首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformational properties of fragment 18–47 of rabbit uteroglobin in aqueous solution containing SDS micelles were investigated by two-dimensional nmr spectroscopy and molecular dynamics calculations. The fragment comprises helices II and III and the β-turn connecting the two helices. The nmr results and nmr-restrained molecular dynamics calculations showed that in the isolated fragment the elements of secondary structure present in the intact protein are preserved only in part. Specifically, a well-defined α-helix was found in the sequence 33–44, corresponding to helix III of uteroglobin, while the regions of helix II and β-turn are characterized by high flexibility in the fragment. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The conformation of two fragments of rabbit uteroglobin is described. The peptides are PRFAHVIENLL and PQTTRENIMKLTEKIVK, corresponding to helices I and IV in the crystal structure. CD shows that both peptides interact with sodium dodecyl sulfate (SDS) micelles and change their conformation to an α-helix. The helical content estimated from the CD band at 222 nm is about 40% in each peptide. Surface tension measurements show that both peptides lower the critical micellar concentration (cmc) of SDS, with a more dramatic effect in the case of helix I. This peptide by itself acts as a surfactant, and is able to interact with SDS even below the observed cmc, forming β aggregates. Proton magnetic resonance (1H-nmr) suggests that flexible helices are present. The longest helical stretches compatible with 1H-nmr data extend from Phe6 to Leu14 for helix I and from Arg53 to Ile63 for helix IV. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
J H Kim  A G Marshall 《Biopolymers》1992,32(9):1263-1270
The structures of the helices II-III region and the helix IV region of B. megaterium 5S rRNA have been examined by means of energy minimization and molecular dynamics calculations. Calculated distances between neighboring hydrogen-bonded imino protons in helices II, III, and IV were between 3.5 and 4.5 A. The overall axis for the helices II-III region is warped rather than straight. Formation of additional Watson-Crick base pairs in loop B and loop C was not evident from the atomic positions calculated by molecular dynamics. Bases in loop C are well stacked, showing no significant change during dynamics. Bulge migration in helix III does not seem to be possible; the helices II-III region prefers one conformation. Helix II is more stable than helix III. Five base pairs in helix IV were sufficiently stable to establish that helix IV is terminated by a hairpin loop of three nucleotides. U87 protrudes from loop D. Structures of the helices II-III segment and the helix IV segment of B. megaterium 5S rRNA obtained by molecular dynamics were generally consistent with the solution structure inferred from high-field proton nmr spectroscopy.  相似文献   

4.
The mean solution conformation of tetrapeptide fragments spanning the hinge region of human IgA1 was investigated by CD and 13C-NMR methods. Distinct conformational differences for the partial sequences of IgA1 were found. In a series of tetrapeptides having the Thr-Pro-Pro-Thr sequence, the Pro-Pro fragment was ordered to the structure of a type II polyproline helix, but with unordered forms prevailing in the equilibria. In the case of the Pro-Pro-Thr-Pro sequence, a distinct preference for the beta-turn conformation was found. Acetylation of this tetrapeptide shifts the equilibrium towards unordered forms containing some elements of the type II polyproline helix. The peptide Thr-Pro-Ser-Pro exists predominantly in the beta-turn conformation whereas Pro-Ser-Pro-Ser-NH2 has, for the most part an unordered conformation.  相似文献   

5.
The Antennapedia homeodomain structure consists of four helices. The helices II and III are connected by a tripeptide that forms a turn, and constitute the well-known helix-turn-helix motif. The recognition helix penetrates the DNA major groove, gives specific protein-DNA contacts and forms direct, or water-mediated, intermolecular hydrogen bonds. It was suggested that helix III (and perhaps also helix IV) might represent the recognition helix of Antennapedia homeodomain, which makes contact with the surface of the major groove of the DNA. In an attempt to clarify the helix III capabilities of assuming an helical conformation when separated from the rest of the protein, we carried out the structural determination of the recognition helix III in different solvent media. The conformational study of fragments 42-53, where residues W48 and F49, not involved in the protein-DNA interaction, were substituted by two alanines, was conducted in sodium dodecyl sulfate (SDS), trifluoroethanol (TFE) and TFE/water, using circular dichroism, nuclear magnetic resonance (NMR) and distance geometry (DG) techniques. The fragment assumes a well-defined secondary structure in TFE and in TFE/water (90/10, v/v) with an alpha-helix encompassing residues 4-9, while in TFE/water (70/30, v/v) a less regular structure was found. The DG results in the micellar system evidence the presence of a distorted alpha-helical conformation involving residues 4-8. Our results reveal that the isolated Antennapedia recognition helix III tend to preserve in solution the alpha-helical conformation even if separated from the rest of the molecule.  相似文献   

