首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
To elucidate the interaction between substrate inhibition and substrate transglycosylation of retaining glycoside hydrolases (GHs), a steady-state kinetic study was performed for the GH family 3 glucan (1-->3)-beta-glucosidase from the white-rot fungus Phanerochaete chrysosporium, using laminarioligosaccharides as substrates. When laminaribiose was incubated with the enzyme, a transglycosylation product was detected by thin-layer chromatography. The product was purified by size-exclusion chromatography, and was identified as a 6-O-glucosyl-laminaribiose (beta-D-Glcp-(1-->6)-beta-D-Glcp-(1-->3)-D-Glc) by 1H NMR spectroscopy and electrospray ionization mass spectrometry analysis. In steady-state kinetic studies, an apparent decrease of laminaribiose hydrolysis was observed at high concentrations of the substrate, and the plots of glucose production versus substrate concentration were thus fitted to a modified Michaelis-Menten equation including hydrolytic and transglycosylation parameters (K(m), K(m2), k(cat), k(cat2)). The rate of 6-O-glucosyl-laminaribiose production estimated by high-performance anion-exchange chromatography coincided with the theoretical rate calculated using these parameters, clearly indicating that substrate inhibition of this enzyme is fully explained by substrate transglycosylation. Moreover, when K(m), k(cat), and affinity for glucosyl-enzyme intermediates (K(m2)) were estimated for laminarioligosaccharides (DP=3-5), the K(m) value of laminaribiose was approximately 5-9 times higher than those of the other oligosaccharides (DP=3-5), whereas the K(m2) values were independent of the DP of the substrates. The kinetics of transglycosylation by the enzyme could be well interpreted in terms of the subsite affinities estimated from the hydrolytic parameters (K(m) and k(cat)), and a possible mechanism of transglycosylation is proposed.  相似文献   

2.
This study is the first report on the effectiveness and specificity of alpha-acarviosinyl-(1-->4)-alpha-D-glucopyranosyl-(1-->6)-D-glucopyranosylidene-spiro-thiohydantoin (PTS-G-TH) inhibitor on the 2-chloro-4-nitrophenyl-4-O-beta-D-galactopyranosyl-maltoside (GalG2CNP) and amylose hydrolysis catalysed by human salivary alpha-amylase (HSA). Synthesis of PTS-G-TH was carried out by transglycosylation using acarbose as donor and glucopyranosylidene-spiro-thiohydantoin (G-TH) as acceptor. This new compound was found to be a much more efficient HSA inhibitor than G-TH. The inhibition is a mixed-noncompetitive type on both substrates and only one molecule of inhibitor binds to the enzyme. Kinetic constants calculated from secondary plots are in micromolar range. Values of K(EI) and K(ESI) are very similar in the presence of GalG2CNP substrate; 0.19 and 0.24 microM, respectively. Significant difference can be found for K(EI) and K(ESI) using amylose as substrate; 8.45 and 0.5 microM, respectively. These values indicate that inhibition is rather uncompetitive than competitive related to amylose hydrolysis.  相似文献   

3.
A beta-D-xylosidase with molecular mass of 250+/-5 kDa consisting of two identical subunits was purified to homogeneity from a cultural filtrate of Aspergillus sp. The enzyme manifested high transglycosylation activity in transxylosylation with p-nitrophenyl beta-D-xylopyranoside (PNP-X) as substrate, resulting in regio- and stereoselective synthesis of p-nitrophenyl (PNP) beta-(1-->4)-D-xylooligosaccharides with dp 2-7. All transfer products were isolated from the reaction mixtures by HPLC and their structures established by electrospray mass spectrometry and 1H and 13C NMR spectroscopy. The glycosides synthesised, beta-Xyl-1-->(4-beta-Xyl-1-->)(n)4-beta-Xyl-OC6H4NO2-p (n=1-5), were tested as chromogenic substrates for family 10 beta-xylanase from Aspergillus orizae (XynA) and family 11 beta-xylanase I from Trichoderma reesei (XynT) by reversed-phase HPLC and UV-spectroscopy techniques. The action pattern of XynA against the foregoing PNP beta-(1-->4)-D-xylooligosaccharides differed from that of XynT in that the latter released PNP mainly from short PNP xylosides (dp 2-3) while the former liberated PNP from the entire set of substrates synthesised.  相似文献   

