首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synthetic gene encoding an artificial polypeptide composed of antigenic epitopes of the hepatitis E virus (HEV) proteins was constructed from short oligodeoxyribonucleotides by using PCR. The polypeptide comprises a mosaic of three antigenically active dominant regions from the protein encoded by open reading frame 2 (ORF2), one antigenically active region from the protein encoded by ORF3 of the Burmese HEV strain, and one antigenically active region from the protein encoded by ORF3 of the Mexican HEV strain. The mosaic protein was expressed in Escherichia coli as a chimera with glutathione S-transferase or beta-galactosidase. Guinea pig sera containing antibodies to the corresponding HEV synthetic peptides were used to demonstrate by Western immunoblot analysis and enzyme immunoassay the presence and accessibility of all HEV-specific antigenic epitopes introduced into the mosaic protein. Both the glutathione S-transferase and beta-galactosidase hybrid proteins were analyzed by using a panel of human anti-HEV-positive and -negative sera. The data obtained strongly indicate a diagnostic potential for the mosaic protein.  相似文献   

2.
Hypervariable regions in the putative glycoprotein of hepatitis C virus.   总被引:25,自引:0,他引:25  
A comparison of the sequences of the putative glycoprotein region in three independent cDNA clones of hepatitis C virus and of sequences of four other clones revealed extensive genetic variation clustered and interspersed with highly conserved amino acid sequences. We obtained evidence for two hypervariable regions in the putative envelope glycoprotein, one region was assumed to be a potential antigenic site, as deduced from the hydrophilicity and analyses of secondary structures. These observations suggest the existence of a large pool of antigenic variants of hepatitis C virus, in Japan.  相似文献   

3.
Peptide T (ASTTTNYT), a fragment corresponding to residues 185-192 of gp120, the coat protein of HIV, is endowed with several biological properties in vitro, notably inhibition of the binding of both isolated gp120 and HIV-1 to the CD4 receptor, and chemotactic activity. Based on previous nuclear magnetic resonance (NMR) studies performed in our laboratory, which were consistent with a regular conformation of the C-terminal pentapeptide, and SAR studies showing that the C-terminal pentapeptide retains most of the biological properties, we designed eight hexapeptides containing in the central part either the TNYT or the TTNY sequence, and charged residues (D/E/R) at the two ends. Conformational analysis based on NMR and torsion angle dynamics showed that all peptides assume folded conformations. albeit with different geometries and stabilities. In particular, peptides carrying an acidic residue at the N-terminus and a basic residue at the C-terminus are characterized by stable helical structures and retain full chemotactic activity. The solution conformation of peptide ETNYTR displays strong structural similarity to the region 19-26 of both bovine pancreatic and bovine seminal ribonuclease, which are endowed with anti-HIV activity. Moreover, the frequent occurrence, in many viral proteins, of TNYT and TTNY, the two core sequences employed in the design of the hexapeptides studied in the present work, hints that the sequence of the C-terminal pentapeptide TTNYT is probably representative of a widespread viral recognition motif.  相似文献   

4.
The delivery of foreign epitopes by a replicating nonpathogenic avian infectious bursal disease virus (IBDV) was explored. The aim of the study was to identify regions in the IBDV genome that are amenable to the introduction of a sequence encoding a foreign peptide. By using a cDNA-based reverse genetics system, insertions or substitutions of sequences encoding epitope tags (FLAG, c-Myc, or hepatitis C virus epitopes) were engineered in the open reading frames of a nonstructural protein (VP5) and the capsid protein (VP2). Attempts were also made to generate recombinant IBDV that displayed foreign epitopes in the exposed loops (P(BC) and P(HI)) of the VP2 trimer. We successfully recovered recombinant IBDVs expressing c-Myc and two different virus-neutralizing epitopes of human hepatitis C virus (HCV) envelope glycoprotein E in the VP5 region. Western blot analyses with anti-c-Myc and anti-HCV antibodies provided positive identification of both the c-Myc and HCV epitopes that were fused to the N terminus of VP5. Genetic analysis showed that the recombinants carrying the c-Myc/HCV epitopes maintained the foreign gene sequences and were stable after several passages in Vero and 293T cells. This is the first report describing efficient expression of foreign peptides from a replication-competent IBDV and demonstrates the potential of this virus as a vector.  相似文献   