6.
J H Kim  A G Marshall 《Biochemistry》1990,29(3):632-640
Three different fragments of Bacillus megaterium ribosomal 5S RNA have been produced by enzymatic cleavage with ribonuclease T1. Fragment A consists of helices II and III, fragment B contains helix IV, and fragment C contains helix I of the universal 5S rRNA secondary structure. All (eight) imino proton resonances in the downfield region (9-15 ppm) of the 500-MHz proton FT NMR spectrum of fragment B have been identified and assigned as G80.C92-G81.C91-G82.C90-A83.++ +U89-C84.G88 and three unpaired U's (U85, U86, and U87) in helix IV by proton homonuclear Overhauser enhancement connectivities. The secondary structure in helix IV of the prokaryotic loop is completely demonstrated spectroscopically for the first time in any native or enzyme-cleaved 5S rRNA. In addition, G21.C58-A20.U59-G19.C60-A18.U61 in helix II, U32.A46-G31.C47-C30.G48-C29.G49 in helix III, and G4.C112-G5.C111-U6.G110 in the terminal stem (helix I) have been assigned by means of NOE experiments on intact 5S rRNA and its fragments A and C. Base pairs in helices I-IV of the universal secondary structure of B. megaterium 5S RNA are described.  相似文献   

7.
The structure of the Na+, Li+ or H+-binding c subunit of the ATP synthase from Propionigenium modestum was studied by NMR. Subunit c in dodecylsulphate micelles consists of four alpha-helical segments, I-IV, that are connected by short linker peptides with non-regular secondary structures. We propose that helices I (V4-I26) and IV (I69-V85) are membrane-spanning structures, and that helices II and III and the intervening hydrophilic loop are located in the cytoplasm. The Na+-binding residues Q32, E65 and S66 are located in the I-->II and III-->IV helix connections, probably near the membrane surface on the cytoplasmic side.  相似文献   

8.
Mutant yeast ribosomal 5 S RNAs were probed by enzymatic cleavage and chemical reactivity to define further the higher order structure. Mutations that destabilized helix IV resulted in an altered tertiary structure in which a reduced reactivity to ethylnitrosourea at U90 and G91 could be correlated with greater enzymatic and Fe(II)-EDTA cleavages in helices II and V. The results provide direct evidence for, and a further definition of, a structural juxtaposition between helix II and the end of helix IV and indicate that, in contrast to earlier suggestions, the remaining tertiary structure is sufficiently stable to prevent "pseudoknot-like" interactions between helices III and IV. The data are fully consistent with the "lollipop" model of the tertiary structure.  相似文献   

9.
Urotensin-II (U-II) is a vasoactive hormone that acts through a G-protein-coupled receptor named UT. Recently, we have shown, using the surface plasmon resonance technology that human U-II (hU-II) interacts with the hUT(281-300) fragment, a segment containing the extracellular loop III (EC-III) and short extensions of the transmembrane domains VI and VII (TM-VI and TM-VII). To further investigate the interaction of UT receptor with U-II, we have determined the solution structure of hUT(281-300) by high-resolution NMR and molecular modeling and we have examined, also using NMR, the binding with hU-II at residue level. In the presence of dodecylphosphocholine micelles, hUT(281-300) exhibited a type III beta-turn (Q285-L288), followed by an -helical structure (A289-L299), the latter including a stretch of transmembrane helix VII. Upon addition of hU-II, significant chemical shift perturbations were observed for residues located just on the N-terminal side of the beta-turn (end of TM-VI/beginning of EC-III) and on one face of the -helix (end of EC-III/beginning of TM-VII). These data, in conjunction with intermolecular NOEs, suggest that the initiation site of EC-III, as well as the upstream portion of helix VII, would be involved in agonist binding and allow to propose points of interaction in the ligand-receptor complex.  相似文献   