4.
The transglycosylation reactions catalyzed by beta-1,3-D-glucanases (laminaranases) were used to synthesize a number of 4-methylumbelliferyl (MeUmb) (1-->3)-beta-D-gluco-oligosaccharides having the common structure [beta-D-Glcp-(1-->3)](n)-beta-D-Glcp-MeUmb, where n=1-5. The beta-1,3-D-glucanases used were purified from the culture liquid of Oerskovia sp. and from a homogenate of the marine mollusc Spisula sachalinensis. Laminaran and curdlan were used as (1-->3)-beta-D-glucan donor substrates, while MeUmb-beta-D-glucoside (MeUmbGlcp) was employed as a transglycosylation acceptor. Modification of [beta-D-Glcp-(1-->3)](2)-beta-D-Glcp-MeUmb (MeUmbG(3)) gives 4,6-O-benzylidene-D-glucopyranosyl or 4,6-O-ethylidene-D-glucopyranosyl groups at the non-reducing end of artificial oligosaccharides. The structures of all oligosaccharides obtained were solved by 1H and 13C NMR spectroscopy and electrospray tandem mass spectrometry. The synthetic oligosaccharides were shown to be substrates for a beta-1,3-1,4-D-glucanase from Rhodothermus marinus, which releases MeUmb from beta-di- and beta-triglucosides and from acetal-protected beta-triglucosides. When acting upon substrates with d.p.>3, the enzyme exhibits an endolytic activity, primarily cleaving off MeUmbGlcp and MeUmbG(2).  相似文献   

5.
It is shown here that Escherichia coli beta-galactosidase has a second Mg2+ binding site that is important for activity. Binding of Mg2+ to the second site caused the k(cat) (with oNPG as the substrate) to increase about 100 s(-1); the Km was not affected. The Kd for binding the second Mg2+ is about 10(-4)M. Since the concentration of free Mg2+ in E. coli is about 1-2 mM, the second site is physiologically significant. Non-polar substitutions (Ala or Leu) for Glu-797, a residue in an active site loop, eliminated the k(cat) increase. This indicates that the second Mg2+ site is near to Glu-797. The Ki values of transition state analogs were decreased by small but statistically significant amounts when the second Mg2+ site was occupied and Arrhenius plots showed that less entropic activation energy is required when the second site is occupied. These inhibitor and temperature results suggest that binding of the second Mg2+ helps to order the active site for stabilization of the transition state.  相似文献   

6.
The reaction conditions of galactose oxidase-catalyzed, targeted C-6 oxidation of galactose derivatives were optimized for aldehyde production and to minimize the formation of secondary products. Galactose oxidase, produced in transgenic Pichia pastoris carrying the galactose oxidase gene from Fusarium spp., was used as catalyst, methyl α-d-galactopyranoside as substrate, and reaction medium, temperature, concentration, and combinations of galactose oxidase, catalase, and horseradish peroxidase were used as variables. The reactions were followed by 1H NMR spectroscopy and the main products isolated, characterized, and identified. An optimal combination of all the three enzymes gave aldehyde (methyl α-d-galacto-hexodialdo-1,5-pyranoside) in approximately 90% yield with a substrate concentration of 70 mM in water at 4 °C using air as oxygen source. Oxygen flushing of the reaction mixture was not necessary. The aldehyde existed as a hydrate in water. The main secondary products, a uronic acid (methyl α-d-galactopyranosiduronic acid) and an α,β-unsaturated aldehyde (methyl 4-deoxy-α-d-threo-hex-4-enodialdo-1,5-pyranoside), were observed for the first time to form in parallel. Formation of uronic acid seemed to be the result of impurities in the galactose oxidase preparation. 1H and 13C NMR data of the products are reported for the α,β-unsaturated aldehyde for the first time, and chemical shifts in DMSO-d6 for all the products for the first time. Oxidation of d-raffinose (α-d-galactopyranosyl-(1-6)-α-d-glucopyranosyl-(1-2)-β-d-fructofuranoside) in the same optimum conditions also proceeded well, resulting in approximately 90% yield of the corresponding aldehyde.  相似文献   

