) demonstrated efflux pump activity. Quantitation of efflux pump RNA level and sequence analysis revealed that over-expression of the RND-3 efflux pump was attributable to specific mutations in the RND-3 efflux pump regulator gene. In conclusion, high-level expression of efflux pumps is prevalent in B. cepacia complex isolates. Mutations in the RND-3 efflux pump regulator gene are the major cause of efflux pump activity, resulting in the resistance to antibiotics in clinical B. cepacia complex isolates.  相似文献   

13.

Aims

We aimed to identify plant growth-promoting rhizobacteria that could be used to develop a biofertilizer for rice.

Methods

To obtain plant growth-promoting rhizobacteria, rhizosphere soils from different crops (rice, wheat, oats, crabgrass, maize, ryegrass, and sweet potato) were inoculated to rice plants. In total, 166 different bacteria were isolated and their plant growth-promoting traits were evaluated in terms of colony morphology, indole-3-acetic acid production, acetylene reduction activity, and phosphate solubilization activity. Moreover, genetic analysis was carried out to evaluate their phylogenetic relationships based on 16S rRNA sequence data.

Results

Strains of Bacillus altitudinis, Pseudomonas monteilii, and Pseudomonas mandelii formed associations with rice plants and fixed nitrogen. A strain of Rhizobium daejeonense showed nitrogen fixation activity in an in vitro assay and in vivo. Strains of B. altitudinis and R. daejeonense derived from rice rhizosphere soil, strains of P. monteilii and Enterobacter cloacae derived from wheat rhizosphere soil, and a strain of Bacillus pumilus derived from maize rhizosphere soil significantly promoted rice plant growth.

Conclusions

These methods are effective to identify candidate species that could be developed as biofertilizers for target crops.  相似文献   

14.
Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area.  相似文献   

15.
A recA mutant was constructed of a soil isolate of Burkholderia cepacia, strain ATCC 17616. Prior to mutagenesis, the recA gene was cloned from this strain by its ability to complement the methyl methanesulfonate sensitivity of an Escherichia coli recA mutant. Sequence analysis of the strain showed high sequence similarity (94% nucleic acid and 99% amino acid identity) with the recA gene previously cloned from a clinical isolate of B. cepacia, strain JN25. The subcloned recA gene from B. cepacia ATCC 17616 restored UV resistance and recombination proficiency to recA mutants of E. coli and Pseudomonas aeruginosa, as well as restoring the ability of D3 prophages to be induced to lytic growth from a RecA strain of P. aeruginosa. The recA mutant of B. cepacia ATCC 17616 was constructed by λ-mediated Tn5 mutagenesis of the cloned recA gene in E. coli, followed by replacement of the Tn5-interrupted gene for the wild-type allele in the chromosome of B. cepacia by marker exchange. The RecA phenotype of the mutant was demonstrated by the loss of UV resistance as compared to the parental strain. Southern hybridization analysis of chromosomal DNA from the mutant indicated the presence of Tn5 in the recA gene, and the location of the Tn5 insertion in the recA allele was identified by nucleotide sequence analysis. A test using the recA mutant to see if acquired resistance to d-serine toxicity in B. cepacia might be a result of RecA-mediated activities proved negative; nevertheless, RecA activity potentially contributes to the overall genomic plasticity of B. cepacia and a recA mutant will be useful in bioengineering of this species. Received: 24 January / Received revision: 11 July 1997 / Accepted: 25 August 1997  相似文献   

16.
Taxonomic studies of the past few years have shown that the Burkholderia cepacia complex, a heterogeneous group of B. cepacia-like organisms, consists of at least nine species. B. cepacia complex strains are ubiquitously distributed in nature and have been used for biocontrol, bioremediation, and plant growth promotion purposes. At the same time, B. cepacia complex strains have emerged as important opportunistic pathogens of humans, particularly those with cystic fibrosis. All B. cepacia complex species investigated thus far use quorum-sensing (QS) systems that rely on N-acylhomoserine lactone (AHL) signal molecules to express certain functions, including the production of extracellular proteases, swarming motility, biofilm formation, and pathogenicity, in a population-density-dependent manner. In this study we constructed a broad-host-range plasmid that allowed the heterologous expression of the Bacillus sp. strain 240B1 AiiA lactonase, which hydrolyzes the lactone ring of various AHL signal molecules, in all described B. cepacia complex species. We show that expression of AiiA abolished or greatly reduced the accumulation of AHL molecules in the culture supernatants of all tested B. cepacia complex strains. Phenotypic characterization of wild-type and transgenic strains revealed that protease production, swarming motility, biofilm formation, and Caenorhabditis elegans killing efficiency was regulated by AHL in the large majority of strains investigated.  相似文献   