10.
Wang Q  Kaback HR 《Biochemistry》1999,38(10):3120-3126
Coexpression of lacY gene fragments encoding the first two transmembrane domains and the remaining 10 transmembrane domains complement in the membrane and catalyze active lactose transport [Wrubel, W., Stochaj, U., et al. (1990) J. Bacteriol. 172, 5374-5381]. Accordingly, a plasmid encoding contiguous, nonoverlapping permease fragments with a discontinuity in the cytoplasmic loop between helices II and III (loop II/III) was constructed (N2C10 permease). When Phe27 (helix I) is replaced with Cys, cross-linking is observed with two native Cys residues, Cys148 (helix V) and Cys355 (helix XI). Cross-linking of a Cys residue at position 27 to Cys148 occurs with N,N'-o-phenylenedimaleimide (o-PDM; rigid 6 A), with N,N'-p-phenylenedimaleimide (p-PDM; rigid 10 A), or with 1,6-bis(maleimido)hexane (BMH; flexible 16 A). On the other hand, with the Phe27-->Cys/Cys355 pair, cross-linking is observed with p-PDM or BMH but not o-PDM. In neither case is cross-linking observed with iodine. It is suggested that a Cys residue at position 27 is within 6-10 A from Cys148 and about 10 A from Cys355. The results provide evidence for proximity between helix I and helices V or XI in the tertiary structure of the permease. In addition, the findings are consistent with other results [Venkatesan, P., Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807] indicating that Glu126 (helix IV) and Arg144 (helix V) are within the membrane, rather than at the membrane-water interface on the cytoplasmic face.  相似文献   

11.
The crystal structure of the "long" alpha-neurotoxin alpha-cobratoxin was refined to an R-factor of 19.5% using 3271 x-ray data to 2.4-A resolution. The polypeptide chain forms three loops, I, II, III, knotted together by four disulfide bridges, with the most prominent, loop II, containing another disulfide close to its lower tip. Loop I is stabilized by one beta-turn and two beta-sheet hydrogen bonds; loop II by eight beta-sheet hydrogen bonds, with the tip folded into two distorted right-handed helical turns stabilized by two alpha-helical and two beta-turn hydrogen bonds; and loop III by hydrophobic interactions and one beta-turn. Loop II and one strand of loop III form an antiparallel triple-pleated beta-sheet, and tight anchoring of the Asn63 side chain fixes the tail segment. In the crystal lattice, the alpha-cobratoxin molecules dimerize by beta-sheet formation between strands 53 and 57 of symmetry-related molecules. Because such interactions are found also in a cardiotoxin and alpha-bungarotoxin, this could be of importance for interaction with acetylcholine receptor.  相似文献   

12.
In studies of membrane proteins, knowledge of protein topology can provide useful insight into both structure and function. In this work, we present a solution NMR method for the measurement the tilt angle and average immersion depth of alpha helices in membrane proteins, from analysis of the paramagnetic relaxation rate enhancements arising from dissolved oxygen. No modification to the micelle or protein is necessary, and the topology of both transmembrane and amphipathic helices are readily determined. We apply this method to the measure the topology of a monomeric mutant of phospholamban (AFA-PLN), a 52-residue membrane protein containing both an amphipathic and a transmembrane alpha helix. In dodecylphosphocholine micelles, the amphipathic helix of AFA-PLN was found to have a tilt angle of 87° ± 1° and an average immersion depth of 13.2 ?. The transmembrane helix was found to have an average immersion depth of 5.4 ?, indicating residues 41 and 42 are closest to the micelle centre. The resolution of paramagnetic relaxation rate enhancements from dissolved oxygen compares favourably to those from Ni (II), a hydrophilic paramagnetic species.  相似文献   

13.
Distinct structural models for the hammerhead ribozyme derived from single-crystal X-ray diffraction and fluorescence resonance energy transfer (FRET) measurements have been compared. Both models predict the same overall geometry, a wishbone shape with helices II and III nearly colinear and helix I positioned close to helix II. However, the relative orientations of helices I and II are different. To establish whether one of the models represents a kinetically active structure, a new crosslinking procedure was developed in which helices I and II of hammerhead ribozymes were disulfide-crosslinked via the 2' positions of specific sugar residues. Crosslinking residues on helices I and II that are close according to the X-ray structure did not appreciably reduce the catalytic efficiency. In contrast, crosslinking residues closely situated according to the FRET model dramatically reduced the cleavage rate by at least three orders of magnitude. These correlations between catalytic efficiencies and spatial proximities are consistent with the X-ray structure.  相似文献   