7.
The substrate specificity of N-acetylhexosaminidase (E.C. 3.2.1.51) from Aspergillus oryzae was examined using p-nitrophenyl 6-O-sulfo-N-acetyl-beta-D-glucosaminide (6-O-sulfo-GlcNAc-O-pNP) as the glycosyl donor and a series of beta-d-glucopyranosides and N-acetyl-beta-D-glucosaminides with variable aglycons at the anomeric positions as the acceptors. When beta-D-glucopyranosides with methyl (CH(3)), allyl (CH(2)CHCH(2)), and phenyl (C(6)H(5)) groups at the reducing end were used as the acceptors, this enzyme transferred the 6-O-sulfo-GlcNAc moiety in the donor to the location of O-4 in these glycosyl acceptors with a high regioselectivity, producing the corresponding 6-O-sulfo-N-acetylglucosaminyl beta-D-glucopyranosides. However, beta-D-glucopyranose lacking aglycon was a poor substrate for transglycosylation. This A. oryzae enzyme could also accept various N-acetyl-beta-D-glucosaminides carrying hydroxyl (OH), methyl (CH(3)), propyl (CH(2)CH(2)CH(3)), allyl (CH(2)CHCH(2)) and p-nitrophenyl (pNP; C(6)H(4)-NO(2)) groups at their aglycons, yielding 6-O-sulfo-N-acetylglucosaminyl-beta(1-->4)-disaccharide products.  相似文献   

8.
Enzymatic transglycosylation using p-nitrophenyl alpha-D-rhamnopyranoside as the glycosyl donor and 6equiv of ethyl 1-thio-alpha-D-rhamnopyranoside as the glycosyl acceptor yielded a D-rhamnooligosaccharide derivative. The reaction was catalyzed by jack bean alpha-mannosidase in a 1:1 (v/v) mixture of 0.1 M sodium citrate buffer (pH4.5)-MeCN at 25 degrees C. The enzyme exhibited high catalytic activity for the reaction, to afford in 32.1% isolated yield (based on donor substrate) ethyl alpha-D-rhamnopyranosyl-(1-->2)-1-thio-alpha-D-rhamnopyranoside, which is a derivative of the common oligosaccharide unit of the antigenic lipopolysaccharides from Pseudomonas.  相似文献   

9.
Zeng Y  Kong F 《Carbohydrate research》2003,338(22):2359-2366
The glucohexaose, beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-D-Glcp, was synthesized as its allyl glycoside via 3+3 strategy. The trisaccharide donor, 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11), was obtained by 3-selective coupling of isopropyl 4,6-O-benzylidene-1-thio-beta-D-glucopyranoside (2) with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-4,6-O-benzylidene-alpha-D-glucopyranosyl trichloroacetimidate (6), followed by hydrolysis, acetylation, dethiolation, and trichloroacetimidation. Meanwhile, the trisaccharide acceptor, allyl 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-beta-D-glucopyranosyl-(1-->3)-4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (14), was prepared by coupling of allyl 4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (12) with 6, followed by debenzylidenation. Condensation of 14 with 11, followed by deacylation, gave the target hexaoside. A beta-(1-->3)-linked tetrasaccharide 29 was also synthesized with methyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranoside (25) as the acceptor and acylated beta-(1-->3)-linked disaccharide 21 as the donor.  相似文献   