17.
《FEMS microbiology letters》1997,154(2):377-383
The feasibility of intragenerically characterizing bifidobacteria by a comparison of a short region within the recA gene was tested. An ∼300 bp fragment of the recA gene was PCR-amplified from six species from the genus Bifidobacterium using primers directed to two universally conserved regions of the recA gene. A phylogenetic analysis of the sequenced recA products compared favorably to classification based on the 16S rRNA sequences of the species tested. To apply this rapid methodology to unknown human intestinal bifidobacteria, 46 isolates were randomly chosen from the feces of four subjects and initially characterized by RFLP analysis of a PCR-amplified region of their 16S RNA genes. From a representative of the dominant RFLP family in each of the subjects, the recA segment was PCR-amplified, sequenced and phylogenetically analyzed. All four isolates were found to be related to one another and to B. longum and B. infantis. These results illustrate that the recA gene may be useful for intrageneric phylogenetic analysis as well as for the identification of unknown fecal bifidobacteria.  相似文献   

18.
Bacillus polymyxa, Pseudomonas cepacia and Pseudomonas fluorescens are present in the rhizosphere of many crop plants. Little is known about microbial interactions in the rhizosphere. We investigated the type of interaction between these species under iron limitation. We found that, in mixed batch cultures, P. cepacia stimulates the growth of B. polymyxa and this stimulation can be observed also in low iron medium. Cell-free supernatants of cultures of P. fluorescens with various amounts of the siderophore pyoverdine also stimulate the growth of B. polymyxa. In this case we observed a positive correlation between pyoverdine concentration and growth stimulation. Purified pyoverdine also affects positively the growth of B. polymyxa.  相似文献   

19.
Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.  相似文献   

20.
Burkholderia cepacia complex (Bcc) is a group of bacteria with conflicting biological characteristics, which make them simultaneously beneficial and harmful to humans. They have been exploited for biocontrol, bioremediation, and plant growth promotion. However, their capacity as opportunistic bacteria that infect humans restricts their biotechnological applications. Therefore, the risks of using these bacteria should be assessed. In this study, Burkholderia multivorans WS-FJ9 originally isolated from pine rhizosphere, which was shown to be efficient in solubilizing phosphate, was evaluated with respect to its biosafety, colonization in poplar rhizosphere, and growth-promoting effects on poplar seedlings. Pathogenicity of B. multivorans WS-FJ9 on plants was determined experimentally using onion and tobacco as model plants. Onion bulb inoculated with B. multivorans WS-FJ9 showed slight hypersensitive responses around the inoculation points, but effects were not detectable based on the inner color and odor of the onion. Tobacco leaves inoculated with B. multivorans WS-FJ9 exhibited slightly water-soaked spots around the inoculation points, which did not expand or develop into lesions even with repeated incubation. Pathogenicity of the strain in alfalfa, which has been suggested as an alternative Bcc model for mice, was not detectable. Results from gene-specific polymerase chain reactions showed that the tested B. multivorans WS-FJ9 strain did not possess the BCESM and cblA virulence genes. Scanning electron microscopy revealed that the colonization of the WS-FJ9 strain reached 1.4?×?104 colony forming units (cfu)?g?1 rhizosphere soil on day 77 post-inoculation. The B. multivorans WS-FJ9 strain could colonize the rhizosphere as well as the root tissues and cells of poplars. Greenhouse evaluations in both sterilized and non-sterilized soils indicated that B. multivorans WS-FJ9 significantly promoted growth in height, root collar diameter, and plant biomass of inoculated poplar seedlings compared with controls. Phosphorus contents of roots and stems of treated seedlings were 0.57 and 0.55 mg g?1 higher than those of the controls, respectively. Phosphorus content was lower in the rhizosphere soils by an average of 1.03 mg g?1 compared with controls. The results demonstrated that B. multivorans WS-FJ9 is a nonpathogenic strain that could colonize the roots and significantly promote the growth of poplar seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号