5.
A putative core protein derived from hepatitis C virus was expressed in E. coli. More than 5% of the total protein expressed in the bacteria after induction by isopropylthio-beta-D-galactoside was shown to be the expected protein. Western blotting with this E. coli lysate proved to be more efficient than ELISA with a non-structural viral protein, C100, to detect infection of hepatitis C virus in the sera of patients with non-A, non-B chronic hepatitis, hepatocellular carcinoma as well as in sera from healthy persons.  相似文献   

6.
S Y Lo  M J Selby    J H Ou 《Journal of virology》1996,70(8):5177-5182
Hepatitis C virus has three structural genes named C, E1, and E2. The C gene encodes the core (capsid) protein and the E1 and E2 genes encode the envelope proteins. In an immunoprecipitation experiment, the E1 protein was found to be precipitated by an anti-core antibody in the presence but not in the absence of the core protein, indicating that the E1 protein can interact with the core protein. This interaction is independent of whether the E1 and the C genes are linked in cis or separated in different DNA constructs for expression. The interaction between the core and the E1 proteins is confirmed by the observation that a hybrid protein derived from the core protein and the tissue plasminogen activator is localized in the nucleus in the absence of the E1 protein and in the perinuclear region in the presence of the E1 protein. Deletion-mapping studies indicate that the carboxy-terminal sequences of both the core and the E1 proteins are important for their interaction. Since little E1 sequence is exposed on the cytosolic side of the membrane of the endoplasmic reticulum, the interaction between the core and the E1 proteins most likely takes place in the endoplasmic reticulum membrane. The E2 protein could not be coprecipitated with the core protein by the anti-core antibody in a similar assay and likely does not interact with the core protein. The implications of these findings on the morphogenesis of the hepatitis C virus virion are discussed.  相似文献   

7.
CD81-dependent binding of hepatitis C virus E1E2 heterodimers   总被引:1,自引:0,他引:1       下载免费PDF全文
Hepatitis C virus (HCV) is the leading cause of chronic liver disease worldwide. HCV is also the major cause of mixed cryoglobulinemia, a B-lymphocyte proliferative disorder. Direct experimentation with native viral proteins is not feasible. Truncated versions of recombinant E2 envelope proteins, used as surrogates for viral particles, were shown to bind specifically to human CD81. However, truncated E2 may not fully mimic the surface of HCV virions because the virus encodes two envelope glycoproteins that associate with each other as E1E2 heterodimers. Here we show that E1E2 complexes efficiently bind to CD81 whereas truncated E2 is a weak binder, suggesting that truncated E2 is probably not the best tool with which to study cellular interactions. To gain better insight into virus-cell interactions, we developed a method by which to isolate E1E2 complexes that are properly folded. We demonstrate that purified E1E2 heterodimers bind to cells in a CD81-dependent manner. Furthermore, engagement of B cells by purified E1E2 heterodimers results in their aggregation and in protein tyrosine phosphorylation, a hallmark of B-cell activation. These studies provide a possible clue to the etiology of HCV-associated B-cell lymphoproliferative diseases. They also delineate a method by which to isolate biologically functional E1E2 complexes for the study of virus-host cell interaction in other cell types.  相似文献   