10.
The hydrolysis of N-acetyl-L-methionine, N-acetylglycine, N-acetyl-L-phenylalanine, and N-acetyl-L-alanine at 298.35K by porcine kidney acylase I (EC 3.5.1.14) was monitored by the heat released upon mixing of the substrate and enzyme in a differential stopped flow microcalorimeter. Values for the Michaelis constant (K(m)) and the catalytic constant (k(cat)) were determined from the progress of the reaction curve employing the integrated form of the Michaelis-Menten equation for each reaction mixture. When neglecting acetate product inhibition of the acylase, values for k(cat) were up to a factor of 2.3 larger than those values determined from reciprocal initial velocity-initial substrate concentration plots for at least four different reaction mixtures. In addition, values for K(m) were observed to increase linearly with an increase in the initial substrate concentration. When an acetate product inhibition constant of 600+/-31M(-1), determined by isothermal titration calorimetry, was used in the progress curve analysis, values for K(m) and k(cat) were in closer agreement with their values determined from the reciprocal initial velocity versus initial substrate concentration plots. The reaction enthalpies, Delta(r)H(cal), which were determined from the integrated heat pulse per amount of substrate in the reaction mixture, ranged from -4.69+/-0.09kJmol(-1) for N-acetyl-L-phenylalanine to -1.87+/-0.23kJmol(-1) for N-acetyl-L-methionine.  相似文献   

11.
Liu X  Ye W  Yu B  Zhao S  Wu H  Che C 《Carbohydrate research》2004,339(4):891-895
Two new flavonol glycosides, namely kaempferol 3-O-beta-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside (1) and quercetin 3-O-6"-(3-hydroxyl-3-methylglutaryl)-beta-D-glucopyranoside (2), have been isolated from the aerial parts of Gymnema sylvestre and Euphorbia ebracteolata, respectively. Their structures were determined on the basis of chemical and spectroscopic methods.  相似文献   

12.
The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk)   总被引:1,自引:0,他引:1  
The physiologically active, gel-forming fraction of the alkali-extractable polysaccharides of Plantago ovata Forsk seed husk (psyllium seed) and some derived partial hydrolysis products were studied by compositional and methylation analysis and NMR spectroscopy. Resolving the conflicting claims of previous investigators, the material was found to be a neutral arabinoxylan (arabinose 22.6%, xylose 74.6%, molar basis; only traces of other sugars). With about 35% of nonreducing terminal residues, the polysaccharide is highly branched. The data are compatible with a structure consisting of a densely substituted main chain of beta-(1-->4)-linked D-xylopyranosyl residues, some carrying single xylopyranosyl side chains at position 2, others bearing, at position 3, trisaccharide branches having the sequence L-Araf-alpha-(1-->3)-D-Xylp-beta-(1-->3)-l-Araf. The presence of this sequence is supported by methylation and NMR data, and by the isolation of the disaccharide 3-O-beta-D-xylopyranosyl-L-arabinose as a product of partial acid hydrolysis of the polysaccharide.  相似文献   

13.
An extract from 50 kinds of fruits and vegetables was fermented to produce a new beverage. Natural fermentation of the extract was carried out mainly by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp. and Pichia spp.). Two new saccharides were found in this fermented beverage. The saccharides were isolated using carbon-Celite column chromatography and preparative high performance liquid chromatography. Gas liquid chromatography analysis of methylated derivatives as well as MALDI-TOF MS and NMR measurements were used for structural confirmation. The (1)H and (13)C NMR signals of each saccharide were assigned using 2D-NMR including COSY, HSQC, HSQC-TOCSY, CH(2)-HSQC-TOCSY, and CT-HMBC experiments. The saccharides were identified as beta-D-fructopyranosyl-(2-->6)-beta-D-glucopyranosyl-(1-->3)-D-glucopyranose and beta-D-fructopyranosyl-(2-->6)-[beta-D-glucopyranosyl-(1-->3)]-D-glucopyranose.  相似文献   