14.
The 1H nuclear magnetic resonance (NMR) spectrum of Ca2+-saturated porcine calbindin D9k (78 amino acids, Mr 8800) has been assigned. Greater than 98% of the 1H resonances, including spin systems for each amino acid residue, have been identified by using an approach that integrates data from a wide range of two-dimensional scalar correlated NMR experiments [Chazin, Rance, & Wright (1988) J. Mol. Biol. 202, 603-626]. Due to the limited quantity of sample and conformational heterogeneity of the protein, two-dimensional nuclear Overhauser effect (NOE) experiments also played an essential role in the identification of spin systems. On the basis of the pattern of scalar connectivities, 43 of the 78 spin systems could be directly assigned to the appropriate residue type. This provided an ample basis for obtaining the sequence-specific resonance assignments. The elements of secondary structure are identified from sequential and medium-range NOEs, values of 3JNH alpha, and the location of slowly exchanging backbone amide protons. Four well-defined helices and a mini beta-sheet between the two calcium binding loops are present in solution. These elements of secondary structure and a few key long-range NOEs provided sufficient information to define the global fold of the protein in solution. Generally good agreement is found between the crystal structure of the minor A form of bovine calbindin D9k and the solution structure of intact porcine calbindin D9k. The only significant difference is a short one-turn helix in the loop between helices II and III in the bovine crystal structure, which is clearly absent in the porcine solution structure.  相似文献   

15.
The Bcl-2 family of proteins play a pivotal role in the regulation of programmed cell death. One of the postulated mechanisms for the function of these proteins involves the formation of ion channels in membranes. As a first step to structurally characterize these proteins in a membrane environment, we investigated the structure of a Bcl-x(L) mutant protein when incorporated into small detergent micelles. This form of Bcl-x(L) lacks the loop (residues 49-88) between helix 1 and helix 2 and the putative C-terminal transmembrane helix (residues 214-237). Below the critical micelle concentration (CMC), Bcl-x(L) binds detergents in the hydrophobic groove that binds to pro-apoptotic proteins. However, above the CMC, Bcl-x(L) undergoes a dramatic conformational change. Using NMR methods, we characterized the secondary structure of Bcl-x(L) in the micelle-bound form. Like Bcl-x(L) in aqueous solution, the structure of the protein when dissolved in dodecylphosphocholine (DPC) micelles consists of several alpha-helices separated by loops. However, the length and position of the individual helices of Bcl-x(L) in micelles differ from those in aqueous solution. The location of Bcl-x(L) within the micelle was examined from the analysis of protein-detergent NOEs and limited proteolysis. In addition, the mobility of the micelle-bound form of Bcl-x(L) was investigated from NMR relaxation measurements. On the basis of these studies, a model is proposed for the structure, dynamics, and location of Bcl-x(L) in micelles. In this model, Bcl-x(L) has a loosely packed, dynamic structure in micelles, with helices 1 and 6 and possibly helix 5 partially buried in the hydrophobic interior of the micelle. Other parts of the protein are located near the surface or on the outside of the micelle.  相似文献   

16.
The lactose permease of Escherichia coli was expressed in two fragments (split permease), each with a Cys residue, and cross-linking was studied. Split permease with a discontinuity in either loop II/III (N2C10permease) or loop VI/VII (N6C6permease) was used. Proximity of multiple pairs of Cys residues in helices I and XI or XII was examined by using three homobifunctional thiol-specific cross-linking reagents of different lengths and flexibilities (6 A, rigid; 10 A, rigid; 16 A, flexible) or iodine. Cys residues in the periplasmic half of helix I cross-link to Cys residues in the periplasmic half of helix XI. In contrast, no cross-linking is evident with paired Cys residues near the cytoplasmic ends of helices I and XI. Therefore, the periplasmic halves of helices I and XI are in close proximity, and the helices tilt away from each other towards the cytoplasmic face of the membrane. Cross-linking is also found with paired Cys residues near the middle of helices I and XII, but not with paired Cys residues near either end of the helices. Thus, helices I and XII are in close proximity only in the approximate middle of the membrane. Based on the findings, a modified helix packing model is proposed.  相似文献   