8.
Folding of hepatitis C virus E1 glycoprotein in a cell-free system   总被引:4,自引:0,他引:4       下载免费PDF全文
The hepatitis C virus (HCV) envelope proteins, E1 and E2, form noncovalent heterodimers and are leading candidate antigens for a vaccine against HCV. Studies in mammalian cell expression systems have focused primarily on E2 and its folding, whereas knowledge of E1 folding remains fragmentary. We used a cell-free in vitro translation system to study E1 folding and asked whether the flanking proteins, Core and E2, influence this process. We translated the polyprotein precursor, in which the Core is N-terminal to E1, and E2 is C-terminal, and found that when the core protein was present, oxidation of E1 was a slow, E2-independent process. The half-time for E1 oxidation was about 5 h in the presence or absence of E2. In contrast with previous reports, analysis of three constructs of different lengths revealed that the E2 glycoprotein undergoes slow oxidation as well. Unfolded or partially folded E1 bound to the endoplasmic reticulum chaperones calnexin and (with lower efficiency) calreticulin, whereas no binding to BiP/GRP78 or GRP94 could be detected. Release from calnexin and calreticulin was used to assess formation of mature E1. When E1 was expressed in the absence of Core and E2, its oxidation was impaired. We conclude that E1 folding is a process that is affected not only by E2, as previously shown, but also by the Core. The folding of viral proteins can thus depend on complex interactions between neighboring proteins within the polyprotein precursor.  相似文献   

9.
We previously identified two hypervariable regions [HVR1 (27 amino acids) and HVR2 (7 amino acids)] in the putative envelope glycoprotein (gp70) by comparison of the amino acid sequences of many isolates of the HCV-II genotype. To understand the functional features of these HVRs, using the polymerase chain reaction we analyzed the rate of actual sequence variability in the region including HVR1 and HVR2 of HCV isolated successively at intervals of several months from two patients with chronic C-type hepatitis. In both patients, the amino acid sequence of HVR1, but not HVR2, was found to change dramatically during the observation period (about one amino acid per month). However, no alteration of the amino acid sequence of HVR1 of HCV was observed in a patient in the acute phase of chronic hepatitis. Restriction digestion analysis of sequence diversity showed that a HCV genome with a newly introduced mutation in HVR1 often became the predominant population at the next time of examination. Alterations of amino acids in HVR1 occurred sequentially in the two patients in the chronic phase. These findings suggest that mutations in HVR1 are involved in the mechanism of persistent chronic HCV infection.  相似文献   

10.
Drummer HE  Maerz A  Poumbourios P 《FEBS letters》2003,546(2-3):385-390
Hepatitis C virus (HCV) glycoproteins E1 and E2 are believed to be retained in the endoplasmic reticulum (ER) or cis-Golgi compartment via retention signals located in their transmembrane domains. Here we describe the detection of E1 and E2 at the surface of transiently transfected HEK 293T and Huh7 cells. Surface-localized E1E2 heterodimers presented exclusively as non-covalently associated complexes. Surface-expressed E2 contained trans-Golgi modified complex/hybrid type carbohydrate and migrated diffusely between 70 and 90 kDa while intracellular E1 and E2 existed as high mannose 35 kDa and 70 kDa precursors, respectively. In addition, surface-localized E1E2 heterodimers were incorporated into E1E2-pseudotyped HIV-1 particles that were competent for entry into Huh7 cells. These studies suggest that functional HCV glycoproteins are not retained exclusively in the ER and transit through the secretory pathway.  相似文献   

11.
用BamHI和HindII将丙肝病毒C+E1DNA片段从其克隆载体pGEM3zf-HCV/C+E1上切下,经Taq酶补齐3’末端后插入到载体pSVL-T中,构建成丙肝病毒C+E1真核表达载体pSVL-HCV/C+E1。本实验中重组效率达64.7%(11/17),正向插入为50%(2/4)。  相似文献   

12.
Clinical and experimental evidence indicates that the hepatitis C virus (HCV) E2 glycoprotein (HCV/E2) is the most promising candidate for the development of an effective anti-HCV vaccine. Identification of the human epitopes that are conserved among isolates and are able to elicit protective antibodies would constitute a significant step forward. This work describes the mapping of the B-cell epitopes present on the surface of HCV/E2, as recognized by the immune system during infection, by the analysis of the reciprocal interactions of a panel of human recombinant Fabs derived from an HCV-infected patient. Three unrelated epitopes recognized by antibodies with no neutralization-of-binding (NOB) activity were identified; a fourth, major epitope was defined as a clustering of minor epitopes recognized by Fabs endowed with strong NOB activity.  相似文献   