14.
Alternansucrase (EC 2.4.1.140) is a d-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked d-glucan from sucrose. It also synthesizes oligosaccharides via d-glucopyranosyl transfer to various acceptor sugars. Two of the more efficient monosaccharide acceptors are D-tagatose and L-glucose. In the presence of d-tagatose, alternansucrase produced the disaccharide alpha-d-glucopyranosyl-(1-->1)-beta-D-tagatopyranose via glucosyl transfer. This disaccharide is analogous to trehalulose. We were unable to isolate a disaccharide product from L-glucose, but the trisaccharide alpha-D-glucopyranosyl-(1-->6)-alpha-d-glucopyranosyl-(1-->4)-l-glucose was isolated and identified. This is analogous to panose, one of the structural units of pullulan, in which the reducing-end D-glucose residue has been replaced by its L-enantiomer. The putative L-glucose disaccharide product, produced by glucoamylase hydrolysis of the trisaccharide, was found to be an acceptor for alternansucrase. The disaccharide, alpha-D-glucopyranosyl-(1-->4)-L-glucose, was a better acceptor than maltose, previously the best known acceptor for alternansucrase. A structure comparison of alpha-D-glucopyranosyl-(1-->4)-L-glucose and maltose was performed through computer modeling to identify common features, which may be important in acceptor affinity by alternansucrase.  相似文献   

15.
DGalactofuranose is a widespread component of cell wall polysaccharides in bacteria, protozoa and fungi, but is totally absent in mammals. Importantly, galactofuranose is a key constituent of major cell envelope polysaccharides in pathogenic mycobacteria. In this respect, galactofuranose-based glycoconjugates are interesting target molecules for drug design. O-Glycosidases and notably beta-D-galactofuranosidases could be useful tools for the chemoenzymatic synthesis of galactofuranosides, but to date no studies of this type have been reported. Here we report the use of a GH 51 alpha-l-arabinofuranosidase for the synthesis of beta-D-galactofuranosides. We have demonstrated that this enzyme can catalyse both the autocondensation of p-nitrophenyl-beta-D-galactofuranoside and the transgalactofuranosylation of benzyl alpha-D-xylopyranoside, forming p-nitrophenyl beta-D-galactofuranosyl-(1-->2)-beta-D-galactofuranoside and benzyl beta-D-galactofuranosyl-(1-->2)-alpha-D-xylopyranoside, respectively. Both reactions were very regiospecific and the reaction involving benzyl alpha-D-xylopyranoside afforded very high yields (74.8%) of the major product. To our knowledge, this demonstration of chemoenzymatic synthesis of galactofuranosides constitutes the very first use of an O-glycosidase for the synthesis of galactofuranosides.  相似文献   

16.
6-O-(L-Tyrosylglycyl)- and 6-O-(L-tyrosylglycylglycyl)-D-glucopyranose were synthesized by condensation of the pentachlorophenyl esters of the respective di- and tripeptide with fully unprotected D-glucose. The intramolecular reactivity of the sugar conjugates was studied in pyridine-acetic acid and in dry methanol, at various temperatures and for various incubation times. The composition of the incubation mixtures was monitored by a reversed-phase HPLC method that permits simultaneous analysis of the disappearance of the starting material and the appearance of rearrangement and degradation products. To determine the influence of esterification of the peptide carboxy group on its amino group reactivity, parallel experiments were done in which free peptides were, under identical reaction conditions, incubated with D-glucose (molar ratios 1:1 and 1:5). Depending on the starting compound, different types of Amadori products (cyclic and bicyclic form), methyl ester of peptides, and Tyr-Gly-diketopiperazine were obtained.  相似文献   