17.
Biochemical and biophysical studies based upon crystal structures of both a mutant and wild-type lactose permease from Escherichia coli (LacY) in an inward-facing conformation have led to a model for the symport mechanism in which both sugar and H+ binding sites are alternatively accessible to both sides of the membrane. Previous findings indicate that the face of helix II with Asp68 is important for the conformational changes that occur during turnover. As shown here, replacement of Asp68 at the cytoplasmic end of helix II, particularly with Glu, abolishes active transport but the mutants retain the ability to bind galactopyranoside. In the x-ray structure, Asp68 and Lys131 (helix IV) lie within ∼ 4.2 Å of each other. Although a double mutant with Cys replacements at both position 68 and position 131 cross-links efficiently, single replacements for Lys131 exhibit very significant transport activity. Site-directed alkylation studies show that sugar binding by the Asp68 mutants causes closure of the cytoplasmic cavity, similar to wild-type LacY; however, strikingly, the probability of opening the periplasmic pathway upon sugar binding is markedly reduced. Taken together with results from previous mutagenesis and cross-linking studies, these findings lead to a model in which replacement of Asp68 blocks a conformational transition involving helices II and IV that is important for opening the periplasmic cavity. Evidence suggesting that movements of helices II and IV are coupled functionally with movements in the pseudo-symmetrically paired helices VIII and X is also presented.  相似文献   

18.
The VS ribozyme comprises five helical segments (II-VI) in a formal H shape, organized by two three-way junctions. It interacts with its stem-loop substrate (I) by tertiary interactions. We have determined the global shape of the 3-4-5 junction (relating helices III-V) by electrophoresis and FRET. Estimation of the dihedral angle between helices II and V electrophoretically has allowed us to build a model for the global structure of the complete ribozyme. We propose that the substrate is docked into a cleft between helices II and VI, with its loop making a tertiary interaction with that of helix V. This is consistent with the dependence of activity on the length of helix III. The scissile phosphate is well placed to interact with the probable active site of the ribozyme, the loop containing A730.  相似文献   

19.
The X-ray structure of a self-complementary PNA hexamer (H-CGTACG-L-Lys-NH(2)) has been determined to 2.35 A resolution. The introduction of an L-lysine moiety has previously been shown to induce a preferred left-handedness of the PNA double helices in aqueous solution. However, in the crystal structure an equal amount of interchanging right- and left-handed helices is observed. The lysine moieties are pointing into large solvent channels and no significant interactions between this moiety and the remaining PNA molecule are observed. In contrast, molecular mechanics calculations show a preference for the left-handed helix of this hexameric PNA in aqueous solution as expected. The calculations indicate that the difference in the free energy of solvation between the left-handed and the right-handed helix is the determining factor for the preference of the left-handed helix in aqueous solution.  相似文献   

20.
H Gouda  H Torigoe  A Saito  M Sato  Y Arata  I Shimada 《Biochemistry》1992,31(40):9665-9672
The three-dimensional solution structure of the recombinant B domain (FB) of staphylococcal protein A, which specifically binds to the Fc portion of immunoglobulin G, was determined by NMR spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. On the basis of 692 experimental constraints including 587 distance constraints obtained from the nuclear Overhauser effect (NOE), 57 torsion angle (phi, chi 1) constraints, and 48 constraints associated with 24 hydrogen bonds, a total of 10 converged structures of FB were obtained. The atomic root mean square difference among the 10 converged structures is 0.52 +/- 0.10 A for the backbone atoms and 0.98 +/- 0.08 A for all heavy atoms (excluding the N-terminal segment from Thr1 to Glu9 and the C-terminal segment from Gln56 to Ala60, which are partially disordered). FB is composed of a bundle of three alpha-helices, i.e., helix I (Gln10-His19), helix II (Glu25-Asp37), and helix III (Ser42-Ala55). Helix II and helix III are antiparallel to each other, whereas the long axis of helix I is tilted at an angle of about 30 degrees with respect to those of helix II and helix III. Most of the hydrophobic residues of FB are buried in the interior of the bundle of the three helices. It is suggested that the buried hydrophobic residues form a hydrophobic core, contributing to the stability of FB.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号