13.
E2 of hepatitis C virus inhibits apoptosis   总被引:3,自引:0,他引:3  
Hepatitis C virus (HCV) is the major causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma, and can be involved in very long chronic infections up to 30 years or more. Therefore, it has been speculated that HCV possesses mechanisms capable of modulating host defense systems such as innate and adaptive immunity. To investigate this virus-host interaction, we generated HCV replicons containing various HCV structural proteins and then analyzed the sensitivity of replicon-containing cells to the apoptosis-inducing agent, TRAIL. TRAIL-induced apoptosis was monitored by cleavage of procaspase-3 and procaspase-9 as well as that of their substrate poly(ADP-ribose) polymerase. TRAIL-induced apoptosis was inhibited in cells expressing HCV E2. Moreover, expression of HCV E2 enhanced the colony forming efficiency of replicon-containing cells by 25-fold. Blockage of apoptosis by E2 seems to be related to inhibition of TRAIL-induced cytochrome c release from the mitochondria. Based on these results, we propose that E2 augments persistent HCV infection by blocking host-induced apoptosis of infected cells.  相似文献   

14.
We have identified the membrane-active regions of the full sequences of the HCV E1 and E2 envelope glycoproteins by performing an exhaustive study of membrane leakage, hemifusion, and fusion induced by 18-mer peptide libraries on model membranes having different phospholipid compositions. The data and their comparison have led us to identify different E1 and E2 membrane-active segments which might be implicated in viral membrane fusion, membrane interaction, and/or protein-protein binding. Moreover, it has permitted us to suggest that the fusion peptide might be located in the E1 glycoprotein and, more specifically, the segment comprised by amino acid residues 265-296. The identification of these membrane-active segments from the E1 and E2 envelope glycoproteins, as well as their membranotropic propensity, supports their direct role in HCV-mediated membrane fusion, sustains the notion that different segments provide the driving force for the merging of the viral and target cell membranes, and defines those segments as attractive targets for further development of new antiviral compounds.  相似文献   

15.
Two hepatitis C virus glycoprotein E2 products with different C termini.   总被引:11,自引:16,他引:11       下载免费PDF全文
Processing of the boundary region between the putative structural and nonstructural regions of the hepatitis C virus precursor polyprotein was analyzed by in vitro translation using reticulocyte lysate in the presence of canine microsomal membranes. At this boundary in the precursor polyprotein, the most carboxy-terminal of the structural proteins, gp70 (E2), is proximal to the amino terminal of the nonstructural protein p21 (NS2). The presence of a novel microsomal membrane-dependent cleavage site was observed at the region upstream of the amino-terminal end of p21 (NS2) in the precursor polyprotein. The cleavage site was assigned to amino acid residues 746/747 in the hepatitis C virus precursor polyprotein. Inefficient cleavage of this site resulted in the production of two forms of E2 products with different sizes of peptide backbones. Translation and cleavage of various C-terminal deletion constructs established the significance of the C-terminal hydrophobic amino acid sequences of E2 products in membrane anchoring.  相似文献   