17.
A complex of the enzymes from the liver of the marine mollusk Littorina kurila that hydrolyzes laminaran was investigated. Two (1-->3)-beta-d-glucanases (G-I and G-II) were isolated. The molecular mass of G-I as estimated by gel-permeation chromatography and SDS-PAGE analysis was 32 and 40kDa, respectively. The G-II molecular mass according to SDS-PAGE analysis was about 200kDa. The pH optimum for both G-I and G-II was pH 5.4. The G-I had narrow substrate specificity and hydrolyzed only the (1-->3)-beta-d-glucosidic bonds in the mixed (1-->3),(1-->6)- and (1-->3),(1-->4)-beta-d-glucans down to glucose and glucooligosaccharides. This enzyme acted with retention of the anomeric configuration and catalyzed a transglycosylation reaction. G-I was classified as the glucan endo-(1-->3)-beta-d-glucosidase (EC 3.2.1.39). G-II exhibited both exo-glucanase and beta-d-glucoside activities. This enzyme released from the laminaran glucose as a single product, but retained the anomeric center configuration and possessed transglycosylation activity. The hydrolysis rate of glucooligosaccharides by G-I decreased with an increase of the substrate's degree of polymerization. In addition to (1-->3)-beta-d-glucanase activity, the enzyme had the ability to hydrolyze p-nitrophenyl beta-d-glucoside and beta-d-glucobioses: laminaribiose, gentiobiose, and cellobiose, with the rate ratio of 50:12:1. G-II may correspond to beta-d-glucoside glucohydrolase (EC 3.2.1.21).  相似文献   

18.
The high molecular weight of chitosan, which results in a poor solubility at neutral pH values and high viscosity aqueous solutions, limits its potential uses in the fields of food, health and agriculture. However, most of these limitations are overcome by chitosan oligosaccharides obtained by enzymatic hydrolysis of the polymer. Several commercial enzymes with different original specificities were assayed for their ability to hydrolyze a 93% deacetylation degree chitosan and compared with a chitosanase. According to the patterns of viscosity decrease and reducing end formation, three enzymes--cellulase, pepsin and lipase A--were found to be particularly suitable for hydrolyzing chitosan at a level comparable to that achieved by chitosanase. Unlike the appreciable levels of both 2-amino-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-glucose monomers released from chitosan by the other enzymes after a 20h-hydrolysis (4.6-9.1% of the total product weight), no monomer could be detected following pepsin cleavage. As a result, pepsin produced a higher yield of chitosan oligosaccharides than the other enzymes: 52% versus as much as 46%, respectively. Low molecular weight chitosans accounted for the remaining 48% of hydrolysis products. The calculated average polymerization degree of the products released by pepsin was around 16 units after 20h of hydrolysis. This product pattern and yield are proposed to be related to the bond cleavage specificity of pepsin and the high deacetylation degree of chitosan used as substrate. The optimal reaction conditions for hydrolysis of chitosan by pepsin were 40 degrees C and pH 4.5, and an enzyme/substrate ratio of 1:100 (w/w) for reactions longer than 1h.  相似文献   

19.
Fermented beverage of plant extract was prepared from about 50 kinds of vegetables and fruits. Natural fermentation was carried out mainly by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp. and Pichia spp.). Three kinds of saccharides have been found in this beverage and produced by fermentation. The saccharides isolated from the beverage using carbon-Celite column chromatography and preparative HPLC, were identified as a new saccharide, beta-d-fructopyranosyl-(2-->6)-d-glucopyranose, laminaribiose and maltose by examination of constituted sugars, GLC and GC-MS analyses of methyl derivatives and MALDI-TOF-MS and NMR measurements of the saccharides.  相似文献   

20.
Sweet almond beta-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the Km values for the S- and O-glycosides are similar, the k(cat) values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for k(cat)/Km for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pKa 4.5) and a protonated group (pKa 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active beta-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号