16.
17.
E1 and E2 glycoproteins are structural components of hepatitis C virus (HCV) virion. They are involved in cellular receptors interaction, neutralising antibodies elicitation, and viral morphogenesis. They are considered as major candidates for anti-HCV vaccine. In this report, we first expressed tandem E1E2 as well as C-terminally truncated E1 fragment and C-terminally truncated E2 fragment, respectively, in Escherichia coli cells and the proteins were purified to homogenesis. All the purified proteins can react specifically with patient sera. Both purified chimeric protein E1E2 and protein E2 can interact with a putative cellular receptor CD81, while purified protein E1 cannot interact with CD81. The sera of rabbit immunized with the E1E2 inhibited the binding of E2 protein to the major extracellular loop of human CD81 and reacted with both proteins E1 and E2, respectively. Anti-E1 and E2 antibodies can be generated simultaneously in the rabbit immunized with the E1E2, and the titers of antibodies were 63 or 56% higher than the titers induced by E1 or E2 alone, respectively. The results suggest that E1 and E2 can enhance their immunogenicity each other in chimeric protein E1E2 and the E. coli-derived chimeric protein E1E2 and corresponding antisera can be used as an useful tools in anti-HCV vaccine research.  相似文献   

18.
The majority of hepatitis C virus (HCV)-infected individuals progress from acute to chronic disease, despite the presence of a strong humoral immune response to the envelope glycoproteins E1 and E2. When expressed in mammalian cells, E1 and E2 form both noncovalently linked E1E2 heterodimers, believed to be properly folded, and disulfide-linked, high-molecular-weight aggregates that are misfolded. Previously, we identified 10 human monoclonal antibodies (HMAbs) that bind E2 glycoproteins from different genotypes. Here we demonstrate that one of these HMAbs, CBH-2, is unique in its ability to distinguish between properly folded and misfolded envelope proteins. This HMAb recognizes HCV-E2 only when complexed with E1. The E1E2 complexes recognized by CBH-2 are noncovalently linked heterodimers and not misfolded disulfide-linked, high-molecular-weight aggregates. The E1E2 heterodimers seen by CBH-2 no longer associate with the endoplasmic reticulum chaperone calnexin and are likely to represent the prebudding form of the HCV virion.  相似文献   

19.
With the aim of better understanding the fusion process mediated by the envelope proteins of the hepatitis G virus (HGV/GBV-C), we have investigated the interaction with model membranes of two overlapping peptides [(267-284) and (279-298)] belonging to the E2 structural protein. The peptides were compared for their ability to perturb lipid bilayers by means of different techniques such as differential scanning calorimetry and fluorescence spectroscopy. Furthermore, the conformational behaviour of the peptides in different membrane environments was studied by Fourier-transform infrared spectroscopy and circular dichroism. The results showed that only the E2(279-298) peptide sequence was able to bind with high affinity to negatively charged membranes, to permeabilize efficiently negative lipid bilayers, to induce haemolysis, and to promote inter-vesicle fusion. This fusogenic activity could be related to the induced peptide conformation upon interaction with the target membrane.  相似文献   

20.
Several conserved domains critical for E1E2 assembly and hepatitis C virus entry have been identified in E1 and E2 envelope glycoproteins. However, the role of less conserved domains involved in cross-talk between either glycoprotein must be defined to fully understand how E1E2 undergoes conformational changes during cell entry. To characterize such domains and to identify their functional partners, we analyzed a set of intergenotypic E1E2 heterodimers derived from E1 and E2 of different genotypes. The infectivity of virions indicated that Con1 E1 did not form functional heterodimers when associated with E2 from H77. Biochemical analyses demonstrated that the reduced infectivity was not related to alteration of conformation and incorporation of Con1 E1/H77 E2 heterodimers but rather to cell entry defects. Thus, we generated chimeric E1E2 glycoproteins by exchanging different domains of each protein in order to restore functional heterodimers. We found that both the ectodomain and transmembrane domain of E1 influenced infectivity. Site-directed mutagenesis highlighted the role of amino acids 359, 373, and 375 in transmembrane domain in entry. In addition, we identified one domain involved in entry within the N-terminal part of E1, and we isolated a motif at position 219 that is critical for H77 function. Interestingly, using additional chimeric E1E2 complexes harboring substitutions in this motif, we found that the transmembrane domain of E1 acts as a partner of this motif. Therefore, we characterized domains of E1 and E2 that have co-evolved inside a given genotype to optimize their interactions and allow efficient entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号